diff options
Diffstat (limited to 'src/boost/libs/math/example/HSO3.hpp')
-rw-r--r-- | src/boost/libs/math/example/HSO3.hpp | 509 |
1 files changed, 509 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/HSO3.hpp b/src/boost/libs/math/example/HSO3.hpp new file mode 100644 index 00000000..4e4ead7a --- /dev/null +++ b/src/boost/libs/math/example/HSO3.hpp @@ -0,0 +1,509 @@ + +/********************************************************************************************/ +/* */ +/* HSO3.hpp header file */ +/* */ +/* This file is not currently part of the Boost library. It is simply an example of the use */ +/* quaternions can be put to. Hopefully it will be useful too. */ +/* */ +/* This file provides tools to convert between quaternions and R^3 rotation matrices. */ +/* */ +/********************************************************************************************/ + +// (C) Copyright Hubert Holin 2001. +// Distributed under the Boost Software License, Version 1.0. (See +// accompanying file LICENSE_1_0.txt or copy at +// http://www.boost.org/LICENSE_1_0.txt) + +#ifndef TEST_HSO3_HPP +#define TEST_HSO3_HPP + +#include <algorithm> + +#if defined(__GNUC__) && (__GNUC__ < 3) +#include <boost/limits.hpp> +#else +#include <limits> +#endif + +#include <stdexcept> +#include <string> + +#include <boost/math/quaternion.hpp> + + +#if defined(__GNUC__) && (__GNUC__ < 3) +// gcc 2.x ignores function scope using declarations, put them here instead: +using namespace ::std; +using namespace ::boost::math; +#endif + +template<typename TYPE_FLOAT> +struct R3_matrix +{ + TYPE_FLOAT a11, a12, a13; + TYPE_FLOAT a21, a22, a23; + TYPE_FLOAT a31, a32, a33; +}; + + +// Note: the input quaternion need not be of norm 1 for the following function + +template<typename TYPE_FLOAT> +R3_matrix<TYPE_FLOAT> quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q) +{ + using ::std::numeric_limits; + + TYPE_FLOAT a = q.R_component_1(); + TYPE_FLOAT b = q.R_component_2(); + TYPE_FLOAT c = q.R_component_3(); + TYPE_FLOAT d = q.R_component_4(); + + TYPE_FLOAT aa = a*a; + TYPE_FLOAT ab = a*b; + TYPE_FLOAT ac = a*c; + TYPE_FLOAT ad = a*d; + TYPE_FLOAT bb = b*b; + TYPE_FLOAT bc = b*c; + TYPE_FLOAT bd = b*d; + TYPE_FLOAT cc = c*c; + TYPE_FLOAT cd = c*d; + TYPE_FLOAT dd = d*d; + + TYPE_FLOAT norme_carre = aa+bb+cc+dd; + + if (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + ::std::string error_reporting("Argument to quaternion_to_R3_rotation is too small!"); + ::std::underflow_error bad_argument(error_reporting); + + throw(bad_argument); + } + + R3_matrix<TYPE_FLOAT> out_matrix; + + out_matrix.a11 = (aa+bb-cc-dd)/norme_carre; + out_matrix.a12 = 2*(-ad+bc)/norme_carre; + out_matrix.a13 = 2*(ac+bd)/norme_carre; + out_matrix.a21 = 2*(ad+bc)/norme_carre; + out_matrix.a22 = (aa-bb+cc-dd)/norme_carre; + out_matrix.a23 = 2*(-ab+cd)/norme_carre; + out_matrix.a31 = 2*(-ac+bd)/norme_carre; + out_matrix.a32 = 2*(ab+cd)/norme_carre; + out_matrix.a33 = (aa-bb-cc+dd)/norme_carre; + + return(out_matrix); +} + + + template<typename TYPE_FLOAT> + void find_invariant_vector( R3_matrix<TYPE_FLOAT> const & rot, + TYPE_FLOAT & x, + TYPE_FLOAT & y, + TYPE_FLOAT & z) + { + using ::std::sqrt; + + using ::std::numeric_limits; + + TYPE_FLOAT b11 = rot.a11 - static_cast<TYPE_FLOAT>(1); + TYPE_FLOAT b12 = rot.a12; + TYPE_FLOAT b13 = rot.a13; + TYPE_FLOAT b21 = rot.a21; + TYPE_FLOAT b22 = rot.a22 - static_cast<TYPE_FLOAT>(1); + TYPE_FLOAT b23 = rot.a23; + TYPE_FLOAT b31 = rot.a31; + TYPE_FLOAT b32 = rot.a32; + TYPE_FLOAT b33 = rot.a33 - static_cast<TYPE_FLOAT>(1); + + TYPE_FLOAT minors[9] = + { + b11*b22-b12*b21, + b11*b23-b13*b21, + b12*b23-b13*b22, + b11*b32-b12*b31, + b11*b33-b13*b31, + b12*b33-b13*b32, + b21*b32-b22*b31, + b21*b33-b23*b31, + b22*b33-b23*b32 + }; + + TYPE_FLOAT * where = ::std::max_element(minors, minors+9); + + TYPE_FLOAT det = *where; + + if (det <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + ::std::string error_reporting("Underflow error in find_invariant_vector!"); + ::std::underflow_error processing_error(error_reporting); + + throw(processing_error); + } + + switch (where-minors) + { + case 0: + + z = static_cast<TYPE_FLOAT>(1); + + x = (-b13*b22+b12*b23)/det; + y = (-b11*b23+b13*b21)/det; + + break; + + case 1: + + y = static_cast<TYPE_FLOAT>(1); + + x = (-b12*b23+b13*b22)/det; + z = (-b11*b22+b12*b21)/det; + + break; + + case 2: + + x = static_cast<TYPE_FLOAT>(1); + + y = (-b11*b23+b13*b21)/det; + z = (-b12*b21+b11*b22)/det; + + break; + + case 3: + + z = static_cast<TYPE_FLOAT>(1); + + x = (-b13*b32+b12*b33)/det; + y = (-b11*b33+b13*b31)/det; + + break; + + case 4: + + y = static_cast<TYPE_FLOAT>(1); + + x = (-b12*b33+b13*b32)/det; + z = (-b11*b32+b12*b31)/det; + + break; + + case 5: + + x = static_cast<TYPE_FLOAT>(1); + + y = (-b11*b33+b13*b31)/det; + z = (-b12*b31+b11*b32)/det; + + break; + + case 6: + + z = static_cast<TYPE_FLOAT>(1); + + x = (-b23*b32+b22*b33)/det; + y = (-b21*b33+b23*b31)/det; + + break; + + case 7: + + y = static_cast<TYPE_FLOAT>(1); + + x = (-b22*b33+b23*b32)/det; + z = (-b21*b32+b22*b31)/det; + + break; + + case 8: + + x = static_cast<TYPE_FLOAT>(1); + + y = (-b21*b33+b23*b31)/det; + z = (-b22*b31+b21*b32)/det; + + break; + + default: + + ::std::string error_reporting("Impossible condition in find_invariant_vector"); + ::std::logic_error processing_error(error_reporting); + + throw(processing_error); + + break; + } + + TYPE_FLOAT vecnorm = sqrt(x*x+y*y+z*z); + + if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + ::std::string error_reporting("Overflow error in find_invariant_vector!"); + ::std::overflow_error processing_error(error_reporting); + + throw(processing_error); + } + + x /= vecnorm; + y /= vecnorm; + z /= vecnorm; + } + + + template<typename TYPE_FLOAT> + void find_orthogonal_vector( TYPE_FLOAT x, + TYPE_FLOAT y, + TYPE_FLOAT z, + TYPE_FLOAT & u, + TYPE_FLOAT & v, + TYPE_FLOAT & w) + { + using ::std::abs; + using ::std::sqrt; + + using ::std::numeric_limits; + + TYPE_FLOAT vecnormsqr = x*x+y*y+z*z; + + if (vecnormsqr <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + ::std::string error_reporting("Underflow error in find_orthogonal_vector!"); + ::std::underflow_error processing_error(error_reporting); + + throw(processing_error); + } + + TYPE_FLOAT lambda; + + TYPE_FLOAT components[3] = + { + abs(x), + abs(y), + abs(z) + }; + + TYPE_FLOAT * where = ::std::min_element(components, components+3); + + switch (where-components) + { + case 0: + + if (*where <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + v = + w = static_cast<TYPE_FLOAT>(0); + u = static_cast<TYPE_FLOAT>(1); + } + else + { + lambda = -x/vecnormsqr; + + u = static_cast<TYPE_FLOAT>(1) + lambda*x; + v = lambda*y; + w = lambda*z; + } + + break; + + case 1: + + if (*where <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + u = + w = static_cast<TYPE_FLOAT>(0); + v = static_cast<TYPE_FLOAT>(1); + } + else + { + lambda = -y/vecnormsqr; + + u = lambda*x; + v = static_cast<TYPE_FLOAT>(1) + lambda*y; + w = lambda*z; + } + + break; + + case 2: + + if (*where <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + u = + v = static_cast<TYPE_FLOAT>(0); + w = static_cast<TYPE_FLOAT>(1); + } + else + { + lambda = -z/vecnormsqr; + + u = lambda*x; + v = lambda*y; + w = static_cast<TYPE_FLOAT>(1) + lambda*z; + } + + break; + + default: + + ::std::string error_reporting("Impossible condition in find_invariant_vector"); + ::std::logic_error processing_error(error_reporting); + + throw(processing_error); + + break; + } + + TYPE_FLOAT vecnorm = sqrt(u*u+v*v+w*w); + + if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon()) + { + ::std::string error_reporting("Underflow error in find_orthogonal_vector!"); + ::std::underflow_error processing_error(error_reporting); + + throw(processing_error); + } + + u /= vecnorm; + v /= vecnorm; + w /= vecnorm; + } + + + // Note: we want [[v, v, w], [r, s, t], [x, y, z]] to be a direct orthogonal basis + // of R^3. It might not be orthonormal, however, and we do not check if the + // two input vectors are colinear or not. + + template<typename TYPE_FLOAT> + void find_vector_for_BOD(TYPE_FLOAT x, + TYPE_FLOAT y, + TYPE_FLOAT z, + TYPE_FLOAT u, + TYPE_FLOAT v, + TYPE_FLOAT w, + TYPE_FLOAT & r, + TYPE_FLOAT & s, + TYPE_FLOAT & t) + { + r = +y*w-z*v; + s = -x*w+z*u; + t = +x*v-y*u; + } + + + +template<typename TYPE_FLOAT> +inline bool is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat) +{ + using ::std::abs; + + using ::std::numeric_limits; + + return ( + !( + (abs(mat.a11*mat.a11+mat.a21*mat.a21+mat.a31*mat.a31 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + (abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + (abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + //(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + (abs(mat.a12*mat.a12+mat.a22*mat.a22+mat.a32*mat.a32 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + (abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + //(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + //(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())|| + (abs(mat.a13*mat.a13+mat.a23*mat.a23+mat.a33*mat.a33 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon()) + ) + ); +} + + +template<typename TYPE_FLOAT> +::boost::math::quaternion<TYPE_FLOAT> R3_rotation_to_quaternion( R3_matrix<TYPE_FLOAT> const & rot, + ::boost::math::quaternion<TYPE_FLOAT> const * hint = 0) +{ + using ::boost::math::abs; + + using ::std::abs; + using ::std::sqrt; + + using ::std::numeric_limits; + + if (!is_R3_rotation_matrix(rot)) + { + ::std::string error_reporting("Argument to R3_rotation_to_quaternion is not an R^3 rotation matrix!"); + ::std::range_error bad_argument(error_reporting); + + throw(bad_argument); + } + + ::boost::math::quaternion<TYPE_FLOAT> q; + + if ( + (abs(rot.a11 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&& + (abs(rot.a22 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&& + (abs(rot.a33 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon()) + ) + { + q = ::boost::math::quaternion<TYPE_FLOAT>(1); + } + else + { + TYPE_FLOAT cos_theta = (rot.a11+rot.a22+rot.a33-static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2); + TYPE_FLOAT stuff = (cos_theta+static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2); + TYPE_FLOAT cos_theta_sur_2 = sqrt(stuff); + TYPE_FLOAT sin_theta_sur_2 = sqrt(1-stuff); + + TYPE_FLOAT x; + TYPE_FLOAT y; + TYPE_FLOAT z; + + find_invariant_vector(rot, x, y, z); + + TYPE_FLOAT u; + TYPE_FLOAT v; + TYPE_FLOAT w; + + find_orthogonal_vector(x, y, z, u, v, w); + + TYPE_FLOAT r; + TYPE_FLOAT s; + TYPE_FLOAT t; + + find_vector_for_BOD(x, y, z, u, v, w, r, s, t); + + TYPE_FLOAT ru = rot.a11*u+rot.a12*v+rot.a13*w; + TYPE_FLOAT rv = rot.a21*u+rot.a22*v+rot.a23*w; + TYPE_FLOAT rw = rot.a31*u+rot.a32*v+rot.a33*w; + + TYPE_FLOAT angle_sign_determinator = r*ru+s*rv+t*rw; + + if (angle_sign_determinator > +numeric_limits<TYPE_FLOAT>::epsilon()) + { + q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, +x*sin_theta_sur_2, +y*sin_theta_sur_2, +z*sin_theta_sur_2); + } + else if (angle_sign_determinator < -numeric_limits<TYPE_FLOAT>::epsilon()) + { + q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, -x*sin_theta_sur_2, -y*sin_theta_sur_2, -z*sin_theta_sur_2); + } + else + { + TYPE_FLOAT desambiguator = u*ru+v*rv+w*rw; + + if (desambiguator >= static_cast<TYPE_FLOAT>(1)) + { + q = ::boost::math::quaternion<TYPE_FLOAT>(0, +x, +y, +z); + } + else + { + q = ::boost::math::quaternion<TYPE_FLOAT>(0, -x, -y, -z); + } + } + } + + if ((hint != 0) && (abs(*hint+q) < abs(*hint-q))) + { + return(-q); + } + + return(q); +} + +#endif /* TEST_HSO3_HPP */ + |