summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/table/block.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 18:24:20 +0000
commit483eb2f56657e8e7f419ab1a4fab8dce9ade8609 (patch)
treee5d88d25d870d5dedacb6bbdbe2a966086a0a5cf /src/rocksdb/table/block.cc
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 14.2.21.upstream/14.2.21upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--src/rocksdb/table/block.cc960
1 files changed, 960 insertions, 0 deletions
diff --git a/src/rocksdb/table/block.cc b/src/rocksdb/table/block.cc
new file mode 100644
index 00000000..7c83ebb6
--- /dev/null
+++ b/src/rocksdb/table/block.cc
@@ -0,0 +1,960 @@
+// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
+// This source code is licensed under both the GPLv2 (found in the
+// COPYING file in the root directory) and Apache 2.0 License
+// (found in the LICENSE.Apache file in the root directory).
+//
+// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file. See the AUTHORS file for names of contributors.
+//
+// Decodes the blocks generated by block_builder.cc.
+
+#include "table/block.h"
+#include <algorithm>
+#include <string>
+#include <unordered_map>
+#include <vector>
+
+#include "monitoring/perf_context_imp.h"
+#include "port/port.h"
+#include "port/stack_trace.h"
+#include "rocksdb/comparator.h"
+#include "table/block_prefix_index.h"
+#include "table/data_block_footer.h"
+#include "table/format.h"
+#include "util/coding.h"
+#include "util/logging.h"
+
+namespace rocksdb {
+
+// Helper routine: decode the next block entry starting at "p",
+// storing the number of shared key bytes, non_shared key bytes,
+// and the length of the value in "*shared", "*non_shared", and
+// "*value_length", respectively. Will not derefence past "limit".
+//
+// If any errors are detected, returns nullptr. Otherwise, returns a
+// pointer to the key delta (just past the three decoded values).
+struct DecodeEntry {
+ inline const char* operator()(const char* p, const char* limit,
+ uint32_t* shared, uint32_t* non_shared,
+ uint32_t* value_length) {
+ // We need 2 bytes for shared and non_shared size. We also need one more
+ // byte either for value size or the actual value in case of value delta
+ // encoding.
+ assert(limit - p >= 3);
+ *shared = reinterpret_cast<const unsigned char*>(p)[0];
+ *non_shared = reinterpret_cast<const unsigned char*>(p)[1];
+ *value_length = reinterpret_cast<const unsigned char*>(p)[2];
+ if ((*shared | *non_shared | *value_length) < 128) {
+ // Fast path: all three values are encoded in one byte each
+ p += 3;
+ } else {
+ if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr;
+ if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr;
+ if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) {
+ return nullptr;
+ }
+ }
+
+ // Using an assert in place of "return null" since we should not pay the
+ // cost of checking for corruption on every single key decoding
+ assert(!(static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)));
+ return p;
+ }
+};
+
+// Helper routine: similar to DecodeEntry but does not have assertions.
+// Instead, returns nullptr so that caller can detect and report failure.
+struct CheckAndDecodeEntry {
+ inline const char* operator()(const char* p, const char* limit,
+ uint32_t* shared, uint32_t* non_shared,
+ uint32_t* value_length) {
+ // We need 2 bytes for shared and non_shared size. We also need one more
+ // byte either for value size or the actual value in case of value delta
+ // encoding.
+ if (limit - p < 3) {
+ return nullptr;
+ }
+ *shared = reinterpret_cast<const unsigned char*>(p)[0];
+ *non_shared = reinterpret_cast<const unsigned char*>(p)[1];
+ *value_length = reinterpret_cast<const unsigned char*>(p)[2];
+ if ((*shared | *non_shared | *value_length) < 128) {
+ // Fast path: all three values are encoded in one byte each
+ p += 3;
+ } else {
+ if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr;
+ if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr;
+ if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) {
+ return nullptr;
+ }
+ }
+
+ if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) {
+ return nullptr;
+ }
+ return p;
+ }
+};
+
+struct DecodeKey {
+ inline const char* operator()(const char* p, const char* limit,
+ uint32_t* shared, uint32_t* non_shared) {
+ uint32_t value_length;
+ return DecodeEntry()(p, limit, shared, non_shared, &value_length);
+ }
+};
+
+// In format_version 4, which is used by index blocks, the value size is not
+// encoded before the entry, as the value is known to be the handle with the
+// known size.
+struct DecodeKeyV4 {
+ inline const char* operator()(const char* p, const char* limit,
+ uint32_t* shared, uint32_t* non_shared) {
+ // We need 2 bytes for shared and non_shared size. We also need one more
+ // byte either for value size or the actual value in case of value delta
+ // encoding.
+ if (limit - p < 3) return nullptr;
+ *shared = reinterpret_cast<const unsigned char*>(p)[0];
+ *non_shared = reinterpret_cast<const unsigned char*>(p)[1];
+ if ((*shared | *non_shared) < 128) {
+ // Fast path: all three values are encoded in one byte each
+ p += 2;
+ } else {
+ if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr;
+ if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr;
+ }
+ return p;
+ }
+};
+
+void DataBlockIter::Next() {
+ assert(Valid());
+ ParseNextDataKey<DecodeEntry>();
+}
+
+void DataBlockIter::NextOrReport() {
+ assert(Valid());
+ ParseNextDataKey<CheckAndDecodeEntry>();
+}
+
+void IndexBlockIter::Next() {
+ assert(Valid());
+ ParseNextIndexKey();
+}
+
+void IndexBlockIter::Prev() {
+ assert(Valid());
+ // Scan backwards to a restart point before current_
+ const uint32_t original = current_;
+ while (GetRestartPoint(restart_index_) >= original) {
+ if (restart_index_ == 0) {
+ // No more entries
+ current_ = restarts_;
+ restart_index_ = num_restarts_;
+ return;
+ }
+ restart_index_--;
+ }
+ SeekToRestartPoint(restart_index_);
+ do {
+ if (!ParseNextIndexKey()) {
+ break;
+ }
+ // Loop until end of current entry hits the start of original entry
+ } while (NextEntryOffset() < original);
+}
+
+// Similar to IndexBlockIter::Prev but also caches the prev entries
+void DataBlockIter::Prev() {
+ assert(Valid());
+
+ assert(prev_entries_idx_ == -1 ||
+ static_cast<size_t>(prev_entries_idx_) < prev_entries_.size());
+ // Check if we can use cached prev_entries_
+ if (prev_entries_idx_ > 0 &&
+ prev_entries_[prev_entries_idx_].offset == current_) {
+ // Read cached CachedPrevEntry
+ prev_entries_idx_--;
+ const CachedPrevEntry& current_prev_entry =
+ prev_entries_[prev_entries_idx_];
+
+ const char* key_ptr = nullptr;
+ if (current_prev_entry.key_ptr != nullptr) {
+ // The key is not delta encoded and stored in the data block
+ key_ptr = current_prev_entry.key_ptr;
+ key_pinned_ = true;
+ } else {
+ // The key is delta encoded and stored in prev_entries_keys_buff_
+ key_ptr = prev_entries_keys_buff_.data() + current_prev_entry.key_offset;
+ key_pinned_ = false;
+ }
+ const Slice current_key(key_ptr, current_prev_entry.key_size);
+
+ current_ = current_prev_entry.offset;
+ key_.SetKey(current_key, false /* copy */);
+ value_ = current_prev_entry.value;
+
+ return;
+ }
+
+ // Clear prev entries cache
+ prev_entries_idx_ = -1;
+ prev_entries_.clear();
+ prev_entries_keys_buff_.clear();
+
+ // Scan backwards to a restart point before current_
+ const uint32_t original = current_;
+ while (GetRestartPoint(restart_index_) >= original) {
+ if (restart_index_ == 0) {
+ // No more entries
+ current_ = restarts_;
+ restart_index_ = num_restarts_;
+ return;
+ }
+ restart_index_--;
+ }
+
+ SeekToRestartPoint(restart_index_);
+
+ do {
+ if (!ParseNextDataKey<DecodeEntry>()) {
+ break;
+ }
+ Slice current_key = key();
+
+ if (key_.IsKeyPinned()) {
+ // The key is not delta encoded
+ prev_entries_.emplace_back(current_, current_key.data(), 0,
+ current_key.size(), value());
+ } else {
+ // The key is delta encoded, cache decoded key in buffer
+ size_t new_key_offset = prev_entries_keys_buff_.size();
+ prev_entries_keys_buff_.append(current_key.data(), current_key.size());
+
+ prev_entries_.emplace_back(current_, nullptr, new_key_offset,
+ current_key.size(), value());
+ }
+ // Loop until end of current entry hits the start of original entry
+ } while (NextEntryOffset() < original);
+ prev_entries_idx_ = static_cast<int32_t>(prev_entries_.size()) - 1;
+}
+
+void DataBlockIter::Seek(const Slice& target) {
+ Slice seek_key = target;
+ PERF_TIMER_GUARD(block_seek_nanos);
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ uint32_t index = 0;
+ bool ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index,
+ comparator_);
+
+ if (!ok) {
+ return;
+ }
+ SeekToRestartPoint(index);
+ // Linear search (within restart block) for first key >= target
+
+ while (true) {
+ if (!ParseNextDataKey<DecodeEntry>() || Compare(key_, seek_key) >= 0) {
+ return;
+ }
+ }
+}
+
+// Optimized Seek for point lookup for an internal key `target`
+// target = "seek_user_key @ type | seqno".
+//
+// For any type other than kTypeValue, kTypeDeletion, kTypeSingleDeletion,
+// or kTypeBlobIndex, this function behaves identically as Seek().
+//
+// For any type in kTypeValue, kTypeDeletion, kTypeSingleDeletion,
+// or kTypeBlobIndex:
+//
+// If the return value is FALSE, iter location is undefined, and it means:
+// 1) there is no key in this block falling into the range:
+// ["seek_user_key @ type | seqno", "seek_user_key @ kTypeDeletion | 0"],
+// inclusive; AND
+// 2) the last key of this block has a greater user_key from seek_user_key
+//
+// If the return value is TRUE, iter location has two possibilies:
+// 1) If iter is valid, it is set to a location as if set by BinarySeek. In
+// this case, it points to the first key_ with a larger user_key or a
+// matching user_key with a seqno no greater than the seeking seqno.
+// 2) If the iter is invalid, it means that either all the user_key is less
+// than the seek_user_key, or the block ends with a matching user_key but
+// with a smaller [ type | seqno ] (i.e. a larger seqno, or the same seqno
+// but larger type).
+bool DataBlockIter::SeekForGetImpl(const Slice& target) {
+ Slice user_key = ExtractUserKey(target);
+ uint32_t map_offset = restarts_ + num_restarts_ * sizeof(uint32_t);
+ uint8_t entry = data_block_hash_index_->Lookup(data_, map_offset, user_key);
+
+ if (entry == kCollision) {
+ // HashSeek not effective, falling back
+ Seek(target);
+ return true;
+ }
+
+ if (entry == kNoEntry) {
+ // Even if we cannot find the user_key in this block, the result may
+ // exist in the next block. Consider this exmpale:
+ //
+ // Block N: [aab@100, ... , app@120]
+ // bounary key: axy@50 (we make minimal assumption about a boundary key)
+ // Block N+1: [axy@10, ... ]
+ //
+ // If seek_key = axy@60, the search will starts from Block N.
+ // Even if the user_key is not found in the hash map, the caller still
+ // have to conntinue searching the next block.
+ //
+ // In this case, we pretend the key is the the last restart interval.
+ // The while-loop below will search the last restart interval for the
+ // key. It will stop at the first key that is larger than the seek_key,
+ // or to the end of the block if no one is larger.
+ entry = static_cast<uint8_t>(num_restarts_ - 1);
+ }
+
+ uint32_t restart_index = entry;
+
+ // check if the key is in the restart_interval
+ assert(restart_index < num_restarts_);
+ SeekToRestartPoint(restart_index);
+
+ const char* limit = nullptr;
+ if (restart_index_ + 1 < num_restarts_) {
+ limit = data_ + GetRestartPoint(restart_index_ + 1);
+ } else {
+ limit = data_ + restarts_;
+ }
+
+ while (true) {
+ // Here we only linear seek the target key inside the restart interval.
+ // If a key does not exist inside a restart interval, we avoid
+ // further searching the block content accross restart interval boundary.
+ //
+ // TODO(fwu): check the left and write boundary of the restart interval
+ // to avoid linear seek a target key that is out of range.
+ if (!ParseNextDataKey<DecodeEntry>(limit) || Compare(key_, target) >= 0) {
+ // we stop at the first potential matching user key.
+ break;
+ }
+ }
+
+ if (current_ == restarts_) {
+ // Search reaches to the end of the block. There are three possibilites:
+ // 1) there is only one user_key match in the block (otherwise collsion).
+ // the matching user_key resides in the last restart interval, and it
+ // is the last key of the restart interval and of the block as well.
+ // ParseNextDataKey() skiped it as its [ type | seqno ] is smaller.
+ //
+ // 2) The seek_key is not found in the HashIndex Lookup(), i.e. kNoEntry,
+ // AND all existing user_keys in the restart interval are smaller than
+ // seek_user_key.
+ //
+ // 3) The seek_key is a false positive and happens to be hashed to the
+ // last restart interval, AND all existing user_keys in the restart
+ // interval are smaller than seek_user_key.
+ //
+ // The result may exist in the next block each case, so we return true.
+ return true;
+ }
+
+ if (user_comparator_->Compare(key_.GetUserKey(), user_key) != 0) {
+ // the key is not in this block and cannot be at the next block either.
+ return false;
+ }
+
+ // Here we are conservative and only support a limited set of cases
+ ValueType value_type = ExtractValueType(key_.GetKey());
+ if (value_type != ValueType::kTypeValue &&
+ value_type != ValueType::kTypeDeletion &&
+ value_type != ValueType::kTypeSingleDeletion &&
+ value_type != ValueType::kTypeBlobIndex) {
+ Seek(target);
+ return true;
+ }
+
+ // Result found, and the iter is correctly set.
+ return true;
+}
+
+void IndexBlockIter::Seek(const Slice& target) {
+ Slice seek_key = target;
+ if (!key_includes_seq_) {
+ seek_key = ExtractUserKey(target);
+ }
+ PERF_TIMER_GUARD(block_seek_nanos);
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ uint32_t index = 0;
+ bool ok = false;
+ if (prefix_index_) {
+ ok = PrefixSeek(target, &index);
+ } else if (value_delta_encoded_) {
+ ok = BinarySeek<DecodeKeyV4>(seek_key, 0, num_restarts_ - 1, &index,
+ comparator_);
+ } else {
+ ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index,
+ comparator_);
+ }
+
+ if (!ok) {
+ return;
+ }
+ SeekToRestartPoint(index);
+ // Linear search (within restart block) for first key >= target
+
+ while (true) {
+ if (!ParseNextIndexKey() || Compare(key_, seek_key) >= 0) {
+ return;
+ }
+ }
+}
+
+void DataBlockIter::SeekForPrev(const Slice& target) {
+ PERF_TIMER_GUARD(block_seek_nanos);
+ Slice seek_key = target;
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ uint32_t index = 0;
+ bool ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index,
+ comparator_);
+
+ if (!ok) {
+ return;
+ }
+ SeekToRestartPoint(index);
+ // Linear search (within restart block) for first key >= seek_key
+
+ while (ParseNextDataKey<DecodeEntry>() && Compare(key_, seek_key) < 0) {
+ }
+ if (!Valid()) {
+ SeekToLast();
+ } else {
+ while (Valid() && Compare(key_, seek_key) > 0) {
+ Prev();
+ }
+ }
+}
+
+void DataBlockIter::SeekToFirst() {
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ SeekToRestartPoint(0);
+ ParseNextDataKey<DecodeEntry>();
+}
+
+void DataBlockIter::SeekToFirstOrReport() {
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ SeekToRestartPoint(0);
+ ParseNextDataKey<CheckAndDecodeEntry>();
+}
+
+void IndexBlockIter::SeekToFirst() {
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ SeekToRestartPoint(0);
+ ParseNextIndexKey();
+}
+
+void DataBlockIter::SeekToLast() {
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ SeekToRestartPoint(num_restarts_ - 1);
+ while (ParseNextDataKey<DecodeEntry>() && NextEntryOffset() < restarts_) {
+ // Keep skipping
+ }
+}
+
+void IndexBlockIter::SeekToLast() {
+ if (data_ == nullptr) { // Not init yet
+ return;
+ }
+ SeekToRestartPoint(num_restarts_ - 1);
+ while (ParseNextIndexKey() && NextEntryOffset() < restarts_) {
+ // Keep skipping
+ }
+}
+
+template <class TValue>
+void BlockIter<TValue>::CorruptionError() {
+ current_ = restarts_;
+ restart_index_ = num_restarts_;
+ status_ = Status::Corruption("bad entry in block");
+ key_.Clear();
+ value_.clear();
+}
+
+template <typename DecodeEntryFunc>
+bool DataBlockIter::ParseNextDataKey(const char* limit) {
+ current_ = NextEntryOffset();
+ const char* p = data_ + current_;
+ if (!limit) {
+ limit = data_ + restarts_; // Restarts come right after data
+ }
+
+ if (p >= limit) {
+ // No more entries to return. Mark as invalid.
+ current_ = restarts_;
+ restart_index_ = num_restarts_;
+ return false;
+ }
+
+ // Decode next entry
+ uint32_t shared, non_shared, value_length;
+ p = DecodeEntryFunc()(p, limit, &shared, &non_shared, &value_length);
+ if (p == nullptr || key_.Size() < shared) {
+ CorruptionError();
+ return false;
+ } else {
+ if (shared == 0) {
+ // If this key dont share any bytes with prev key then we dont need
+ // to decode it and can use it's address in the block directly.
+ key_.SetKey(Slice(p, non_shared), false /* copy */);
+ key_pinned_ = true;
+ } else {
+ // This key share `shared` bytes with prev key, we need to decode it
+ key_.TrimAppend(shared, p, non_shared);
+ key_pinned_ = false;
+ }
+
+ if (global_seqno_ != kDisableGlobalSequenceNumber) {
+ // If we are reading a file with a global sequence number we should
+ // expect that all encoded sequence numbers are zeros and any value
+ // type is kTypeValue, kTypeMerge, kTypeDeletion, or kTypeRangeDeletion.
+ assert(GetInternalKeySeqno(key_.GetInternalKey()) == 0);
+
+ ValueType value_type = ExtractValueType(key_.GetKey());
+ assert(value_type == ValueType::kTypeValue ||
+ value_type == ValueType::kTypeMerge ||
+ value_type == ValueType::kTypeDeletion ||
+ value_type == ValueType::kTypeRangeDeletion);
+
+ if (key_pinned_) {
+ // TODO(tec): Investigate updating the seqno in the loaded block
+ // directly instead of doing a copy and update.
+
+ // We cannot use the key address in the block directly because
+ // we have a global_seqno_ that will overwrite the encoded one.
+ key_.OwnKey();
+ key_pinned_ = false;
+ }
+
+ key_.UpdateInternalKey(global_seqno_, value_type);
+ }
+
+ value_ = Slice(p + non_shared, value_length);
+ if (shared == 0) {
+ while (restart_index_ + 1 < num_restarts_ &&
+ GetRestartPoint(restart_index_ + 1) < current_) {
+ ++restart_index_;
+ }
+ }
+ // else we are in the middle of a restart interval and the restart_index_
+ // thus has not changed
+ return true;
+ }
+}
+
+bool IndexBlockIter::ParseNextIndexKey() {
+ current_ = NextEntryOffset();
+ const char* p = data_ + current_;
+ const char* limit = data_ + restarts_; // Restarts come right after data
+ if (p >= limit) {
+ // No more entries to return. Mark as invalid.
+ current_ = restarts_;
+ restart_index_ = num_restarts_;
+ return false;
+ }
+
+ // Decode next entry
+ uint32_t shared, non_shared, value_length;
+ if (value_delta_encoded_) {
+ p = DecodeKeyV4()(p, limit, &shared, &non_shared);
+ value_length = 0;
+ } else {
+ p = DecodeEntry()(p, limit, &shared, &non_shared, &value_length);
+ }
+ if (p == nullptr || key_.Size() < shared) {
+ CorruptionError();
+ return false;
+ }
+ if (shared == 0) {
+ // If this key dont share any bytes with prev key then we dont need
+ // to decode it and can use it's address in the block directly.
+ key_.SetKey(Slice(p, non_shared), false /* copy */);
+ key_pinned_ = true;
+ } else {
+ // This key share `shared` bytes with prev key, we need to decode it
+ key_.TrimAppend(shared, p, non_shared);
+ key_pinned_ = false;
+ }
+ value_ = Slice(p + non_shared, value_length);
+ if (shared == 0) {
+ while (restart_index_ + 1 < num_restarts_ &&
+ GetRestartPoint(restart_index_ + 1) < current_) {
+ ++restart_index_;
+ }
+ }
+ // else we are in the middle of a restart interval and the restart_index_
+ // thus has not changed
+ if (value_delta_encoded_) {
+ assert(value_length == 0);
+ DecodeCurrentValue(shared);
+ }
+ return true;
+}
+
+// The format:
+// restart_point 0: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz)
+// restart_point 1: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz)
+// ...
+// restart_point n-1: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz)
+// where, k is key, v is value, and its encoding is in parenthesis.
+// The format of each key is (shared_size, non_shared_size, shared, non_shared)
+// The format of each value, i.e., block hanlde, is (offset, size) whenever the
+// shared_size is 0, which included the first entry in each restart point.
+// Otherwise the format is delta-size = block handle size - size of last block
+// handle.
+void IndexBlockIter::DecodeCurrentValue(uint32_t shared) {
+ assert(value_delta_encoded_);
+ const char* limit = data_ + restarts_;
+ if (shared == 0) {
+ uint64_t o, s;
+ const char* newp = GetVarint64Ptr(value_.data(), limit, &o);
+ assert(newp);
+ newp = GetVarint64Ptr(newp, limit, &s);
+ assert(newp);
+ decoded_value_ = BlockHandle(o, s);
+ value_ = Slice(value_.data(), newp - value_.data());
+ } else {
+ uint64_t next_value_base =
+ decoded_value_.offset() + decoded_value_.size() + kBlockTrailerSize;
+ int64_t delta;
+ const char* newp = GetVarsignedint64Ptr(value_.data(), limit, &delta);
+ decoded_value_ =
+ BlockHandle(next_value_base, decoded_value_.size() + delta);
+ value_ = Slice(value_.data(), newp - value_.data());
+ }
+}
+
+// Binary search in restart array to find the first restart point that
+// is either the last restart point with a key less than target,
+// which means the key of next restart point is larger than target, or
+// the first restart point with a key = target
+template <class TValue>
+template <typename DecodeKeyFunc>
+bool BlockIter<TValue>::BinarySeek(const Slice& target, uint32_t left,
+ uint32_t right, uint32_t* index,
+ const Comparator* comp) {
+ assert(left <= right);
+
+ while (left < right) {
+ uint32_t mid = (left + right + 1) / 2;
+ uint32_t region_offset = GetRestartPoint(mid);
+ uint32_t shared, non_shared;
+ const char* key_ptr = DecodeKeyFunc()(
+ data_ + region_offset, data_ + restarts_, &shared, &non_shared);
+ if (key_ptr == nullptr || (shared != 0)) {
+ CorruptionError();
+ return false;
+ }
+ Slice mid_key(key_ptr, non_shared);
+ int cmp = comp->Compare(mid_key, target);
+ if (cmp < 0) {
+ // Key at "mid" is smaller than "target". Therefore all
+ // blocks before "mid" are uninteresting.
+ left = mid;
+ } else if (cmp > 0) {
+ // Key at "mid" is >= "target". Therefore all blocks at or
+ // after "mid" are uninteresting.
+ right = mid - 1;
+ } else {
+ left = right = mid;
+ }
+ }
+
+ *index = left;
+ return true;
+}
+
+// Compare target key and the block key of the block of `block_index`.
+// Return -1 if error.
+int IndexBlockIter::CompareBlockKey(uint32_t block_index, const Slice& target) {
+ uint32_t region_offset = GetRestartPoint(block_index);
+ uint32_t shared, non_shared;
+ const char* key_ptr =
+ value_delta_encoded_
+ ? DecodeKeyV4()(data_ + region_offset, data_ + restarts_, &shared,
+ &non_shared)
+ : DecodeKey()(data_ + region_offset, data_ + restarts_, &shared,
+ &non_shared);
+ if (key_ptr == nullptr || (shared != 0)) {
+ CorruptionError();
+ return 1; // Return target is smaller
+ }
+ Slice block_key(key_ptr, non_shared);
+ return Compare(block_key, target);
+}
+
+// Binary search in block_ids to find the first block
+// with a key >= target
+bool IndexBlockIter::BinaryBlockIndexSeek(const Slice& target,
+ uint32_t* block_ids, uint32_t left,
+ uint32_t right, uint32_t* index) {
+ assert(left <= right);
+ uint32_t left_bound = left;
+
+ while (left <= right) {
+ uint32_t mid = (right + left) / 2;
+
+ int cmp = CompareBlockKey(block_ids[mid], target);
+ if (!status_.ok()) {
+ return false;
+ }
+ if (cmp < 0) {
+ // Key at "target" is larger than "mid". Therefore all
+ // blocks before or at "mid" are uninteresting.
+ left = mid + 1;
+ } else {
+ // Key at "target" is <= "mid". Therefore all blocks
+ // after "mid" are uninteresting.
+ // If there is only one block left, we found it.
+ if (left == right) break;
+ right = mid;
+ }
+ }
+
+ if (left == right) {
+ // In one of the two following cases:
+ // (1) left is the first one of block_ids
+ // (2) there is a gap of blocks between block of `left` and `left-1`.
+ // we can further distinguish the case of key in the block or key not
+ // existing, by comparing the target key and the key of the previous
+ // block to the left of the block found.
+ if (block_ids[left] > 0 &&
+ (left == left_bound || block_ids[left - 1] != block_ids[left] - 1) &&
+ CompareBlockKey(block_ids[left] - 1, target) > 0) {
+ current_ = restarts_;
+ return false;
+ }
+
+ *index = block_ids[left];
+ return true;
+ } else {
+ assert(left > right);
+ // Mark iterator invalid
+ current_ = restarts_;
+ return false;
+ }
+}
+
+bool IndexBlockIter::PrefixSeek(const Slice& target, uint32_t* index) {
+ assert(prefix_index_);
+ Slice seek_key = target;
+ if (!key_includes_seq_) {
+ seek_key = ExtractUserKey(target);
+ }
+ uint32_t* block_ids = nullptr;
+ uint32_t num_blocks = prefix_index_->GetBlocks(target, &block_ids);
+
+ if (num_blocks == 0) {
+ current_ = restarts_;
+ return false;
+ } else {
+ return BinaryBlockIndexSeek(seek_key, block_ids, 0, num_blocks - 1, index);
+ }
+}
+
+uint32_t Block::NumRestarts() const {
+ assert(size_ >= 2 * sizeof(uint32_t));
+ uint32_t block_footer = DecodeFixed32(data_ + size_ - sizeof(uint32_t));
+ uint32_t num_restarts = block_footer;
+ if (size_ > kMaxBlockSizeSupportedByHashIndex) {
+ // In BlockBuilder, we have ensured a block with HashIndex is less than
+ // kMaxBlockSizeSupportedByHashIndex (64KiB).
+ //
+ // Therefore, if we encounter a block with a size > 64KiB, the block
+ // cannot have HashIndex. So the footer will directly interpreted as
+ // num_restarts.
+ //
+ // Such check is for backward compatibility. We can ensure legacy block
+ // with a vary large num_restarts i.e. >= 0x80000000 can be interpreted
+ // correctly as no HashIndex even if the MSB of num_restarts is set.
+ return num_restarts;
+ }
+ BlockBasedTableOptions::DataBlockIndexType index_type;
+ UnPackIndexTypeAndNumRestarts(block_footer, &index_type, &num_restarts);
+ return num_restarts;
+}
+
+BlockBasedTableOptions::DataBlockIndexType Block::IndexType() const {
+ assert(size_ >= 2 * sizeof(uint32_t));
+ if (size_ > kMaxBlockSizeSupportedByHashIndex) {
+ // The check is for the same reason as that in NumRestarts()
+ return BlockBasedTableOptions::kDataBlockBinarySearch;
+ }
+ uint32_t block_footer = DecodeFixed32(data_ + size_ - sizeof(uint32_t));
+ uint32_t num_restarts = block_footer;
+ BlockBasedTableOptions::DataBlockIndexType index_type;
+ UnPackIndexTypeAndNumRestarts(block_footer, &index_type, &num_restarts);
+ return index_type;
+}
+
+Block::~Block() {
+ // This sync point can be re-enabled if RocksDB can control the
+ // initialization order of any/all static options created by the user.
+ // TEST_SYNC_POINT("Block::~Block");
+}
+
+Block::Block(BlockContents&& contents, SequenceNumber _global_seqno,
+ size_t read_amp_bytes_per_bit, Statistics* statistics)
+ : contents_(std::move(contents)),
+ data_(contents_.data.data()),
+ size_(contents_.data.size()),
+ restart_offset_(0),
+ num_restarts_(0),
+ global_seqno_(_global_seqno) {
+ TEST_SYNC_POINT("Block::Block:0");
+ if (size_ < sizeof(uint32_t)) {
+ size_ = 0; // Error marker
+ } else {
+ // Should only decode restart points for uncompressed blocks
+ num_restarts_ = NumRestarts();
+ switch (IndexType()) {
+ case BlockBasedTableOptions::kDataBlockBinarySearch:
+ restart_offset_ = static_cast<uint32_t>(size_) -
+ (1 + num_restarts_) * sizeof(uint32_t);
+ if (restart_offset_ > size_ - sizeof(uint32_t)) {
+ // The size is too small for NumRestarts() and therefore
+ // restart_offset_ wrapped around.
+ size_ = 0;
+ }
+ break;
+ case BlockBasedTableOptions::kDataBlockBinaryAndHash:
+ if (size_ < sizeof(uint32_t) /* block footer */ +
+ sizeof(uint16_t) /* NUM_BUCK */) {
+ size_ = 0;
+ break;
+ }
+
+ uint16_t map_offset;
+ data_block_hash_index_.Initialize(
+ contents.data.data(),
+ static_cast<uint16_t>(contents.data.size() -
+ sizeof(uint32_t)), /*chop off
+ NUM_RESTARTS*/
+ &map_offset);
+
+ restart_offset_ = map_offset - num_restarts_ * sizeof(uint32_t);
+
+ if (restart_offset_ > map_offset) {
+ // map_offset is too small for NumRestarts() and
+ // therefore restart_offset_ wrapped around.
+ size_ = 0;
+ break;
+ }
+ break;
+ default:
+ size_ = 0; // Error marker
+ }
+ }
+ if (read_amp_bytes_per_bit != 0 && statistics && size_ != 0) {
+ read_amp_bitmap_.reset(new BlockReadAmpBitmap(
+ restart_offset_, read_amp_bytes_per_bit, statistics));
+ }
+}
+
+template <>
+DataBlockIter* Block::NewIterator(const Comparator* cmp, const Comparator* ucmp,
+ DataBlockIter* iter, Statistics* stats,
+ bool /*total_order_seek*/,
+ bool /*key_includes_seq*/,
+ bool /*value_is_full*/,
+ bool block_contents_pinned,
+ BlockPrefixIndex* /*prefix_index*/) {
+ DataBlockIter* ret_iter;
+ if (iter != nullptr) {
+ ret_iter = iter;
+ } else {
+ ret_iter = new DataBlockIter;
+ }
+ if (size_ < 2 * sizeof(uint32_t)) {
+ ret_iter->Invalidate(Status::Corruption("bad block contents"));
+ return ret_iter;
+ }
+ if (num_restarts_ == 0) {
+ // Empty block.
+ ret_iter->Invalidate(Status::OK());
+ return ret_iter;
+ } else {
+ ret_iter->Initialize(
+ cmp, ucmp, data_, restart_offset_, num_restarts_, global_seqno_,
+ read_amp_bitmap_.get(), block_contents_pinned,
+ data_block_hash_index_.Valid() ? &data_block_hash_index_ : nullptr);
+ if (read_amp_bitmap_) {
+ if (read_amp_bitmap_->GetStatistics() != stats) {
+ // DB changed the Statistics pointer, we need to notify read_amp_bitmap_
+ read_amp_bitmap_->SetStatistics(stats);
+ }
+ }
+ }
+
+ return ret_iter;
+}
+
+template <>
+IndexBlockIter* Block::NewIterator(const Comparator* cmp,
+ const Comparator* ucmp, IndexBlockIter* iter,
+ Statistics* /*stats*/, bool total_order_seek,
+ bool key_includes_seq, bool value_is_full,
+ bool block_contents_pinned,
+ BlockPrefixIndex* prefix_index) {
+ IndexBlockIter* ret_iter;
+ if (iter != nullptr) {
+ ret_iter = iter;
+ } else {
+ ret_iter = new IndexBlockIter;
+ }
+ if (size_ < 2 * sizeof(uint32_t)) {
+ ret_iter->Invalidate(Status::Corruption("bad block contents"));
+ return ret_iter;
+ }
+ if (num_restarts_ == 0) {
+ // Empty block.
+ ret_iter->Invalidate(Status::OK());
+ return ret_iter;
+ } else {
+ BlockPrefixIndex* prefix_index_ptr =
+ total_order_seek ? nullptr : prefix_index;
+ ret_iter->Initialize(cmp, ucmp, data_, restart_offset_, num_restarts_,
+ prefix_index_ptr, key_includes_seq, value_is_full,
+ block_contents_pinned,
+ nullptr /* data_block_hash_index */);
+ }
+
+ return ret_iter;
+}
+
+size_t Block::ApproximateMemoryUsage() const {
+ size_t usage = usable_size();
+#ifdef ROCKSDB_MALLOC_USABLE_SIZE
+ usage += malloc_usable_size((void*)this);
+#else
+ usage += sizeof(*this);
+#endif // ROCKSDB_MALLOC_USABLE_SIZE
+ if (read_amp_bitmap_) {
+ usage += read_amp_bitmap_->ApproximateMemoryUsage();
+ }
+ return usage;
+}
+
+} // namespace rocksdb