summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/float_comparison_example.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/example/float_comparison_example.cpp')
-rw-r--r--src/boost/libs/math/example/float_comparison_example.cpp444
1 files changed, 444 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/float_comparison_example.cpp b/src/boost/libs/math/example/float_comparison_example.cpp
new file mode 100644
index 00000000..6c892fa2
--- /dev/null
+++ b/src/boost/libs/math/example/float_comparison_example.cpp
@@ -0,0 +1,444 @@
+//!file
+//! \brief floating-point comparison from Boost.Test
+// Copyright Paul A. Bristow 2015.
+// Copyright John Maddock 2015.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Note that this file contains Quickbook mark-up as well as code
+// and comments, don't change any of the special comment mark-ups!
+
+#include <boost/math/special_functions/relative_difference.hpp>
+#include <boost/math/special_functions/next.hpp>
+
+#include <iostream>
+#include <limits> // for std::numeric_limits<T>::epsilon().
+
+int main()
+{
+ std::cout << "Compare floats using Boost.Math functions/classes" << std::endl;
+
+
+//[compare_floats_using
+/*`Some using statements will ensure that the functions we need are accessible.
+*/
+
+ using namespace boost::math;
+
+//`or
+
+ using boost::math::relative_difference;
+ using boost::math::epsilon_difference;
+ using boost::math::float_next;
+ using boost::math::float_prior;
+
+//] [/compare_floats_using]
+
+
+//[compare_floats_example_1
+/*`The following examples display values with all possibly significant digits.
+Newer compilers should provide `std::numeric_limits<FPT>::max_digits10`
+for this purpose, and here we use `float` precision where `max_digits10` = 9
+to avoid displaying a distracting number of decimal digits.
+
+[note Older compilers can use this formula to calculate `max_digits10`
+from `std::numeric_limits<FPT>::digits10`:
+__spaces `int max_digits10 = 2 + std::numeric_limits<FPT>::digits10 * 3010/10000;`
+] [/note]
+
+One can set the display including all trailing zeros
+(helpful for this example to show all potentially significant digits),
+and also to display `bool` values as words rather than integers:
+*/
+ std::cout.precision(std::numeric_limits<float>::max_digits10);
+ std::cout << std::boolalpha << std::showpoint << std::endl;
+
+//] [/compare_floats_example_1]
+
+//[compare_floats_example_2]
+/*`
+When comparing values that are ['quite close] or ['approximately equal],
+we could use either `float_distance` or `relative_difference`/`epsilon_difference`, for example
+with type `float`, these two values are adjacent to each other:
+*/
+
+ float a = 1;
+ float b = 1 + std::numeric_limits<float>::epsilon();
+ std::cout << "a = " << a << std::endl;
+ std::cout << "b = " << b << std::endl;
+ std::cout << "float_distance = " << float_distance(a, b) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
+
+/*`
+Which produces the output:
+
+[pre
+a = 1.00000000
+b = 1.00000012
+float_distance = 1.00000000
+relative_difference = 1.19209290e-007
+epsilon_difference = 1.00000000
+]
+*/
+ //] [/compare_floats_example_2]
+
+//[compare_floats_example_3]
+/*`
+In the example above, it just so happens that the edit distance as measured by `float_distance`, and the
+difference measured in units of epsilon were equal. However, due to the way floating point
+values are represented, that is not always the case:*/
+
+ a = 2.0f / 3.0f; // 2/3 inexactly represented as a float
+ b = float_next(float_next(float_next(a))); // 3 floating point values above a
+ std::cout << "a = " << a << std::endl;
+ std::cout << "b = " << b << std::endl;
+ std::cout << "float_distance = " << float_distance(a, b) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
+
+/*`
+Which produces the output:
+
+[pre
+a = 0.666666687
+b = 0.666666865
+float_distance = 3.00000000
+relative_difference = 2.68220901e-007
+epsilon_difference = 2.25000000
+]
+
+There is another important difference between `float_distance` and the
+`relative_difference/epsilon_difference` functions in that `float_distance`
+returns a signed result that reflects which argument is larger in magnitude,
+where as `relative_difference/epsilon_difference` simply return an unsigned
+value that represents how far apart the values are. For example if we swap
+the order of the arguments:
+*/
+
+ std::cout << "float_distance = " << float_distance(b, a) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(b, a) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(b, a) << std::endl;
+
+ /*`
+ The output is now:
+
+ [pre
+ float_distance = -3.00000000
+ relative_difference = 2.68220901e-007
+ epsilon_difference = 2.25000000
+ ]
+*/
+ //] [/compare_floats_example_3]
+
+//[compare_floats_example_4]
+/*`
+Zeros are always treated as equal, as are infinities as long as they have the same sign:*/
+
+ a = 0;
+ b = -0; // signed zero
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ a = b = std::numeric_limits<float>::infinity();
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, -b) << std::endl;
+
+/*`
+Which produces the output:
+
+[pre
+relative_difference = 0.000000000
+relative_difference = 0.000000000
+relative_difference = 3.40282347e+038
+]
+*/
+//] [/compare_floats_example_4]
+
+//[compare_floats_example_5]
+/*`
+Note that finite values are always infinitely far away from infinities even if those finite values are very large:*/
+
+ a = (std::numeric_limits<float>::max)();
+ b = std::numeric_limits<float>::infinity();
+ std::cout << "a = " << a << std::endl;
+ std::cout << "b = " << b << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
+
+/*`
+Which produces the output:
+
+[pre
+a = 3.40282347e+038
+b = 1.#INF0000
+relative_difference = 3.40282347e+038
+epsilon_difference = 3.40282347e+038
+]
+*/
+//] [/compare_floats_example_5]
+
+//[compare_floats_example_6]
+/*`
+Finally, all denormalized values and zeros are treated as being effectively equal:*/
+
+ a = std::numeric_limits<float>::denorm_min();
+ b = a * 2;
+ std::cout << "a = " << a << std::endl;
+ std::cout << "b = " << b << std::endl;
+ std::cout << "float_distance = " << float_distance(a, b) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
+ a = 0;
+ std::cout << "a = " << a << std::endl;
+ std::cout << "b = " << b << std::endl;
+ std::cout << "float_distance = " << float_distance(a, b) << std::endl;
+ std::cout << "relative_difference = " << relative_difference(a, b) << std::endl;
+ std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;
+
+/*`
+Which produces the output:
+
+[pre
+a = 1.40129846e-045
+b = 2.80259693e-045
+float_distance = 1.00000000
+relative_difference = 0.000000000
+epsilon_difference = 0.000000000
+a = 0.000000000
+b = 2.80259693e-045
+float_distance = 2.00000000
+relative_difference = 0.000000000
+epsilon_difference = 0.000000000]
+
+Notice how, in the above example, two denormalized values that are a factor of 2 apart are
+none the less only one representation apart!
+
+*/
+//] [/compare_floats_example_6]
+
+
+#if 0
+//[old_compare_floats_example_3
+//`The simplest use is to compare two values with a tolerance thus:
+
+ bool is_close = is_close_to(1.F, 1.F + epsilon, epsilon); // One epsilon apart is close enough.
+ std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // true
+
+ is_close = is_close_to(1.F, 1.F + 2 * epsilon, epsilon); // Two epsilon apart isn't close enough.
+ std::cout << "is_close_to(1.F, 1.F + epsilon, epsilon); is " << is_close << std::endl; // false
+
+/*`
+[note The type FPT of the tolerance and the type of the values [*must match].
+
+So `is_close(0.1F, 1., 1.)` will fail to compile because "template parameter 'FPT' is ambiguous".
+Always provide the same type, using `static_cast<FPT>` if necessary.]
+*/
+
+
+/*`An instance of class `close_at_tolerance` is more convenient
+when multiple tests with the same conditions are planned.
+A class that stores a tolerance of three epsilon (and the default ['strong] test) is:
+*/
+
+ close_at_tolerance<float> three_rounds(3 * epsilon); // 'strong' by default.
+
+//`and we can confirm these settings:
+
+ std::cout << "fraction_tolerance = "
+ << three_rounds.fraction_tolerance()
+ << std::endl; // +3.57627869e-007
+ std::cout << "strength = "
+ << (three_rounds.strength() == FPC_STRONG ? "strong" : "weak")
+ << std::endl; // strong
+
+//`To start, let us use two values that are truly equal (having identical bit patterns)
+
+ float a = 1.23456789F;
+ float b = 1.23456789F;
+
+//`and make a comparison using our 3*epsilon `three_rounds` functor:
+
+ bool close = three_rounds(a, b);
+ std::cout << "three_rounds(a, b) = " << close << std::endl; // true
+
+//`Unsurprisingly, the result is true, and the failed fraction is zero.
+
+ std::cout << "failed_fraction = " << three_rounds.failed_fraction() << std::endl;
+
+/*`To get some nearby values, it is convenient to use the Boost.Math __next_float functions,
+for which we need an include
+
+ #include <boost/math/special_functions/next.hpp>
+
+and some using declarations:
+*/
+
+ using boost::math::float_next;
+ using boost::math::float_prior;
+ using boost::math::nextafter;
+ using boost::math::float_distance;
+
+//`To add a few __ulp to one value:
+ b = float_next(a); // Add just one ULP to a.
+ b = float_next(b); // Add another one ULP.
+ b = float_next(b); // Add another one ULP.
+ // 3 epsilon would pass.
+ b = float_next(b); // Add another one ULP.
+
+//`and repeat our comparison:
+
+ close = three_rounds(a, b);
+ std::cout << "three_rounds(a, b) = " << close << std::endl; // false
+ std::cout << "failed_fraction = " << three_rounds.failed_fraction()
+ << std::endl; // abs(u-v) / abs(v) = 3.86237957e-007
+
+//`We can also 'measure' the number of bits different using the `float_distance` function:
+
+ std::cout << "float_distance = " << float_distance(a, b) << std::endl; // 4
+
+/*`Now consider two values that are much further apart
+than one might expect from ['computational noise],
+perhaps the result of two measurements of some physical property like length
+where an uncertainty of a percent or so might be expected.
+*/
+ float fp1 = 0.01000F;
+ float fp2 = 0.01001F; // Slightly different.
+
+ float tolerance = 0.0001F;
+
+ close_at_tolerance<float> strong(epsilon); // Default is strong.
+ bool rs = strong(fp1, fp2);
+ std::cout << "strong(fp1, fp2) is " << rs << std::endl;
+
+//`Or we could contrast using the ['weak] criterion:
+ close_at_tolerance<float> weak(epsilon, FPC_WEAK); // Explicitly weak.
+ bool rw = weak(fp1, fp2); //
+ std::cout << "weak(fp1, fp2) is " << rw << std::endl;
+
+//`We can also construct, setting tolerance and strength, and compare in one statement:
+
+ std::cout << a << " #= " << b << " is "
+ << close_at_tolerance<float>(epsilon, FPC_STRONG)(a, b) << std::endl;
+ std::cout << a << " ~= " << b << " is "
+ << close_at_tolerance<float>(epsilon, FPC_WEAK)(a, b) << std::endl;
+
+//`but this has little advantage over using function `is_close_to` directly.
+
+//] [/old_compare_floats_example_3]
+
+
+/*When the floating-point values become very small and near zero, using
+//a relative test becomes unhelpful because one is dividing by zero or tiny,
+
+//Instead, an absolute test is needed, comparing one (or usually both) values with zero,
+//using a tolerance.
+//This is provided by the `small_with_tolerance` class and `is_small` function.
+
+ namespace boost {
+ namespace math {
+ namespace fpc {
+
+
+ template<typename FPT>
+ class small_with_tolerance
+ {
+ public:
+ // Public typedefs.
+ typedef bool result_type;
+
+ // Constructor.
+ explicit small_with_tolerance(FPT tolerance); // tolerance >= 0
+
+ // Functor
+ bool operator()(FPT value) const; // return true if <= absolute tolerance (near zero).
+ };
+
+ template<typename FPT>
+ bool
+ is_small(FPT value, FPT tolerance); // return true if value <= absolute tolerance (near zero).
+
+ }}} // namespaces.
+
+/*`
+[note The type FPT of the tolerance and the type of the value [*must match].
+
+So `is_small(0.1F, 0.000001)` will fail to compile because "template parameter 'FPT' is ambiguous".
+Always provide the same type, using `static_cast<FPT>` if necessary.]
+
+A few values near zero are tested with varying tolerance below.
+*/
+//[compare_floats_small_1
+
+ float c = 0;
+ std::cout << "0 is_small " << is_small(c, epsilon) << std::endl; // true
+
+ c = std::numeric_limits<float>::denorm_min(); // 1.40129846e-045
+ std::cout << "denorm_ min =" << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
+
+ c = (std::numeric_limits<float>::min)(); // 1.17549435e-038
+ std::cout << "min = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // true
+
+ c = 1 * epsilon; // 1.19209290e-007
+ std::cout << "epsilon = " << c << ", is_small is " << is_small(c, epsilon) << std::endl; // false
+
+ c = 1 * epsilon; // 1.19209290e-007
+ std::cout << "2 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // true
+
+ c = 2 * epsilon; //2.38418579e-007
+ std::cout << "4 epsilon = " << c << ", is_small is " << is_small(c, 2 * epsilon) << std::endl; // false
+
+ c = 0.00001F;
+ std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
+
+ c = -0.00001F;
+ std::cout << "0.00001 = " << c << ", is_small is " << is_small(c, 0.0001F) << std::endl; // true
+
+/*`Using the class `small_with_tolerance` allows storage of the tolerance,
+convenient if you make repeated tests with the same tolerance.
+*/
+
+ small_with_tolerance<float>my_test(0.01F);
+
+ std::cout << "my_test(0.001F) is " << my_test(0.001F) << std::endl; // true
+ std::cout << "my_test(0.001F) is " << my_test(0.01F) << std::endl; // false
+
+ //] [/compare_floats_small_1]
+#endif
+ return 0;
+} // int main()
+
+/*
+
+Example output is:
+
+//[compare_floats_output
+Compare floats using Boost.Test functions/classes
+
+float epsilon = 1.19209290e-007
+is_close_to(1.F, 1.F + epsilon, epsilon); is true
+is_close_to(1.F, 1.F + epsilon, epsilon); is false
+fraction_tolerance = 3.57627869e-007
+strength = strong
+three_rounds(a, b) = true
+failed_fraction = 0.000000000
+three_rounds(a, b) = false
+failed_fraction = 3.86237957e-007
+float_distance = 4.00000000
+strong(fp1, fp2) is false
+weak(fp1, fp2) is false
+1.23456788 #= 1.23456836 is false
+1.23456788 ~= 1.23456836 is false
+0 is_small true
+denorm_ min =1.40129846e-045, is_small is true
+min = 1.17549435e-038, is_small is true
+epsilon = 1.19209290e-007, is_small is false
+2 epsilon = 1.19209290e-007, is_small is true
+4 epsilon = 2.38418579e-007, is_small is false
+0.00001 = 9.99999975e-006, is_small is true
+0.00001 = -9.99999975e-006, is_small is true
+my_test(0.001F) is true
+
+my_test(0.001F) is false//] [/compare_floats_output]
+*/