diff options
Diffstat (limited to 'src/boost/libs/math/test/test_factorials.cpp')
-rw-r--r-- | src/boost/libs/math/test/test_factorials.cpp | 386 |
1 files changed, 386 insertions, 0 deletions
diff --git a/src/boost/libs/math/test/test_factorials.cpp b/src/boost/libs/math/test/test_factorials.cpp new file mode 100644 index 00000000..851f6462 --- /dev/null +++ b/src/boost/libs/math/test/test_factorials.cpp @@ -0,0 +1,386 @@ +// Copyright John Maddock 2006. +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + +#include <pch.hpp> + +#ifdef _MSC_VER +# pragma warning(disable: 4127) // conditional expression is constant. +# pragma warning(disable: 4245) // int/unsigned int conversion +#endif + +// Return infinities not exceptions: +#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error + +#include <boost/math/concepts/real_concept.hpp> +#define BOOST_TEST_MAIN +#include <boost/test/unit_test.hpp> +#include <boost/test/tools/floating_point_comparison.hpp> +#include <boost/math/special_functions/factorials.hpp> +#include <boost/math/special_functions/gamma.hpp> +#include <boost/math/tools/stats.hpp> +#include <boost/math/tools/test.hpp> + +#include <iostream> +#include <iomanip> +using std::cout; +using std::endl; + +template <class T> +T naive_falling_factorial(T x, unsigned n) +{ + if(n == 0) + return 1; + T result = x; + while(--n) + { + x -= 1; + result *= x; + } + return result; +} + +template <class T> +void test_spots(T) +{ + // + // Basic sanity checks. + // + T tolerance = boost::math::tools::epsilon<T>() * 100 * 2; // 2 eps as a percent. + BOOST_CHECK_CLOSE( + ::boost::math::factorial<T>(0), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::factorial<T>(1), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::factorial<T>(10), + static_cast<T>(3628800L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::unchecked_factorial<T>(0), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::unchecked_factorial<T>(1), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::unchecked_factorial<T>(10), + static_cast<T>(3628800L), tolerance); + + // + // Try some double factorials: + // + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(0), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(1), + static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(2), + static_cast<T>(2), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(5), + static_cast<T>(15), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(10), + static_cast<T>(3840), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(19), + static_cast<T>(6.547290750e8L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(24), + static_cast<T>(1.961990553600000e12L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(33), + static_cast<T>(6.33265987076285062500000e18L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(42), + static_cast<T>(1.0714547155728479551488000000e26L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::double_factorial<T>(47), + static_cast<T>(1.19256819277443412353990764062500000e30L), tolerance); + + if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024)) + { + BOOST_CHECK_EQUAL( + ::boost::math::double_factorial<T>(320), + std::numeric_limits<T>::infinity()); + BOOST_CHECK_EQUAL( + ::boost::math::double_factorial<T>(301), + std::numeric_limits<T>::infinity()); + } + // + // Rising factorials: + // + tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. + if(std::numeric_limits<T>::is_specialized == 0) + tolerance *= 5; // higher error rates without Lanczos support + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(3), 4), + static_cast<T>(360), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(7), -4), + static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(120.5f), 8), + static_cast<T>(5.58187566784927180664062500e16L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(120.5f), -4), + static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8), + static_cast<T>(3.92974581976666067544013393509103775024414062500000e29L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7), + static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(30.25), 21), + static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33L), tolerance * 2); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(30.25), -21), + static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), 21), + static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26L), tolerance * 2); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), -21), + static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34L), 2 * tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), 5), + static_cast<T>(-1.78799177197265625000000e7L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), -5), + static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), 6), + static_cast<T>(4.5146792242309570312500000e8L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-30.25), -6), + static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-3), 6), + static_cast<T>(0), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-3.25), 6), + static_cast<T>(2.99926757812500L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-5.25), 6), + static_cast<T>(50.987548828125000000000000L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-5.25), 13), + static_cast<T>(127230.91046623885631561279296875000L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-3.25), -6), + static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-5.25), -6), + static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6L), tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::rising_factorial(static_cast<T>(-5.25), -13), + static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14L), tolerance); + // + // More cases reported as bugs by Rocco Romeo: + // + BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), 1), static_cast<T>(0)); + BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(0), -1), static_cast<T>(-1)); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(0.5f), -1), static_cast<T>(-2), tolerance); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(40.5), -41), static_cast<T>(-2.75643016796662963097096639854040835565778207128865739e-47L), tolerance); + BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 3), static_cast<T>(0)); + BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-2), 2), static_cast<T>(2)); + BOOST_CHECK_EQUAL(::boost::math::rising_factorial(static_cast<T>(-4), 3), static_cast<T>(-24)); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(static_cast<T>(-4), -3), static_cast<T>(-0.00476190476190476190476190476190476190476190476190476190476L), tolerance); + if(ldexp(T(1), -150) != 0) + { + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), 0), static_cast<T>(1), tolerance); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -1), static_cast<T>(-1.00000000000000000000000000000000000000000000070064923216241L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -2), static_cast<T>(0.500000000000000000000000000000000000000000000525486924121806L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -25), static_cast<T>(-6.44695028438447339619485321920468720529890442766578870603544e-26L), 15 * tolerance); + if(std::numeric_limits<T>::min_exponent10 < -50) + { + BOOST_CHECK_CLOSE(::boost::math::rising_factorial(ldexp(T(1), -150), -40), static_cast<T>(1.22561743912838584942353998493975692372556196815242899727910e-48L), tolerance); + } + } + + // + // Falling factorials: + // + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.25), 0), + static_cast<T>(naive_falling_factorial(30.25L, 0)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.25), 1), + static_cast<T>(naive_falling_factorial(30.25L, 1)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.25), 2), + static_cast<T>(naive_falling_factorial(30.25L, 2)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.25), 5), + static_cast<T>(naive_falling_factorial(30.25L, 5)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.25), 22), + static_cast<T>(naive_falling_factorial(30.25L, 22)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(100.5), 6), + static_cast<T>(naive_falling_factorial(100.5L, 6)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(30.75), 30), + static_cast<T>(naive_falling_factorial(30.75L, 30)), + tolerance * 3); + if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50) + { + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-30.75L), 30), + static_cast<T>(naive_falling_factorial(-30.75L, 30)), + tolerance * 3); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-30.75L), 27), + static_cast<T>(naive_falling_factorial(-30.75L, 27)), + tolerance * 3); + } + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-12.0), 6), + static_cast<T>(naive_falling_factorial(-12.0L, 6)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-12), 5), + static_cast<T>(naive_falling_factorial(-12.0L, 5)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-3.0), 6), + static_cast<T>(naive_falling_factorial(-3.0L, 6)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(-3), 5), + static_cast<T>(naive_falling_factorial(-3.0L, 5)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3.0), 6), + static_cast<T>(naive_falling_factorial(3.0L, 6)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3), 5), + static_cast<T>(naive_falling_factorial(3.0L, 5)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3.25), 4), + static_cast<T>(naive_falling_factorial(3.25L, 4)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3.25), 5), + static_cast<T>(naive_falling_factorial(3.25L, 5)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3.25), 6), + static_cast<T>(naive_falling_factorial(3.25L, 6)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(3.25), 7), + static_cast<T>(naive_falling_factorial(3.25L, 7)), + tolerance); + BOOST_CHECK_CLOSE( + ::boost::math::falling_factorial(static_cast<T>(8.25), 12), + static_cast<T>(naive_falling_factorial(8.25L, 12)), + tolerance); + // + // More cases reported as bugs by Rocco Romeo: + // + BOOST_CHECK_EQUAL(::boost::math::falling_factorial(static_cast<T>(0), 1), static_cast<T>(0)); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 3), static_cast<T>(-24), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-2), 2), static_cast<T>(6), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(static_cast<T>(-4), 3), static_cast<T>(-120), tolerance); + if(ldexp(static_cast<T>(1), -100) != 0) + { + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 1), static_cast<T>(7.888609052210118054117285652827862296732064351090230047e-31L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 2), static_cast<T>(-7.88860905221011805411728565282163928145420320938308598e-31L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 3), static_cast<T>(1.577721810442023610823457130563705554763054527705902790e-30L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -100), 35), static_cast<T>(2.32897613101315187323300837924676081371219290005311315885e8L), 35 * tolerance); + } + if((ldexp(static_cast<T>(1), -300) != 0) && (std::numeric_limits<T>::max_exponent10 > 290)) + { + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 20), static_cast<T>(-5.97167167502482975928590631196751639118233432208390100e-74L), tolerance); + BOOST_CHECK_CLOSE(::boost::math::falling_factorial(ldexp(static_cast<T>(1), -300), 200), static_cast<T>(-1.93579759151806711025267355739174942986011285920860098569075e282L), 10 * tolerance); + } + + + tolerance = boost::math::tools::epsilon<T>() * 100 * 20; // 20 eps as a percent. + unsigned i = boost::math::max_factorial<T>::value; + if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double))) + { + // Without Lanczos support, tgamma isn't accurate enough for this test: + BOOST_CHECK_CLOSE( + ::boost::math::unchecked_factorial<T>(i), + boost::math::tgamma(static_cast<T>(i+1)), tolerance); + } + + i += 10; + while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>()) + { + BOOST_CHECK_CLOSE( + ::boost::math::factorial<T>(i), + boost::math::tgamma(static_cast<T>(i+1)), tolerance); + i += 10; + } +} // template <class T> void test_spots(T) + +BOOST_AUTO_TEST_CASE( test_main ) +{ + BOOST_MATH_CONTROL_FP; + test_spots(0.0F); + test_spots(0.0); +#ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS + test_spots(0.0L); +#ifndef BOOST_MATH_NO_REAL_CONCEPT_TESTS + test_spots(boost::math::concepts::real_concept(0.)); +#endif +#else + std::cout << "<note>The long double tests have been disabled on this platform " + "either because the long double overloads of the usual math functions are " + "not available at all, or because they are too inaccurate for these tests " + "to pass.</note>" << std::endl; +#endif + if (std::numeric_limits<double>::digits == std::numeric_limits<long double>::digits) + { + cout << "Types double and long double have the same number of floating-point significand bits (" + << std::numeric_limits<long double>::digits << ") on this platform." << endl; + } + if (std::numeric_limits<float>::digits == std::numeric_limits<double>::digits) + { + cout << "Types float and double have the same number of floating-point significand bits (" + << std::numeric_limits<double>::digits << ") on this platform." << endl; + } + + using boost::math::max_factorial; + cout << "max factorial for float " << max_factorial<float>::value << endl; + cout << "max factorial for double " << max_factorial<double>::value << endl; + cout << "max factorial for long double " << max_factorial<long double>::value << endl; + cout << "max factorial for real_concept " << max_factorial<boost::math::concepts::real_concept>::value << endl; + + + + +} + +/* + +Output is: + +Running 1 test case... +Types double and long double have the same number of floating-point significand bits (53) on this platform. +max factorial for float 34 +max factorial for double 170 +max factorial for long double 170 +max factorial for real_concept 100 +*** No errors detected + +*/ + + + + |