diff options
Diffstat (limited to 'src/common/ceph_time.h')
-rw-r--r-- | src/common/ceph_time.h | 520 |
1 files changed, 520 insertions, 0 deletions
diff --git a/src/common/ceph_time.h b/src/common/ceph_time.h new file mode 100644 index 00000000..a357a3bc --- /dev/null +++ b/src/common/ceph_time.h @@ -0,0 +1,520 @@ +// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- +// vim: ts=8 sw=2 smarttab +/* + * Ceph - scalable distributed file system + * + * Copyright (C) 2004-2006 Sage Weil <sage@newdream.net> + * + * This is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License version 2.1, as published by the Free Software + * Foundation. See file COPYING. + * + */ + +#ifndef COMMON_CEPH_TIME_H +#define COMMON_CEPH_TIME_H + +#include <chrono> +#include <iostream> +#include <string> +#include <sys/time.h> + +#include "include/ceph_assert.h" + +#if defined(__APPLE__) +#include <sys/_types/_timespec.h> + +#define CLOCK_REALTIME_COARSE CLOCK_REALTIME +#define CLOCK_MONOTONIC_COARSE CLOCK_MONOTONIC + +int clock_gettime(int clk_id, struct timespec *tp); +#endif + +struct ceph_timespec; + +namespace ceph { + namespace time_detail { + using std::chrono::duration_cast; + using std::chrono::seconds; + using std::chrono::microseconds; + using std::chrono::nanoseconds; + // Currently we use a 64-bit count of nanoseconds. + + // We could, if we wished, use a struct holding a uint64_t count + // of seconds and a uint32_t count of nanoseconds. + + // At least this way we can change it to something else if we + // want. + typedef uint64_t rep; + + // A concrete duration, unsigned. The timespan Ceph thinks in. + typedef std::chrono::duration<rep, std::nano> timespan; + + + // Like the above but signed. + typedef int64_t signed_rep; + + typedef std::chrono::duration<signed_rep, std::nano> signedspan; + + // We define our own clocks so we can have our choice of all time + // sources supported by the operating system. With the standard + // library the resolution and cost are unspecified. (For example, + // the libc++ system_clock class gives only microsecond + // resolution.) + + // One potential issue is that we should accept system_clock + // timepoints in user-facing APIs alongside (or instead of) + // ceph::real_clock times. + class real_clock { + public: + typedef timespan duration; + typedef duration::rep rep; + typedef duration::period period; + // The second template parameter defaults to the clock's duration + // type. + typedef std::chrono::time_point<real_clock> time_point; + static constexpr const bool is_steady = false; + + static time_point now() noexcept { + struct timespec ts; + clock_gettime(CLOCK_REALTIME, &ts); + return from_timespec(ts); + } + + static bool is_zero(const time_point& t) { + return (t == time_point::min()); + } + + static time_point zero() { + return time_point::min(); + } + + // Allow conversion to/from any clock with the same interface as + // std::chrono::system_clock) + template<typename Clock, typename Duration> + static time_point to_system_time_point( + const std::chrono::time_point<Clock, Duration>& t) { + return time_point(seconds(Clock::to_time_t(t)) + + duration_cast<duration>(t.time_since_epoch() % + seconds(1))); + } + template<typename Clock, typename Duration> + static std::chrono::time_point<Clock, Duration> to_system_time_point( + const time_point& t) { + return (Clock::from_time_t(to_time_t(t)) + + duration_cast<Duration>(t.time_since_epoch() % seconds(1))); + } + + static time_t to_time_t(const time_point& t) noexcept { + return duration_cast<seconds>(t.time_since_epoch()).count(); + } + static time_point from_time_t(const time_t& t) noexcept { + return time_point(seconds(t)); + } + + static void to_timespec(const time_point& t, struct timespec& ts) { + ts.tv_sec = to_time_t(t); + ts.tv_nsec = (t.time_since_epoch() % seconds(1)).count(); + } + static struct timespec to_timespec(const time_point& t) { + struct timespec ts; + to_timespec(t, ts); + return ts; + } + static time_point from_timespec(const struct timespec& ts) { + return time_point(seconds(ts.tv_sec) + nanoseconds(ts.tv_nsec)); + } + + static void to_ceph_timespec(const time_point& t, + struct ceph_timespec& ts); + static struct ceph_timespec to_ceph_timespec(const time_point& t); + static time_point from_ceph_timespec(const struct ceph_timespec& ts); + + static void to_timeval(const time_point& t, struct timeval& tv) { + tv.tv_sec = to_time_t(t); + tv.tv_usec = duration_cast<microseconds>(t.time_since_epoch() % + seconds(1)).count(); + } + static struct timeval to_timeval(const time_point& t) { + struct timeval tv; + to_timeval(t, tv); + return tv; + } + static time_point from_timeval(const struct timeval& tv) { + return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec)); + } + + static double to_double(const time_point& t) { + return std::chrono::duration<double>(t.time_since_epoch()).count(); + } + static time_point from_double(const double d) { + return time_point(duration_cast<duration>( + std::chrono::duration<double>(d))); + } + }; + + class coarse_real_clock { + public: + typedef timespan duration; + typedef duration::rep rep; + typedef duration::period period; + // The second template parameter defaults to the clock's duration + // type. + typedef std::chrono::time_point<coarse_real_clock> time_point; + static constexpr const bool is_steady = false; + + static time_point now() noexcept { + struct timespec ts; +#if defined(CLOCK_REALTIME_COARSE) + // Linux systems have _COARSE clocks. + clock_gettime(CLOCK_REALTIME_COARSE, &ts); +#elif defined(CLOCK_REALTIME_FAST) + // BSD systems have _FAST clocks. + clock_gettime(CLOCK_REALTIME_FAST, &ts); +#else + // And if we find neither, you may wish to consult your system's + // documentation. +#warning Falling back to CLOCK_REALTIME, may be slow. + clock_gettime(CLOCK_REALTIME, &ts); +#endif + return from_timespec(ts); + } + + static bool is_zero(const time_point& t) { + return (t == time_point::min()); + } + + static time_point zero() { + return time_point::min(); + } + + static time_t to_time_t(const time_point& t) noexcept { + return duration_cast<seconds>(t.time_since_epoch()).count(); + } + static time_point from_time_t(const time_t t) noexcept { + return time_point(seconds(t)); + } + + static void to_timespec(const time_point& t, struct timespec& ts) { + ts.tv_sec = to_time_t(t); + ts.tv_nsec = (t.time_since_epoch() % seconds(1)).count(); + } + static struct timespec to_timespec(const time_point& t) { + struct timespec ts; + to_timespec(t, ts); + return ts; + } + static time_point from_timespec(const struct timespec& ts) { + return time_point(seconds(ts.tv_sec) + nanoseconds(ts.tv_nsec)); + } + + static void to_ceph_timespec(const time_point& t, + struct ceph_timespec& ts); + static struct ceph_timespec to_ceph_timespec(const time_point& t); + static time_point from_ceph_timespec(const struct ceph_timespec& ts); + + static void to_timeval(const time_point& t, struct timeval& tv) { + tv.tv_sec = to_time_t(t); + tv.tv_usec = duration_cast<microseconds>(t.time_since_epoch() % + seconds(1)).count(); + } + static struct timeval to_timeval(const time_point& t) { + struct timeval tv; + to_timeval(t, tv); + return tv; + } + static time_point from_timeval(const struct timeval& tv) { + return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec)); + } + + static double to_double(const time_point& t) { + return std::chrono::duration<double>(t.time_since_epoch()).count(); + } + static time_point from_double(const double d) { + return time_point(duration_cast<duration>( + std::chrono::duration<double>(d))); + } + }; + + class mono_clock { + public: + typedef timespan duration; + typedef duration::rep rep; + typedef duration::period period; + typedef std::chrono::time_point<mono_clock> time_point; + static constexpr const bool is_steady = true; + + static time_point now() noexcept { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return time_point(seconds(ts.tv_sec) + nanoseconds(ts.tv_nsec)); + } + + static bool is_zero(const time_point& t) { + return (t == time_point::min()); + } + + static time_point zero() { + return time_point::min(); + } + + // A monotonic clock's timepoints are only meaningful to the + // computer on which they were generated. Thus having an + // optional skew is meaningless. + }; + + class coarse_mono_clock { + public: + typedef timespan duration; + typedef duration::rep rep; + typedef duration::period period; + typedef std::chrono::time_point<coarse_mono_clock> time_point; + static constexpr const bool is_steady = true; + + static time_point now() noexcept { + struct timespec ts; +#if defined(CLOCK_MONOTONIC_COARSE) + // Linux systems have _COARSE clocks. + clock_gettime(CLOCK_MONOTONIC_COARSE, &ts); +#elif defined(CLOCK_MONOTONIC_FAST) + // BSD systems have _FAST clocks. + clock_gettime(CLOCK_MONOTONIC_FAST, &ts); +#else + // And if we find neither, you may wish to consult your system's + // documentation. +#warning Falling back to CLOCK_MONOTONIC, may be slow. + clock_gettime(CLOCK_MONOTONIC, &ts); +#endif + return time_point(seconds(ts.tv_sec) + nanoseconds(ts.tv_nsec)); + } + + static bool is_zero(const time_point& t) { + return (t == time_point::min()); + } + + static time_point zero() { + return time_point::min(); + } + }; + + // So that our subtractions produce negative spans rather than + // arithmetic underflow. + namespace { + template<typename Rep1, typename Period1, typename Rep2, + typename Period2> + inline auto difference(std::chrono::duration<Rep1, Period1> minuend, + std::chrono::duration<Rep2, Period2> subtrahend) + -> typename std::common_type< + std::chrono::duration<typename std::make_signed<Rep1>::type, + Period1>, + std::chrono::duration<typename std::make_signed<Rep2>::type, + Period2> >::type { + // Foo. + using srep = + typename std::common_type< + std::chrono::duration<typename std::make_signed<Rep1>::type, + Period1>, + std::chrono::duration<typename std::make_signed<Rep2>::type, + Period2> >::type; + return srep(srep(minuend).count() - srep(subtrahend).count()); + } + + template<typename Clock, typename Duration1, typename Duration2> + inline auto difference( + typename std::chrono::time_point<Clock, Duration1> minuend, + typename std::chrono::time_point<Clock, Duration2> subtrahend) + -> typename std::common_type< + std::chrono::duration<typename std::make_signed< + typename Duration1::rep>::type, + typename Duration1::period>, + std::chrono::duration<typename std::make_signed< + typename Duration2::rep>::type, + typename Duration2::period> >::type { + return difference(minuend.time_since_epoch(), + subtrahend.time_since_epoch()); + } + } + } // namespace time_detail + + // duration is the concrete time representation for our code in the + // case that we are only interested in durations between now and the + // future. Using it means we don't have to have EVERY function that + // deals with a duration be a template. We can do so for user-facing + // APIs, however. + using time_detail::timespan; + + // Similar to the above but for durations that can specify + // differences between now and a time point in the past. + using time_detail::signedspan; + + // High-resolution real-time clock + using time_detail::real_clock; + + // Low-resolution but preusmably faster real-time clock + using time_detail::coarse_real_clock; + + + // High-resolution monotonic clock + using time_detail::mono_clock; + + // Low-resolution but, I would hope or there's no point, faster + // monotonic clock + using time_detail::coarse_mono_clock; + + // Please note that the coarse clocks are disjoint. You cannot + // subtract a real_clock timepoint from a coarse_real_clock + // timepoint as, from C++'s perspective, they are disjoint types. + + // This is not necessarily bad. If I sample a mono_clock and then a + // coarse_mono_clock, the coarse_mono_clock's time could potentially + // be previous to the mono_clock's time (just due to differing + // resolution) which would be Incorrect. + + // This is not horrible, though, since you can use an idiom like + // mono_clock::timepoint(coarsepoint.time_since_epoch()) to unwrap + // and rewrap if you know what you're doing. + + + // Actual wall-clock times + typedef real_clock::time_point real_time; + typedef coarse_real_clock::time_point coarse_real_time; + + // Monotonic times should never be serialized or communicated + // between machines, since they are incomparable. Thus we also don't + // make any provision for converting between + // std::chrono::steady_clock time and ceph::mono_clock time. + typedef mono_clock::time_point mono_time; + typedef coarse_mono_clock::time_point coarse_mono_time; + + template<typename Rep1, typename Ratio1, typename Rep2, typename Ratio2> + auto floor(const std::chrono::duration<Rep1, Ratio1>& duration, + const std::chrono::duration<Rep2, Ratio2>& precision) -> + typename std::common_type<std::chrono::duration<Rep1, Ratio1>, + std::chrono::duration<Rep2, Ratio2> >::type { + return duration - (duration % precision); + } + + template<typename Rep1, typename Ratio1, typename Rep2, typename Ratio2> + auto ceil(const std::chrono::duration<Rep1, Ratio1>& duration, + const std::chrono::duration<Rep2, Ratio2>& precision) -> + typename std::common_type<std::chrono::duration<Rep1, Ratio1>, + std::chrono::duration<Rep2, Ratio2> >::type { + auto tmod = duration % precision; + return duration - tmod + (tmod > tmod.zero() ? 1 : 0) * precision; + } + + template<typename Clock, typename Duration, typename Rep, typename Ratio> + auto floor(const std::chrono::time_point<Clock, Duration>& timepoint, + const std::chrono::duration<Rep, Ratio>& precision) -> + std::chrono::time_point<Clock, + typename std::common_type< + Duration, std::chrono::duration<Rep, Ratio> + >::type> { + return std::chrono::time_point< + Clock, typename std::common_type< + Duration, std::chrono::duration<Rep, Ratio> >::type>( + floor(timepoint.time_since_epoch(), precision)); + } + template<typename Clock, typename Duration, typename Rep, typename Ratio> + auto ceil(const std::chrono::time_point<Clock, Duration>& timepoint, + const std::chrono::duration<Rep, Ratio>& precision) -> + std::chrono::time_point<Clock, + typename std::common_type< + Duration, + std::chrono::duration<Rep, Ratio> >::type> { + return std::chrono::time_point< + Clock, typename std::common_type< + Duration, std::chrono::duration<Rep, Ratio> >::type>( + ceil(timepoint.time_since_epoch(), precision)); + } + + namespace { + inline timespan make_timespan(const double d) { + return std::chrono::duration_cast<timespan>( + std::chrono::duration<double>(d)); + } + } + + std::ostream& operator<<(std::ostream& m, const timespan& t); + template<typename Clock, + typename std::enable_if<!Clock::is_steady>::type* = nullptr> + std::ostream& operator<<(std::ostream& m, + const std::chrono::time_point<Clock>& t); + template<typename Clock, + typename std::enable_if<Clock::is_steady>::type* = nullptr> + std::ostream& operator<<(std::ostream& m, + const std::chrono::time_point<Clock>& t); + + // The way std::chrono handles the return type of subtraction is not + // wonderful. The difference of two unsigned types SHOULD be signed. + + namespace { + inline signedspan operator -(real_time minuend, + real_time subtrahend) { + return time_detail::difference(minuend, subtrahend); + } + + inline signedspan operator -(coarse_real_time minuend, + coarse_real_time subtrahend) { + return time_detail::difference(minuend, subtrahend); + } + + inline signedspan operator -(mono_time minuend, + mono_time subtrahend) { + return time_detail::difference(minuend, subtrahend); + } + + inline signedspan operator -(coarse_mono_time minuend, + coarse_mono_time subtrahend) { + return time_detail::difference(minuend, subtrahend); + } + } + + // We could add specializations of time_point - duration and + // time_point + duration to assert on overflow, but I don't think we + // should. + + +inline timespan abs(signedspan z) { + return z > signedspan::zero() ? + std::chrono::duration_cast<timespan>(z) : + timespan(-z.count()); +} +inline timespan to_timespan(signedspan z) { + if (z < signedspan::zero()) { + //ceph_assert(z >= signedspan::zero()); + // There is a kernel bug that seems to be triggering this assert. We've + // seen it in: + // centos 8.1: 4.18.0-147.el8.x86_64 + // debian 10.3: 4.19.0-8-amd64 + // debian 10.1: 4.19.67-2+deb10u1 + // ubuntu 18.04 + // see bugs: + // https://tracker.ceph.com/issues/43365 + // https://tracker.ceph.com/issues/44078 + z = signedspan::zero(); + } + return std::chrono::duration_cast<timespan>(z); +} + +std::string timespan_str(timespan t); +std::string exact_timespan_str(timespan t); +std::chrono::seconds parse_timespan(const std::string& s); + +// detects presence of Clock::to_timespec() and from_timespec() +template <typename Clock, typename = std::void_t<>> +struct converts_to_timespec : std::false_type {}; + +template <typename Clock> +struct converts_to_timespec<Clock, std::void_t<decltype( + Clock::from_timespec(Clock::to_timespec( + std::declval<typename Clock::time_point>())) + )>> : std::true_type {}; + +template <typename Clock> +constexpr bool converts_to_timespec_v = converts_to_timespec<Clock>::value; + +} // namespace ceph + +#endif // COMMON_CEPH_TIME_H |