summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/root_finding_example.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/example/root_finding_example.cpp')
-rw-r--r--src/boost/libs/math/example/root_finding_example.cpp547
1 files changed, 547 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/root_finding_example.cpp b/src/boost/libs/math/example/root_finding_example.cpp
new file mode 100644
index 00000000..9cbfd237
--- /dev/null
+++ b/src/boost/libs/math/example/root_finding_example.cpp
@@ -0,0 +1,547 @@
+// root_finding_example.cpp
+
+// Copyright Paul A. Bristow 2010, 2015
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt
+// or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+// Example of finding roots using Newton-Raphson, Halley.
+
+// Note that this file contains Quickbook mark-up as well as code
+// and comments, don't change any of the special comment mark-ups!
+
+//#define BOOST_MATH_INSTRUMENT
+
+/*
+This example demonstrates how to use the various tools for root finding
+taking the simple cube root function (`cbrt`) as an example.
+
+It shows how use of derivatives can improve the speed.
+(But is only a demonstration and does not try to make the ultimate improvements of 'real-life'
+implementation of `boost::math::cbrt`, mainly by using a better computed initial 'guess'
+at `<boost/math/special_functions/cbrt.hpp>`).
+
+Then we show how a higher root (fifth) can be computed,
+and in `root_finding_n_example.cpp` a generic method
+for the ['n]th root that constructs the derivatives at compile-time,
+
+These methods should be applicable to other functions that can be differentiated easily.
+
+First some `#includes` that will be needed.
+
+[tip For clarity, `using` statements are provided to list what functions are being used in this example:
+you can of course partly or fully qualify the names in other ways.
+(For your application, you may wish to extract some parts into header files,
+but you should never use `using` statements globally in header files).]
+*/
+
+//[root_finding_include_1
+
+#include <boost/math/tools/roots.hpp>
+//using boost::math::policies::policy;
+//using boost::math::tools::newton_raphson_iterate;
+//using boost::math::tools::halley_iterate; //
+//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
+//using boost::math::tools::bracket_and_solve_root;
+//using boost::math::tools::toms748_solve;
+
+#include <boost/math/special_functions/next.hpp> // For float_distance.
+#include <tuple> // for std::tuple and std::make_tuple.
+#include <boost/math/special_functions/cbrt.hpp> // For boost::math::cbrt.
+
+//] [/root_finding_include_1]
+
+// using boost::math::tuple;
+// using boost::math::make_tuple;
+// using boost::math::tie;
+// which provide convenient aliases for various implementations,
+// including std::tr1, depending on what is available.
+
+#include <iostream>
+//using std::cout; using std::endl;
+#include <iomanip>
+//using std::setw; using std::setprecision;
+#include <limits>
+//using std::numeric_limits;
+
+/*
+
+Let's suppose we want to find the root of a number ['a], and to start, compute the cube root.
+
+So the equation we want to solve is:
+
+__spaces ['f](x) = x[cubed] - a
+
+We will first solve this without using any information
+about the slope or curvature of the cube root function.
+
+We then show how adding what we can know about this function, first just the slope,
+the 1st derivation /f'(x)/, will speed homing in on the solution.
+
+Lastly we show how adding the curvature /f''(x)/ too will speed convergence even more.
+
+*/
+
+//[root_finding_noderiv_1
+
+template <class T>
+struct cbrt_functor_noderiv
+{
+ // cube root of x using only function - no derivatives.
+ cbrt_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of)
+ { /* Constructor just stores value a to find root of. */ }
+ T operator()(T const& x)
+ {
+ T fx = x*x*x - a; // Difference (estimate x^3 - a).
+ return fx;
+ }
+private:
+ T a; // to be 'cube_rooted'.
+};
+//] [/root_finding_noderiv_1
+
+/*
+Implementing the cube root function itself is fairly trivial now:
+the hardest part is finding a good approximation to begin with.
+In this case we'll just divide the exponent by three.
+(There are better but more complex guess algorithms used in 'real-life'.)
+
+Cube root function is 'Really Well Behaved' in that it is monotonic
+and has only one root (we leave negative values 'as an exercise for the student').
+*/
+
+//[root_finding_noderiv_2
+
+template <class T>
+T cbrt_noderiv(T x)
+{
+ // return cube root of x using bracket_and_solve (no derivatives).
+ using namespace std; // Help ADL of std functions.
+ using namespace boost::math::tools; // For bracket_and_solve_root.
+
+ int exponent;
+ frexp(x, &exponent); // Get exponent of z (ignore mantissa).
+ T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
+ T factor = 2; // How big steps to take when searching.
+
+ const boost::uintmax_t maxit = 20; // Limit to maximum iterations.
+ boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
+ bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
+ int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
+ // Some fraction of digits is used to control how accurate to try to make the result.
+ int get_digits = digits - 3; // We have to have a non-zero interval at each step, so
+ // maximum accuracy is digits - 1. But we also have to
+ // allow for inaccuracy in f(x), otherwise the last few
+ // iterations just thrash around.
+ eps_tolerance<T> tol(get_digits); // Set the tolerance.
+ std::pair<T, T> r = bracket_and_solve_root(cbrt_functor_noderiv<T>(x), guess, factor, is_rising, tol, it);
+ return r.first + (r.second - r.first)/2; // Midway between brackets is our result, if necessary we could
+ // return the result as an interval here.
+}
+
+/*`
+
+[note The final parameter specifying a maximum number of iterations is optional.
+However, it defaults to `boost::uintmax_t maxit = (std::numeric_limits<boost::uintmax_t>::max)();`
+which is `18446744073709551615` and is more than anyone would wish to wait for!
+
+So it may be wise to chose some reasonable estimate of how many iterations may be needed,
+In this case the function is so well behaved that we can chose a low value of 20.
+
+Internally when Boost.Math uses these functions, it sets the maximum iterations to
+`policies::get_max_root_iterations<Policy>();`.]
+
+Should we have wished we can show how many iterations were used in `bracket_and_solve_root`
+(this information is lost outside `cbrt_noderiv`), for example with:
+
+ if (it >= maxit)
+ {
+ std::cout << "Unable to locate solution in " << maxit << " iterations:"
+ " Current best guess is between " << r.first << " and " << r.second << std::endl;
+ }
+ else
+ {
+ std::cout << "Converged after " << it << " (from maximum of " << maxit << " iterations)." << std::endl;
+ }
+
+for output like
+
+ Converged after 11 (from maximum of 20 iterations).
+*/
+//] [/root_finding_noderiv_2]
+
+
+// Cube root with 1st derivative (slope)
+
+/*
+We now solve the same problem, but using more information about the function,
+to show how this can speed up finding the best estimate of the root.
+
+For the root function, the 1st differential (the slope of the tangent to a curve at any point) is known.
+
+If you need some reminders then
+[@http://en.wikipedia.org/wiki/Derivative#Derivatives_of_elementary_functions Derivatives of elementary functions]
+may help.
+
+Using the rule that the derivative of ['x[super n]] for positive n (actually all nonzero n) is ['n x[super n-1]],
+allows us to get the 1st differential as ['3x[super 2]].
+
+To see how this extra information is used to find a root, view
+[@http://en.wikipedia.org/wiki/Newton%27s_method Newton-Raphson iterations]
+and the [@http://en.wikipedia.org/wiki/Newton%27s_method#mediaviewer/File:NewtonIteration_Ani.gif animation].
+
+We need to define a different functor `cbrt_functor_deriv` that returns
+both the evaluation of the function to solve, along with its first derivative:
+
+To \'return\' two values, we use a `std::pair` of floating-point values
+(though we could equally have used a std::tuple):
+*/
+
+//[root_finding_1_deriv_1
+
+template <class T>
+struct cbrt_functor_deriv
+{ // Functor also returning 1st derivative.
+ cbrt_functor_deriv(T const& to_find_root_of) : a(to_find_root_of)
+ { // Constructor stores value a to find root of,
+ // for example: calling cbrt_functor_deriv<T>(a) to use to get cube root of a.
+ }
+ std::pair<T, T> operator()(T const& x)
+ {
+ // Return both f(x) and f'(x).
+ T fx = x*x*x - a; // Difference (estimate x^3 - value).
+ T dx = 3 * x*x; // 1st derivative = 3x^2.
+ return std::make_pair(fx, dx); // 'return' both fx and dx.
+ }
+private:
+ T a; // Store value to be 'cube_rooted'.
+};
+
+/*`Our cube root function is now:*/
+
+template <class T>
+T cbrt_deriv(T x)
+{
+ // return cube root of x using 1st derivative and Newton_Raphson.
+ using namespace boost::math::tools;
+ int exponent;
+ frexp(x, &exponent); // Get exponent of z (ignore mantissa).
+ T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
+ T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
+ T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
+ const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
+ int get_digits = static_cast<int>(digits * 0.6); // Accuracy doubles with each step, so stop when we have
+ // just over half the digits correct.
+ const boost::uintmax_t maxit = 20;
+ boost::uintmax_t it = maxit;
+ T result = newton_raphson_iterate(cbrt_functor_deriv<T>(x), guess, min, max, get_digits, it);
+ return result;
+}
+
+//] [/root_finding_1_deriv_1]
+
+
+/*
+[h3:cbrt_2_derivatives Cube root with 1st & 2nd derivative (slope & curvature)]
+
+Finally we define yet another functor `cbrt_functor_2deriv` that returns
+both the evaluation of the function to solve,
+along with its first *and second* derivatives:
+
+__spaces[''f](x) = 6x
+
+To \'return\' three values, we use a `tuple` of three floating-point values:
+*/
+
+//[root_finding_2deriv_1
+
+template <class T>
+struct cbrt_functor_2deriv
+{
+ // Functor returning both 1st and 2nd derivatives.
+ cbrt_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
+ { // Constructor stores value a to find root of, for example:
+ // calling cbrt_functor_2deriv<T>(x) to get cube root of x,
+ }
+ std::tuple<T, T, T> operator()(T const& x)
+ {
+ // Return both f(x) and f'(x) and f''(x).
+ T fx = x*x*x - a; // Difference (estimate x^3 - value).
+ T dx = 3 * x*x; // 1st derivative = 3x^2.
+ T d2x = 6 * x; // 2nd derivative = 6x.
+ return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
+ }
+private:
+ T a; // to be 'cube_rooted'.
+};
+
+/*`Our cube root function is now:*/
+
+template <class T>
+T cbrt_2deriv(T x)
+{
+ // return cube root of x using 1st and 2nd derivatives and Halley.
+ //using namespace std; // Help ADL of std functions.
+ using namespace boost::math::tools;
+ int exponent;
+ frexp(x, &exponent); // Get exponent of z (ignore mantissa).
+ T guess = ldexp(1., exponent/3); // Rough guess is to divide the exponent by three.
+ T min = ldexp(0.5, exponent/3); // Minimum possible value is half our guess.
+ T max = ldexp(2., exponent/3); // Maximum possible value is twice our guess.
+ const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
+ // digits used to control how accurate to try to make the result.
+ int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
+ // over one third of the digits are correct.
+ boost::uintmax_t maxit = 20;
+ T result = halley_iterate(cbrt_functor_2deriv<T>(x), guess, min, max, get_digits, maxit);
+ return result;
+}
+
+//] [/root_finding_2deriv_1]
+
+//[root_finding_2deriv_lambda
+
+template <class T>
+T cbrt_2deriv_lambda(T x)
+{
+ // return cube root of x using 1st and 2nd derivatives and Halley.
+ //using namespace std; // Help ADL of std functions.
+ using namespace boost::math::tools;
+ int exponent;
+ frexp(x, &exponent); // Get exponent of z (ignore mantissa).
+ T guess = ldexp(1., exponent / 3); // Rough guess is to divide the exponent by three.
+ T min = ldexp(0.5, exponent / 3); // Minimum possible value is half our guess.
+ T max = ldexp(2., exponent / 3); // Maximum possible value is twice our guess.
+ const int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
+ // digits used to control how accurate to try to make the result.
+ int get_digits = static_cast<int>(digits * 0.4); // Accuracy triples with each step, so stop when just
+ // over one third of the digits are correct.
+ boost::uintmax_t maxit = 20;
+ T result = halley_iterate(
+ // lambda function:
+ [x](const T& g){ return std::make_tuple(g * g * g - x, 3 * g * g, 6 * g); },
+ guess, min, max, get_digits, maxit);
+ return result;
+}
+
+//] [/root_finding_2deriv_lambda]
+/*
+
+[h3 Fifth-root function]
+Let's now suppose we want to find the [*fifth root] of a number ['a].
+
+The equation we want to solve is :
+
+__spaces['f](x) = x[super 5] - a
+
+If your differentiation is a little rusty
+(or you are faced with an equation whose complexity is daunting),
+then you can get help, for example from the invaluable
+[@http://www.wolframalpha.com/ WolframAlpha site.]
+
+For example, entering the commmand: `differentiate x ^ 5`
+
+or the Wolfram Language command: ` D[x ^ 5, x]`
+
+gives the output: `d/dx(x ^ 5) = 5 x ^ 4`
+
+and to get the second differential, enter: `second differentiate x ^ 5`
+
+or the Wolfram Language command: `D[x ^ 5, { x, 2 }]`
+
+to get the output: `d ^ 2 / dx ^ 2(x ^ 5) = 20 x ^ 3`
+
+To get a reference value, we can enter: [^fifth root 3126]
+
+or: `N[3126 ^ (1 / 5), 50]`
+
+to get a result with a precision of 50 decimal digits:
+
+5.0003199590478625588206333405631053401128722314376
+
+(We could also get a reference value using Boost.Multiprecision - see below).
+
+The 1st and 2nd derivatives of x[super 5] are:
+
+__spaces['f]\'(x) = 5x[super 4]
+
+__spaces['f]\'\'(x) = 20x[super 3]
+
+*/
+
+//[root_finding_fifth_1
+//] [/root_finding_fifth_1]
+
+
+//[root_finding_fifth_functor_2deriv
+
+/*`Using these expressions for the derivatives, the functor is:
+*/
+
+template <class T>
+struct fifth_functor_2deriv
+{
+ // Functor returning both 1st and 2nd derivatives.
+ fifth_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of)
+ { /* Constructor stores value a to find root of, for example: */ }
+
+ std::tuple<T, T, T> operator()(T const& x)
+ {
+ // Return both f(x) and f'(x) and f''(x).
+ T fx = boost::math::pow<5>(x) - a; // Difference (estimate x^3 - value).
+ T dx = 5 * boost::math::pow<4>(x); // 1st derivative = 5x^4.
+ T d2x = 20 * boost::math::pow<3>(x); // 2nd derivative = 20 x^3
+ return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
+ }
+private:
+ T a; // to be 'fifth_rooted'.
+}; // struct fifth_functor_2deriv
+
+//] [/root_finding_fifth_functor_2deriv]
+
+//[root_finding_fifth_2deriv
+
+/*`Our fifth-root function is now:
+*/
+
+template <class T>
+T fifth_2deriv(T x)
+{
+ // return fifth root of x using 1st and 2nd derivatives and Halley.
+ using namespace std; // Help ADL of std functions.
+ using namespace boost::math::tools; // for halley_iterate.
+
+ int exponent;
+ frexp(x, &exponent); // Get exponent of z (ignore mantissa).
+ T guess = ldexp(1., exponent / 5); // Rough guess is to divide the exponent by five.
+ T min = ldexp(0.5, exponent / 5); // Minimum possible value is half our guess.
+ T max = ldexp(2., exponent / 5); // Maximum possible value is twice our guess.
+ // Stop when slightly more than one of the digits are correct:
+ const int digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
+ const boost::uintmax_t maxit = 50;
+ boost::uintmax_t it = maxit;
+ T result = halley_iterate(fifth_functor_2deriv<T>(x), guess, min, max, digits, it);
+ return result;
+}
+
+//] [/root_finding_fifth_2deriv]
+
+
+int main()
+{
+ std::cout << "Root finding Examples." << std::endl;
+ std::cout.precision(std::numeric_limits<double>::max_digits10);
+ // Show all possibly significant decimal digits for double.
+ // std::cout.precision(std::numeric_limits<double>::digits10);
+ // Show all guaranteed significant decimal digits for double.
+
+
+//[root_finding_main_1
+ try
+ {
+ double threecubed = 27.; // Value that has an *exactly representable* integer cube root.
+ double threecubedp1 = 28.; // Value whose cube root is *not* exactly representable.
+
+ std::cout << "cbrt(28) " << boost::math::cbrt(28.) << std::endl; // boost::math:: version of cbrt.
+ std::cout << "std::cbrt(28) " << std::cbrt(28.) << std::endl; // std:: version of cbrt.
+ std::cout <<" cast double " << static_cast<double>(3.0365889718756625194208095785056696355814539772481111) << std::endl;
+
+ // Cube root using bracketing:
+ double r = cbrt_noderiv(threecubed);
+ std::cout << "cbrt_noderiv(" << threecubed << ") = " << r << std::endl;
+ r = cbrt_noderiv(threecubedp1);
+ std::cout << "cbrt_noderiv(" << threecubedp1 << ") = " << r << std::endl;
+//] [/root_finding_main_1]
+ //[root_finding_main_2
+
+ // Cube root using 1st differential Newton-Raphson:
+ r = cbrt_deriv(threecubed);
+ std::cout << "cbrt_deriv(" << threecubed << ") = " << r << std::endl;
+ r = cbrt_deriv(threecubedp1);
+ std::cout << "cbrt_deriv(" << threecubedp1 << ") = " << r << std::endl;
+
+ // Cube root using Halley with 1st and 2nd differentials.
+ r = cbrt_2deriv(threecubed);
+ std::cout << "cbrt_2deriv(" << threecubed << ") = " << r << std::endl;
+ r = cbrt_2deriv(threecubedp1);
+ std::cout << "cbrt_2deriv(" << threecubedp1 << ") = " << r << std::endl;
+
+ // Cube root using lambda's:
+ r = cbrt_2deriv_lambda(threecubed);
+ std::cout << "cbrt_2deriv(" << threecubed << ") = " << r << std::endl;
+ r = cbrt_2deriv_lambda(threecubedp1);
+ std::cout << "cbrt_2deriv(" << threecubedp1 << ") = " << r << std::endl;
+
+ // Fifth root.
+
+ double fivepowfive = 3125; // Example of a value that has an exact integer fifth root.
+ // Exact value of fifth root is exactly 5.
+ std::cout << "Fifth root of " << fivepowfive << " is " << 5 << std::endl;
+
+ double fivepowfivep1 = fivepowfive + 1; // Example of a value whose fifth root is *not* exactly representable.
+ // Value of fifth root is 5.0003199590478625588206333405631053401128722314376 (50 decimal digits precision)
+ // and to std::numeric_limits<double>::max_digits10 double precision (usually 17) is
+
+ double root5v2 = static_cast<double>(5.0003199590478625588206333405631053401128722314376);
+ std::cout << "Fifth root of " << fivepowfivep1 << " is " << root5v2 << std::endl;
+
+ // Using Halley with 1st and 2nd differentials.
+ r = fifth_2deriv(fivepowfive);
+ std::cout << "fifth_2deriv(" << fivepowfive << ") = " << r << std::endl;
+ r = fifth_2deriv(fivepowfivep1);
+ std::cout << "fifth_2deriv(" << fivepowfivep1 << ") = " << r << std::endl;
+//] [/root_finding_main_?]
+ }
+ catch(const std::exception& e)
+ { // Always useful to include try & catch blocks because default policies
+ // are to throw exceptions on arguments that cause errors like underflow, overflow.
+ // Lacking try & catch blocks, the program will abort without a message below,
+ // which may give some helpful clues as to the cause of the exception.
+ std::cout <<
+ "\n""Message from thrown exception was:\n " << e.what() << std::endl;
+ }
+ return 0;
+} // int main()
+
+//[root_finding_example_output
+/*`
+Normal output is:
+
+[pre
+ root_finding_example.cpp
+ Generating code
+ Finished generating code
+ root_finding_example.vcxproj -> J:\Cpp\MathToolkit\test\Math_test\Release\root_finding_example.exe
+ Cube Root finding (cbrt) Example.
+ Iterations 10
+ cbrt_1(27) = 3
+ Iterations 10
+ Unable to locate solution in chosen iterations: Current best guess is between 3.0365889718756613 and 3.0365889718756627
+ cbrt_1(28) = 3.0365889718756618
+ cbrt_1(27) = 3
+ cbrt_2(28) = 3.0365889718756627
+ Iterations 4
+ cbrt_3(27) = 3
+ Iterations 5
+ cbrt_3(28) = 3.0365889718756627
+
+] [/pre]
+
+to get some (much!) diagnostic output we can add
+
+#define BOOST_MATH_INSTRUMENT
+
+[pre
+
+]
+*/
+//] [/root_finding_example_output]
+
+/*
+
+cbrt(28) 3.0365889718756622
+std::cbrt(28) 3.0365889718756627
+
+*/