summaryrefslogtreecommitdiffstats
path: root/src/googletest/googlemock/test/gmock-actions_test.cc
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/googletest/googlemock/test/gmock-actions_test.cc1411
1 files changed, 1411 insertions, 0 deletions
diff --git a/src/googletest/googlemock/test/gmock-actions_test.cc b/src/googletest/googlemock/test/gmock-actions_test.cc
new file mode 100644
index 00000000..f470de4c
--- /dev/null
+++ b/src/googletest/googlemock/test/gmock-actions_test.cc
@@ -0,0 +1,1411 @@
+// Copyright 2007, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: wan@google.com (Zhanyong Wan)
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file tests the built-in actions.
+
+#include "gmock/gmock-actions.h"
+#include <algorithm>
+#include <iterator>
+#include <memory>
+#include <string>
+#include "gmock/gmock.h"
+#include "gmock/internal/gmock-port.h"
+#include "gtest/gtest.h"
+#include "gtest/gtest-spi.h"
+
+namespace {
+
+// This list should be kept sorted.
+using testing::Action;
+using testing::ActionInterface;
+using testing::Assign;
+using testing::ByMove;
+using testing::ByRef;
+using testing::DefaultValue;
+using testing::DoDefault;
+using testing::IgnoreResult;
+using testing::Invoke;
+using testing::InvokeWithoutArgs;
+using testing::MakePolymorphicAction;
+using testing::Ne;
+using testing::PolymorphicAction;
+using testing::Return;
+using testing::ReturnNull;
+using testing::ReturnRef;
+using testing::ReturnRefOfCopy;
+using testing::SetArgPointee;
+using testing::SetArgumentPointee;
+using testing::_;
+using testing::get;
+using testing::internal::BuiltInDefaultValue;
+using testing::internal::Int64;
+using testing::internal::UInt64;
+using testing::make_tuple;
+using testing::tuple;
+using testing::tuple_element;
+
+#if !GTEST_OS_WINDOWS_MOBILE
+using testing::SetErrnoAndReturn;
+#endif
+
+#if GTEST_HAS_PROTOBUF_
+using testing::internal::TestMessage;
+#endif // GTEST_HAS_PROTOBUF_
+
+// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
+TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
+ EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == NULL);
+ EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == NULL);
+ EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == NULL);
+}
+
+// Tests that BuiltInDefaultValue<T*>::Exists() return true.
+TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
+ EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
+}
+
+// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
+// built-in numeric type.
+TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
+ EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
+#if GMOCK_HAS_SIGNED_WCHAR_T_
+ EXPECT_EQ(0U, BuiltInDefaultValue<unsigned wchar_t>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get());
+#endif
+#if GMOCK_WCHAR_T_IS_NATIVE_
+ EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
+#endif
+ EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
+ EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
+ EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
+ EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
+ EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
+ EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
+ EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
+ EXPECT_EQ(0U, BuiltInDefaultValue<UInt64>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<Int64>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
+}
+
+// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
+// built-in numeric type.
+TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
+ EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
+#if GMOCK_HAS_SIGNED_WCHAR_T_
+ EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists());
+#endif
+#if GMOCK_WCHAR_T_IS_NATIVE_
+ EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
+#endif
+ EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
+ EXPECT_TRUE(BuiltInDefaultValue<UInt64>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<Int64>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
+ EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
+}
+
+// Tests that BuiltInDefaultValue<bool>::Get() returns false.
+TEST(BuiltInDefaultValueTest, IsFalseForBool) {
+ EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
+}
+
+// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
+TEST(BuiltInDefaultValueTest, BoolExists) {
+ EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
+}
+
+// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
+// string type.
+TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
+#if GTEST_HAS_GLOBAL_STRING
+ EXPECT_EQ("", BuiltInDefaultValue< ::string>::Get());
+#endif // GTEST_HAS_GLOBAL_STRING
+
+ EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get());
+}
+
+// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
+// string type.
+TEST(BuiltInDefaultValueTest, ExistsForString) {
+#if GTEST_HAS_GLOBAL_STRING
+ EXPECT_TRUE(BuiltInDefaultValue< ::string>::Exists());
+#endif // GTEST_HAS_GLOBAL_STRING
+
+ EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists());
+}
+
+// Tests that BuiltInDefaultValue<const T>::Get() returns the same
+// value as BuiltInDefaultValue<T>::Get() does.
+TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
+ EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
+ EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
+ EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == NULL);
+ EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
+}
+
+// A type that's default constructible.
+class MyDefaultConstructible {
+ public:
+ MyDefaultConstructible() : value_(42) {}
+
+ int value() const { return value_; }
+
+ private:
+ int value_;
+};
+
+// A type that's not default constructible.
+class MyNonDefaultConstructible {
+ public:
+ // Does not have a default ctor.
+ explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
+
+ int value() const { return value_; }
+
+ private:
+ int value_;
+};
+
+#if GTEST_HAS_STD_TYPE_TRAITS_
+
+TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
+ EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
+}
+
+TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
+ EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
+}
+
+#endif // GTEST_HAS_STD_TYPE_TRAITS_
+
+TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
+ EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
+}
+
+// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
+TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
+ EXPECT_DEATH_IF_SUPPORTED({
+ BuiltInDefaultValue<int&>::Get();
+ }, "");
+ EXPECT_DEATH_IF_SUPPORTED({
+ BuiltInDefaultValue<const char&>::Get();
+ }, "");
+}
+
+TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
+ EXPECT_DEATH_IF_SUPPORTED({
+ BuiltInDefaultValue<MyNonDefaultConstructible>::Get();
+ }, "");
+}
+
+// Tests that DefaultValue<T>::IsSet() is false initially.
+TEST(DefaultValueTest, IsInitiallyUnset) {
+ EXPECT_FALSE(DefaultValue<int>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
+ EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
+}
+
+// Tests that DefaultValue<T> can be set and then unset.
+TEST(DefaultValueTest, CanBeSetAndUnset) {
+ EXPECT_TRUE(DefaultValue<int>::Exists());
+ EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
+
+ DefaultValue<int>::Set(1);
+ DefaultValue<const MyNonDefaultConstructible>::Set(
+ MyNonDefaultConstructible(42));
+
+ EXPECT_EQ(1, DefaultValue<int>::Get());
+ EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
+
+ EXPECT_TRUE(DefaultValue<int>::Exists());
+ EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
+
+ DefaultValue<int>::Clear();
+ DefaultValue<const MyNonDefaultConstructible>::Clear();
+
+ EXPECT_FALSE(DefaultValue<int>::IsSet());
+ EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
+
+ EXPECT_TRUE(DefaultValue<int>::Exists());
+ EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
+}
+
+// Tests that DefaultValue<T>::Get() returns the
+// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
+// false.
+TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
+ EXPECT_FALSE(DefaultValue<int>::IsSet());
+ EXPECT_TRUE(DefaultValue<int>::Exists());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
+
+ EXPECT_EQ(0, DefaultValue<int>::Get());
+
+ EXPECT_DEATH_IF_SUPPORTED({
+ DefaultValue<MyNonDefaultConstructible>::Get();
+ }, "");
+}
+
+#if GTEST_HAS_STD_UNIQUE_PTR_
+TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
+ EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
+ EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == NULL);
+ DefaultValue<std::unique_ptr<int>>::SetFactory([] {
+ return std::unique_ptr<int>(new int(42));
+ });
+ EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
+ std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
+ EXPECT_EQ(42, *i);
+}
+#endif // GTEST_HAS_STD_UNIQUE_PTR_
+
+// Tests that DefaultValue<void>::Get() returns void.
+TEST(DefaultValueTest, GetWorksForVoid) {
+ return DefaultValue<void>::Get();
+}
+
+// Tests using DefaultValue with a reference type.
+
+// Tests that DefaultValue<T&>::IsSet() is false initially.
+TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
+ EXPECT_FALSE(DefaultValue<int&>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
+}
+
+// Tests that DefaultValue<T&>::Exists is false initiallly.
+TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
+ EXPECT_FALSE(DefaultValue<int&>::Exists());
+ EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
+}
+
+// Tests that DefaultValue<T&> can be set and then unset.
+TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
+ int n = 1;
+ DefaultValue<const int&>::Set(n);
+ MyNonDefaultConstructible x(42);
+ DefaultValue<MyNonDefaultConstructible&>::Set(x);
+
+ EXPECT_TRUE(DefaultValue<const int&>::Exists());
+ EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
+
+ EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
+ EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
+
+ DefaultValue<const int&>::Clear();
+ DefaultValue<MyNonDefaultConstructible&>::Clear();
+
+ EXPECT_FALSE(DefaultValue<const int&>::Exists());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
+
+ EXPECT_FALSE(DefaultValue<const int&>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
+}
+
+// Tests that DefaultValue<T&>::Get() returns the
+// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
+// false.
+TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
+ EXPECT_FALSE(DefaultValue<int&>::IsSet());
+ EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
+
+ EXPECT_DEATH_IF_SUPPORTED({
+ DefaultValue<int&>::Get();
+ }, "");
+ EXPECT_DEATH_IF_SUPPORTED({
+ DefaultValue<MyNonDefaultConstructible>::Get();
+ }, "");
+}
+
+// Tests that ActionInterface can be implemented by defining the
+// Perform method.
+
+typedef int MyGlobalFunction(bool, int);
+
+class MyActionImpl : public ActionInterface<MyGlobalFunction> {
+ public:
+ virtual int Perform(const tuple<bool, int>& args) {
+ return get<0>(args) ? get<1>(args) : 0;
+ }
+};
+
+TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
+ MyActionImpl my_action_impl;
+ (void)my_action_impl;
+}
+
+TEST(ActionInterfaceTest, MakeAction) {
+ Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
+
+ // When exercising the Perform() method of Action<F>, we must pass
+ // it a tuple whose size and type are compatible with F's argument
+ // types. For example, if F is int(), then Perform() takes a
+ // 0-tuple; if F is void(bool, int), then Perform() takes a
+ // tuple<bool, int>, and so on.
+ EXPECT_EQ(5, action.Perform(make_tuple(true, 5)));
+}
+
+// Tests that Action<F> can be contructed from a pointer to
+// ActionInterface<F>.
+TEST(ActionTest, CanBeConstructedFromActionInterface) {
+ Action<MyGlobalFunction> action(new MyActionImpl);
+}
+
+// Tests that Action<F> delegates actual work to ActionInterface<F>.
+TEST(ActionTest, DelegatesWorkToActionInterface) {
+ const Action<MyGlobalFunction> action(new MyActionImpl);
+
+ EXPECT_EQ(5, action.Perform(make_tuple(true, 5)));
+ EXPECT_EQ(0, action.Perform(make_tuple(false, 1)));
+}
+
+// Tests that Action<F> can be copied.
+TEST(ActionTest, IsCopyable) {
+ Action<MyGlobalFunction> a1(new MyActionImpl);
+ Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
+
+ // a1 should continue to work after being copied from.
+ EXPECT_EQ(5, a1.Perform(make_tuple(true, 5)));
+ EXPECT_EQ(0, a1.Perform(make_tuple(false, 1)));
+
+ // a2 should work like the action it was copied from.
+ EXPECT_EQ(5, a2.Perform(make_tuple(true, 5)));
+ EXPECT_EQ(0, a2.Perform(make_tuple(false, 1)));
+
+ a2 = a1; // Tests the assignment operator.
+
+ // a1 should continue to work after being copied from.
+ EXPECT_EQ(5, a1.Perform(make_tuple(true, 5)));
+ EXPECT_EQ(0, a1.Perform(make_tuple(false, 1)));
+
+ // a2 should work like the action it was copied from.
+ EXPECT_EQ(5, a2.Perform(make_tuple(true, 5)));
+ EXPECT_EQ(0, a2.Perform(make_tuple(false, 1)));
+}
+
+// Tests that an Action<From> object can be converted to a
+// compatible Action<To> object.
+
+class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
+ public:
+ virtual bool Perform(const tuple<int>& arg) {
+ return get<0>(arg) != 0;
+ }
+};
+
+#if !GTEST_OS_SYMBIAN
+// Compiling this test on Nokia's Symbian compiler fails with:
+// 'Result' is not a member of class 'testing::internal::Function<int>'
+// (point of instantiation: '@unnamed@gmock_actions_test_cc@::
+// ActionTest_CanBeConvertedToOtherActionType_Test::TestBody()')
+// with no obvious fix.
+TEST(ActionTest, CanBeConvertedToOtherActionType) {
+ const Action<bool(int)> a1(new IsNotZero); // NOLINT
+ const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
+ EXPECT_EQ(1, a2.Perform(make_tuple('a')));
+ EXPECT_EQ(0, a2.Perform(make_tuple('\0')));
+}
+#endif // !GTEST_OS_SYMBIAN
+
+// The following two classes are for testing MakePolymorphicAction().
+
+// Implements a polymorphic action that returns the second of the
+// arguments it receives.
+class ReturnSecondArgumentAction {
+ public:
+ // We want to verify that MakePolymorphicAction() can work with a
+ // polymorphic action whose Perform() method template is either
+ // const or not. This lets us verify the non-const case.
+ template <typename Result, typename ArgumentTuple>
+ Result Perform(const ArgumentTuple& args) { return get<1>(args); }
+};
+
+// Implements a polymorphic action that can be used in a nullary
+// function to return 0.
+class ReturnZeroFromNullaryFunctionAction {
+ public:
+ // For testing that MakePolymorphicAction() works when the
+ // implementation class' Perform() method template takes only one
+ // template parameter.
+ //
+ // We want to verify that MakePolymorphicAction() can work with a
+ // polymorphic action whose Perform() method template is either
+ // const or not. This lets us verify the const case.
+ template <typename Result>
+ Result Perform(const tuple<>&) const { return 0; }
+};
+
+// These functions verify that MakePolymorphicAction() returns a
+// PolymorphicAction<T> where T is the argument's type.
+
+PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
+ return MakePolymorphicAction(ReturnSecondArgumentAction());
+}
+
+PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
+ReturnZeroFromNullaryFunction() {
+ return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
+}
+
+// Tests that MakePolymorphicAction() turns a polymorphic action
+// implementation class into a polymorphic action.
+TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
+ Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
+ EXPECT_EQ(5, a1.Perform(make_tuple(false, 5, 2.0)));
+}
+
+// Tests that MakePolymorphicAction() works when the implementation
+// class' Perform() method template has only one template parameter.
+TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
+ Action<int()> a1 = ReturnZeroFromNullaryFunction();
+ EXPECT_EQ(0, a1.Perform(make_tuple()));
+
+ Action<void*()> a2 = ReturnZeroFromNullaryFunction();
+ EXPECT_TRUE(a2.Perform(make_tuple()) == NULL);
+}
+
+// Tests that Return() works as an action for void-returning
+// functions.
+TEST(ReturnTest, WorksForVoid) {
+ const Action<void(int)> ret = Return(); // NOLINT
+ return ret.Perform(make_tuple(1));
+}
+
+// Tests that Return(v) returns v.
+TEST(ReturnTest, ReturnsGivenValue) {
+ Action<int()> ret = Return(1); // NOLINT
+ EXPECT_EQ(1, ret.Perform(make_tuple()));
+
+ ret = Return(-5);
+ EXPECT_EQ(-5, ret.Perform(make_tuple()));
+}
+
+// Tests that Return("string literal") works.
+TEST(ReturnTest, AcceptsStringLiteral) {
+ Action<const char*()> a1 = Return("Hello");
+ EXPECT_STREQ("Hello", a1.Perform(make_tuple()));
+
+ Action<std::string()> a2 = Return("world");
+ EXPECT_EQ("world", a2.Perform(make_tuple()));
+}
+
+// Test struct which wraps a vector of integers. Used in
+// 'SupportsWrapperReturnType' test.
+struct IntegerVectorWrapper {
+ std::vector<int> * v;
+ IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT
+};
+
+// Tests that Return() works when return type is a wrapper type.
+TEST(ReturnTest, SupportsWrapperReturnType) {
+ // Initialize vector of integers.
+ std::vector<int> v;
+ for (int i = 0; i < 5; ++i) v.push_back(i);
+
+ // Return() called with 'v' as argument. The Action will return the same data
+ // as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper.
+ Action<IntegerVectorWrapper()> a = Return(v);
+ const std::vector<int>& result = *(a.Perform(make_tuple()).v);
+ EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4));
+}
+
+// Tests that Return(v) is covaraint.
+
+struct Base {
+ bool operator==(const Base&) { return true; }
+};
+
+struct Derived : public Base {
+ bool operator==(const Derived&) { return true; }
+};
+
+TEST(ReturnTest, IsCovariant) {
+ Base base;
+ Derived derived;
+ Action<Base*()> ret = Return(&base);
+ EXPECT_EQ(&base, ret.Perform(make_tuple()));
+
+ ret = Return(&derived);
+ EXPECT_EQ(&derived, ret.Perform(make_tuple()));
+}
+
+// Tests that the type of the value passed into Return is converted into T
+// when the action is cast to Action<T(...)> rather than when the action is
+// performed. See comments on testing::internal::ReturnAction in
+// gmock-actions.h for more information.
+class FromType {
+ public:
+ explicit FromType(bool* is_converted) : converted_(is_converted) {}
+ bool* converted() const { return converted_; }
+
+ private:
+ bool* const converted_;
+
+ GTEST_DISALLOW_ASSIGN_(FromType);
+};
+
+class ToType {
+ public:
+ // Must allow implicit conversion due to use in ImplicitCast_<T>.
+ ToType(const FromType& x) { *x.converted() = true; } // NOLINT
+};
+
+TEST(ReturnTest, ConvertsArgumentWhenConverted) {
+ bool converted = false;
+ FromType x(&converted);
+ Action<ToType()> action(Return(x));
+ EXPECT_TRUE(converted) << "Return must convert its argument in its own "
+ << "conversion operator.";
+ converted = false;
+ action.Perform(tuple<>());
+ EXPECT_FALSE(converted) << "Action must NOT convert its argument "
+ << "when performed.";
+}
+
+class DestinationType {};
+
+class SourceType {
+ public:
+ // Note: a non-const typecast operator.
+ operator DestinationType() { return DestinationType(); }
+};
+
+TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) {
+ SourceType s;
+ Action<DestinationType()> action(Return(s));
+}
+
+// Tests that ReturnNull() returns NULL in a pointer-returning function.
+TEST(ReturnNullTest, WorksInPointerReturningFunction) {
+ const Action<int*()> a1 = ReturnNull();
+ EXPECT_TRUE(a1.Perform(make_tuple()) == NULL);
+
+ const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
+ EXPECT_TRUE(a2.Perform(make_tuple(true)) == NULL);
+}
+
+#if GTEST_HAS_STD_UNIQUE_PTR_
+// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
+// functions.
+TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
+ const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
+ EXPECT_TRUE(a1.Perform(make_tuple()) == nullptr);
+
+ const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
+ EXPECT_TRUE(a2.Perform(make_tuple("foo")) == nullptr);
+}
+#endif // GTEST_HAS_STD_UNIQUE_PTR_
+
+// Tests that ReturnRef(v) works for reference types.
+TEST(ReturnRefTest, WorksForReference) {
+ const int n = 0;
+ const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
+
+ EXPECT_EQ(&n, &ret.Perform(make_tuple(true)));
+}
+
+// Tests that ReturnRef(v) is covariant.
+TEST(ReturnRefTest, IsCovariant) {
+ Base base;
+ Derived derived;
+ Action<Base&()> a = ReturnRef(base);
+ EXPECT_EQ(&base, &a.Perform(make_tuple()));
+
+ a = ReturnRef(derived);
+ EXPECT_EQ(&derived, &a.Perform(make_tuple()));
+}
+
+// Tests that ReturnRefOfCopy(v) works for reference types.
+TEST(ReturnRefOfCopyTest, WorksForReference) {
+ int n = 42;
+ const Action<const int&()> ret = ReturnRefOfCopy(n);
+
+ EXPECT_NE(&n, &ret.Perform(make_tuple()));
+ EXPECT_EQ(42, ret.Perform(make_tuple()));
+
+ n = 43;
+ EXPECT_NE(&n, &ret.Perform(make_tuple()));
+ EXPECT_EQ(42, ret.Perform(make_tuple()));
+}
+
+// Tests that ReturnRefOfCopy(v) is covariant.
+TEST(ReturnRefOfCopyTest, IsCovariant) {
+ Base base;
+ Derived derived;
+ Action<Base&()> a = ReturnRefOfCopy(base);
+ EXPECT_NE(&base, &a.Perform(make_tuple()));
+
+ a = ReturnRefOfCopy(derived);
+ EXPECT_NE(&derived, &a.Perform(make_tuple()));
+}
+
+// Tests that DoDefault() does the default action for the mock method.
+
+class MockClass {
+ public:
+ MockClass() {}
+
+ MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
+ MOCK_METHOD0(Foo, MyNonDefaultConstructible());
+#if GTEST_HAS_STD_UNIQUE_PTR_
+ MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
+ MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
+ MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
+#endif
+
+ private:
+ GTEST_DISALLOW_COPY_AND_ASSIGN_(MockClass);
+};
+
+// Tests that DoDefault() returns the built-in default value for the
+// return type by default.
+TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
+ MockClass mock;
+ EXPECT_CALL(mock, IntFunc(_))
+ .WillOnce(DoDefault());
+ EXPECT_EQ(0, mock.IntFunc(true));
+}
+
+// Tests that DoDefault() throws (when exceptions are enabled) or aborts
+// the process when there is no built-in default value for the return type.
+TEST(DoDefaultDeathTest, DiesForUnknowType) {
+ MockClass mock;
+ EXPECT_CALL(mock, Foo())
+ .WillRepeatedly(DoDefault());
+#if GTEST_HAS_EXCEPTIONS
+ EXPECT_ANY_THROW(mock.Foo());
+#else
+ EXPECT_DEATH_IF_SUPPORTED({
+ mock.Foo();
+ }, "");
+#endif
+}
+
+// Tests that using DoDefault() inside a composite action leads to a
+// run-time error.
+
+void VoidFunc(bool /* flag */) {}
+
+TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
+ MockClass mock;
+ EXPECT_CALL(mock, IntFunc(_))
+ .WillRepeatedly(DoAll(Invoke(VoidFunc),
+ DoDefault()));
+
+ // Ideally we should verify the error message as well. Sadly,
+ // EXPECT_DEATH() can only capture stderr, while Google Mock's
+ // errors are printed on stdout. Therefore we have to settle for
+ // not verifying the message.
+ EXPECT_DEATH_IF_SUPPORTED({
+ mock.IntFunc(true);
+ }, "");
+}
+
+// Tests that DoDefault() returns the default value set by
+// DefaultValue<T>::Set() when it's not overriden by an ON_CALL().
+TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
+ DefaultValue<int>::Set(1);
+ MockClass mock;
+ EXPECT_CALL(mock, IntFunc(_))
+ .WillOnce(DoDefault());
+ EXPECT_EQ(1, mock.IntFunc(false));
+ DefaultValue<int>::Clear();
+}
+
+// Tests that DoDefault() does the action specified by ON_CALL().
+TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
+ MockClass mock;
+ ON_CALL(mock, IntFunc(_))
+ .WillByDefault(Return(2));
+ EXPECT_CALL(mock, IntFunc(_))
+ .WillOnce(DoDefault());
+ EXPECT_EQ(2, mock.IntFunc(false));
+}
+
+// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
+TEST(DoDefaultTest, CannotBeUsedInOnCall) {
+ MockClass mock;
+ EXPECT_NONFATAL_FAILURE({ // NOLINT
+ ON_CALL(mock, IntFunc(_))
+ .WillByDefault(DoDefault());
+ }, "DoDefault() cannot be used in ON_CALL()");
+}
+
+// Tests that SetArgPointee<N>(v) sets the variable pointed to by
+// the N-th (0-based) argument to v.
+TEST(SetArgPointeeTest, SetsTheNthPointee) {
+ typedef void MyFunction(bool, int*, char*);
+ Action<MyFunction> a = SetArgPointee<1>(2);
+
+ int n = 0;
+ char ch = '\0';
+ a.Perform(make_tuple(true, &n, &ch));
+ EXPECT_EQ(2, n);
+ EXPECT_EQ('\0', ch);
+
+ a = SetArgPointee<2>('a');
+ n = 0;
+ ch = '\0';
+ a.Perform(make_tuple(true, &n, &ch));
+ EXPECT_EQ(0, n);
+ EXPECT_EQ('a', ch);
+}
+
+#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
+// Tests that SetArgPointee<N>() accepts a string literal.
+// GCC prior to v4.0 and the Symbian compiler do not support this.
+TEST(SetArgPointeeTest, AcceptsStringLiteral) {
+ typedef void MyFunction(std::string*, const char**);
+ Action<MyFunction> a = SetArgPointee<0>("hi");
+ std::string str;
+ const char* ptr = NULL;
+ a.Perform(make_tuple(&str, &ptr));
+ EXPECT_EQ("hi", str);
+ EXPECT_TRUE(ptr == NULL);
+
+ a = SetArgPointee<1>("world");
+ str = "";
+ a.Perform(make_tuple(&str, &ptr));
+ EXPECT_EQ("", str);
+ EXPECT_STREQ("world", ptr);
+}
+
+TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
+ typedef void MyFunction(const wchar_t**);
+ Action<MyFunction> a = SetArgPointee<0>(L"world");
+ const wchar_t* ptr = NULL;
+ a.Perform(make_tuple(&ptr));
+ EXPECT_STREQ(L"world", ptr);
+
+# if GTEST_HAS_STD_WSTRING
+
+ typedef void MyStringFunction(std::wstring*);
+ Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
+ std::wstring str = L"";
+ a2.Perform(make_tuple(&str));
+ EXPECT_EQ(L"world", str);
+
+# endif
+}
+#endif
+
+// Tests that SetArgPointee<N>() accepts a char pointer.
+TEST(SetArgPointeeTest, AcceptsCharPointer) {
+ typedef void MyFunction(bool, std::string*, const char**);
+ const char* const hi = "hi";
+ Action<MyFunction> a = SetArgPointee<1>(hi);
+ std::string str;
+ const char* ptr = NULL;
+ a.Perform(make_tuple(true, &str, &ptr));
+ EXPECT_EQ("hi", str);
+ EXPECT_TRUE(ptr == NULL);
+
+ char world_array[] = "world";
+ char* const world = world_array;
+ a = SetArgPointee<2>(world);
+ str = "";
+ a.Perform(make_tuple(true, &str, &ptr));
+ EXPECT_EQ("", str);
+ EXPECT_EQ(world, ptr);
+}
+
+TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
+ typedef void MyFunction(bool, const wchar_t**);
+ const wchar_t* const hi = L"hi";
+ Action<MyFunction> a = SetArgPointee<1>(hi);
+ const wchar_t* ptr = NULL;
+ a.Perform(make_tuple(true, &ptr));
+ EXPECT_EQ(hi, ptr);
+
+# if GTEST_HAS_STD_WSTRING
+
+ typedef void MyStringFunction(bool, std::wstring*);
+ wchar_t world_array[] = L"world";
+ wchar_t* const world = world_array;
+ Action<MyStringFunction> a2 = SetArgPointee<1>(world);
+ std::wstring str;
+ a2.Perform(make_tuple(true, &str));
+ EXPECT_EQ(world_array, str);
+# endif
+}
+
+#if GTEST_HAS_PROTOBUF_
+
+// Tests that SetArgPointee<N>(proto_buffer) sets the v1 protobuf
+// variable pointed to by the N-th (0-based) argument to proto_buffer.
+TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferType) {
+ TestMessage* const msg = new TestMessage;
+ msg->set_member("yes");
+ TestMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, TestMessage*)> a = SetArgPointee<1>(*msg);
+ // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer
+ // s.t. the action works even when the original proto_buffer has
+ // died. We ensure this behavior by deleting msg before using the
+ // action.
+ delete msg;
+
+ TestMessage dest;
+ EXPECT_FALSE(orig_msg.Equals(dest));
+ a.Perform(make_tuple(true, &dest));
+ EXPECT_TRUE(orig_msg.Equals(dest));
+}
+
+// Tests that SetArgPointee<N>(proto_buffer) sets the
+// ::ProtocolMessage variable pointed to by the N-th (0-based)
+// argument to proto_buffer.
+TEST(SetArgPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) {
+ TestMessage* const msg = new TestMessage;
+ msg->set_member("yes");
+ TestMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, ::ProtocolMessage*)> a = SetArgPointee<1>(*msg);
+ // SetArgPointee<N>(proto_buffer) makes a copy of proto_buffer
+ // s.t. the action works even when the original proto_buffer has
+ // died. We ensure this behavior by deleting msg before using the
+ // action.
+ delete msg;
+
+ TestMessage dest;
+ ::ProtocolMessage* const dest_base = &dest;
+ EXPECT_FALSE(orig_msg.Equals(dest));
+ a.Perform(make_tuple(true, dest_base));
+ EXPECT_TRUE(orig_msg.Equals(dest));
+}
+
+// Tests that SetArgPointee<N>(proto2_buffer) sets the v2
+// protobuf variable pointed to by the N-th (0-based) argument to
+// proto2_buffer.
+TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferType) {
+ using testing::internal::FooMessage;
+ FooMessage* const msg = new FooMessage;
+ msg->set_int_field(2);
+ msg->set_string_field("hi");
+ FooMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, FooMessage*)> a = SetArgPointee<1>(*msg);
+ // SetArgPointee<N>(proto2_buffer) makes a copy of
+ // proto2_buffer s.t. the action works even when the original
+ // proto2_buffer has died. We ensure this behavior by deleting msg
+ // before using the action.
+ delete msg;
+
+ FooMessage dest;
+ dest.set_int_field(0);
+ a.Perform(make_tuple(true, &dest));
+ EXPECT_EQ(2, dest.int_field());
+ EXPECT_EQ("hi", dest.string_field());
+}
+
+// Tests that SetArgPointee<N>(proto2_buffer) sets the
+// proto2::Message variable pointed to by the N-th (0-based) argument
+// to proto2_buffer.
+TEST(SetArgPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) {
+ using testing::internal::FooMessage;
+ FooMessage* const msg = new FooMessage;
+ msg->set_int_field(2);
+ msg->set_string_field("hi");
+ FooMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, ::proto2::Message*)> a = SetArgPointee<1>(*msg);
+ // SetArgPointee<N>(proto2_buffer) makes a copy of
+ // proto2_buffer s.t. the action works even when the original
+ // proto2_buffer has died. We ensure this behavior by deleting msg
+ // before using the action.
+ delete msg;
+
+ FooMessage dest;
+ dest.set_int_field(0);
+ ::proto2::Message* const dest_base = &dest;
+ a.Perform(make_tuple(true, dest_base));
+ EXPECT_EQ(2, dest.int_field());
+ EXPECT_EQ("hi", dest.string_field());
+}
+
+#endif // GTEST_HAS_PROTOBUF_
+
+// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
+// the N-th (0-based) argument to v.
+TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
+ typedef void MyFunction(bool, int*, char*);
+ Action<MyFunction> a = SetArgumentPointee<1>(2);
+
+ int n = 0;
+ char ch = '\0';
+ a.Perform(make_tuple(true, &n, &ch));
+ EXPECT_EQ(2, n);
+ EXPECT_EQ('\0', ch);
+
+ a = SetArgumentPointee<2>('a');
+ n = 0;
+ ch = '\0';
+ a.Perform(make_tuple(true, &n, &ch));
+ EXPECT_EQ(0, n);
+ EXPECT_EQ('a', ch);
+}
+
+#if GTEST_HAS_PROTOBUF_
+
+// Tests that SetArgumentPointee<N>(proto_buffer) sets the v1 protobuf
+// variable pointed to by the N-th (0-based) argument to proto_buffer.
+TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferType) {
+ TestMessage* const msg = new TestMessage;
+ msg->set_member("yes");
+ TestMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, TestMessage*)> a = SetArgumentPointee<1>(*msg);
+ // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer
+ // s.t. the action works even when the original proto_buffer has
+ // died. We ensure this behavior by deleting msg before using the
+ // action.
+ delete msg;
+
+ TestMessage dest;
+ EXPECT_FALSE(orig_msg.Equals(dest));
+ a.Perform(make_tuple(true, &dest));
+ EXPECT_TRUE(orig_msg.Equals(dest));
+}
+
+// Tests that SetArgumentPointee<N>(proto_buffer) sets the
+// ::ProtocolMessage variable pointed to by the N-th (0-based)
+// argument to proto_buffer.
+TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProtoBufferBaseType) {
+ TestMessage* const msg = new TestMessage;
+ msg->set_member("yes");
+ TestMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, ::ProtocolMessage*)> a = SetArgumentPointee<1>(*msg);
+ // SetArgumentPointee<N>(proto_buffer) makes a copy of proto_buffer
+ // s.t. the action works even when the original proto_buffer has
+ // died. We ensure this behavior by deleting msg before using the
+ // action.
+ delete msg;
+
+ TestMessage dest;
+ ::ProtocolMessage* const dest_base = &dest;
+ EXPECT_FALSE(orig_msg.Equals(dest));
+ a.Perform(make_tuple(true, dest_base));
+ EXPECT_TRUE(orig_msg.Equals(dest));
+}
+
+// Tests that SetArgumentPointee<N>(proto2_buffer) sets the v2
+// protobuf variable pointed to by the N-th (0-based) argument to
+// proto2_buffer.
+TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferType) {
+ using testing::internal::FooMessage;
+ FooMessage* const msg = new FooMessage;
+ msg->set_int_field(2);
+ msg->set_string_field("hi");
+ FooMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, FooMessage*)> a = SetArgumentPointee<1>(*msg);
+ // SetArgumentPointee<N>(proto2_buffer) makes a copy of
+ // proto2_buffer s.t. the action works even when the original
+ // proto2_buffer has died. We ensure this behavior by deleting msg
+ // before using the action.
+ delete msg;
+
+ FooMessage dest;
+ dest.set_int_field(0);
+ a.Perform(make_tuple(true, &dest));
+ EXPECT_EQ(2, dest.int_field());
+ EXPECT_EQ("hi", dest.string_field());
+}
+
+// Tests that SetArgumentPointee<N>(proto2_buffer) sets the
+// proto2::Message variable pointed to by the N-th (0-based) argument
+// to proto2_buffer.
+TEST(SetArgumentPointeeTest, SetsTheNthPointeeOfProto2BufferBaseType) {
+ using testing::internal::FooMessage;
+ FooMessage* const msg = new FooMessage;
+ msg->set_int_field(2);
+ msg->set_string_field("hi");
+ FooMessage orig_msg;
+ orig_msg.CopyFrom(*msg);
+
+ Action<void(bool, ::proto2::Message*)> a = SetArgumentPointee<1>(*msg);
+ // SetArgumentPointee<N>(proto2_buffer) makes a copy of
+ // proto2_buffer s.t. the action works even when the original
+ // proto2_buffer has died. We ensure this behavior by deleting msg
+ // before using the action.
+ delete msg;
+
+ FooMessage dest;
+ dest.set_int_field(0);
+ ::proto2::Message* const dest_base = &dest;
+ a.Perform(make_tuple(true, dest_base));
+ EXPECT_EQ(2, dest.int_field());
+ EXPECT_EQ("hi", dest.string_field());
+}
+
+#endif // GTEST_HAS_PROTOBUF_
+
+// Sample functions and functors for testing Invoke() and etc.
+int Nullary() { return 1; }
+
+class NullaryFunctor {
+ public:
+ int operator()() { return 2; }
+};
+
+bool g_done = false;
+void VoidNullary() { g_done = true; }
+
+class VoidNullaryFunctor {
+ public:
+ void operator()() { g_done = true; }
+};
+
+class Foo {
+ public:
+ Foo() : value_(123) {}
+
+ int Nullary() const { return value_; }
+
+ private:
+ int value_;
+};
+
+// Tests InvokeWithoutArgs(function).
+TEST(InvokeWithoutArgsTest, Function) {
+ // As an action that takes one argument.
+ Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
+ EXPECT_EQ(1, a.Perform(make_tuple(2)));
+
+ // As an action that takes two arguments.
+ Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
+ EXPECT_EQ(1, a2.Perform(make_tuple(2, 3.5)));
+
+ // As an action that returns void.
+ Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
+ g_done = false;
+ a3.Perform(make_tuple(1));
+ EXPECT_TRUE(g_done);
+}
+
+// Tests InvokeWithoutArgs(functor).
+TEST(InvokeWithoutArgsTest, Functor) {
+ // As an action that takes no argument.
+ Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
+ EXPECT_EQ(2, a.Perform(make_tuple()));
+
+ // As an action that takes three arguments.
+ Action<int(int, double, char)> a2 = // NOLINT
+ InvokeWithoutArgs(NullaryFunctor());
+ EXPECT_EQ(2, a2.Perform(make_tuple(3, 3.5, 'a')));
+
+ // As an action that returns void.
+ Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
+ g_done = false;
+ a3.Perform(make_tuple());
+ EXPECT_TRUE(g_done);
+}
+
+// Tests InvokeWithoutArgs(obj_ptr, method).
+TEST(InvokeWithoutArgsTest, Method) {
+ Foo foo;
+ Action<int(bool, char)> a = // NOLINT
+ InvokeWithoutArgs(&foo, &Foo::Nullary);
+ EXPECT_EQ(123, a.Perform(make_tuple(true, 'a')));
+}
+
+// Tests using IgnoreResult() on a polymorphic action.
+TEST(IgnoreResultTest, PolymorphicAction) {
+ Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
+ a.Perform(make_tuple(1));
+}
+
+// Tests using IgnoreResult() on a monomorphic action.
+
+int ReturnOne() {
+ g_done = true;
+ return 1;
+}
+
+TEST(IgnoreResultTest, MonomorphicAction) {
+ g_done = false;
+ Action<void()> a = IgnoreResult(Invoke(ReturnOne));
+ a.Perform(make_tuple());
+ EXPECT_TRUE(g_done);
+}
+
+// Tests using IgnoreResult() on an action that returns a class type.
+
+MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
+ g_done = true;
+ return MyNonDefaultConstructible(42);
+}
+
+TEST(IgnoreResultTest, ActionReturningClass) {
+ g_done = false;
+ Action<void(int)> a =
+ IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
+ a.Perform(make_tuple(2));
+ EXPECT_TRUE(g_done);
+}
+
+TEST(AssignTest, Int) {
+ int x = 0;
+ Action<void(int)> a = Assign(&x, 5);
+ a.Perform(make_tuple(0));
+ EXPECT_EQ(5, x);
+}
+
+TEST(AssignTest, String) {
+ ::std::string x;
+ Action<void(void)> a = Assign(&x, "Hello, world");
+ a.Perform(make_tuple());
+ EXPECT_EQ("Hello, world", x);
+}
+
+TEST(AssignTest, CompatibleTypes) {
+ double x = 0;
+ Action<void(int)> a = Assign(&x, 5);
+ a.Perform(make_tuple(0));
+ EXPECT_DOUBLE_EQ(5, x);
+}
+
+#if !GTEST_OS_WINDOWS_MOBILE
+
+class SetErrnoAndReturnTest : public testing::Test {
+ protected:
+ virtual void SetUp() { errno = 0; }
+ virtual void TearDown() { errno = 0; }
+};
+
+TEST_F(SetErrnoAndReturnTest, Int) {
+ Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
+ EXPECT_EQ(-5, a.Perform(make_tuple()));
+ EXPECT_EQ(ENOTTY, errno);
+}
+
+TEST_F(SetErrnoAndReturnTest, Ptr) {
+ int x;
+ Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
+ EXPECT_EQ(&x, a.Perform(make_tuple()));
+ EXPECT_EQ(ENOTTY, errno);
+}
+
+TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
+ Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
+ EXPECT_DOUBLE_EQ(5.0, a.Perform(make_tuple()));
+ EXPECT_EQ(EINVAL, errno);
+}
+
+#endif // !GTEST_OS_WINDOWS_MOBILE
+
+// Tests ByRef().
+
+// Tests that ReferenceWrapper<T> is copyable.
+TEST(ByRefTest, IsCopyable) {
+ const std::string s1 = "Hi";
+ const std::string s2 = "Hello";
+
+ ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper =
+ ByRef(s1);
+ const std::string& r1 = ref_wrapper;
+ EXPECT_EQ(&s1, &r1);
+
+ // Assigns a new value to ref_wrapper.
+ ref_wrapper = ByRef(s2);
+ const std::string& r2 = ref_wrapper;
+ EXPECT_EQ(&s2, &r2);
+
+ ::testing::internal::ReferenceWrapper<const std::string> ref_wrapper1 =
+ ByRef(s1);
+ // Copies ref_wrapper1 to ref_wrapper.
+ ref_wrapper = ref_wrapper1;
+ const std::string& r3 = ref_wrapper;
+ EXPECT_EQ(&s1, &r3);
+}
+
+// Tests using ByRef() on a const value.
+TEST(ByRefTest, ConstValue) {
+ const int n = 0;
+ // int& ref = ByRef(n); // This shouldn't compile - we have a
+ // negative compilation test to catch it.
+ const int& const_ref = ByRef(n);
+ EXPECT_EQ(&n, &const_ref);
+}
+
+// Tests using ByRef() on a non-const value.
+TEST(ByRefTest, NonConstValue) {
+ int n = 0;
+
+ // ByRef(n) can be used as either an int&,
+ int& ref = ByRef(n);
+ EXPECT_EQ(&n, &ref);
+
+ // or a const int&.
+ const int& const_ref = ByRef(n);
+ EXPECT_EQ(&n, &const_ref);
+}
+
+// Tests explicitly specifying the type when using ByRef().
+TEST(ByRefTest, ExplicitType) {
+ int n = 0;
+ const int& r1 = ByRef<const int>(n);
+ EXPECT_EQ(&n, &r1);
+
+ // ByRef<char>(n); // This shouldn't compile - we have a negative
+ // compilation test to catch it.
+
+ Derived d;
+ Derived& r2 = ByRef<Derived>(d);
+ EXPECT_EQ(&d, &r2);
+
+ const Derived& r3 = ByRef<const Derived>(d);
+ EXPECT_EQ(&d, &r3);
+
+ Base& r4 = ByRef<Base>(d);
+ EXPECT_EQ(&d, &r4);
+
+ const Base& r5 = ByRef<const Base>(d);
+ EXPECT_EQ(&d, &r5);
+
+ // The following shouldn't compile - we have a negative compilation
+ // test for it.
+ //
+ // Base b;
+ // ByRef<Derived>(b);
+}
+
+// Tests that Google Mock prints expression ByRef(x) as a reference to x.
+TEST(ByRefTest, PrintsCorrectly) {
+ int n = 42;
+ ::std::stringstream expected, actual;
+ testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
+ testing::internal::UniversalPrint(ByRef(n), &actual);
+ EXPECT_EQ(expected.str(), actual.str());
+}
+
+#if GTEST_HAS_STD_UNIQUE_PTR_
+
+std::unique_ptr<int> UniquePtrSource() {
+ return std::unique_ptr<int>(new int(19));
+}
+
+std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
+ std::vector<std::unique_ptr<int>> out;
+ out.emplace_back(new int(7));
+ return out;
+}
+
+TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
+ MockClass mock;
+ std::unique_ptr<int> i(new int(19));
+ EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
+ EXPECT_CALL(mock, MakeVectorUnique())
+ .WillOnce(Return(ByMove(VectorUniquePtrSource())));
+ Derived* d = new Derived;
+ EXPECT_CALL(mock, MakeUniqueBase())
+ .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
+
+ std::unique_ptr<int> result1 = mock.MakeUnique();
+ EXPECT_EQ(19, *result1);
+
+ std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
+ EXPECT_EQ(1u, vresult.size());
+ EXPECT_NE(nullptr, vresult[0]);
+ EXPECT_EQ(7, *vresult[0]);
+
+ std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
+ EXPECT_EQ(d, result2.get());
+}
+
+TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
+ testing::MockFunction<void()> mock_function;
+ MockClass mock;
+ std::unique_ptr<int> i(new int(19));
+ EXPECT_CALL(mock_function, Call());
+ EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll(
+ InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call),
+ Return(ByMove(std::move(i)))));
+
+ std::unique_ptr<int> result1 = mock.MakeUnique();
+ EXPECT_EQ(19, *result1);
+}
+
+TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
+ MockClass mock;
+
+ // Check default value
+ DefaultValue<std::unique_ptr<int>>::SetFactory([] {
+ return std::unique_ptr<int>(new int(42));
+ });
+ EXPECT_EQ(42, *mock.MakeUnique());
+
+ EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
+ EXPECT_CALL(mock, MakeVectorUnique())
+ .WillRepeatedly(Invoke(VectorUniquePtrSource));
+ std::unique_ptr<int> result1 = mock.MakeUnique();
+ EXPECT_EQ(19, *result1);
+ std::unique_ptr<int> result2 = mock.MakeUnique();
+ EXPECT_EQ(19, *result2);
+ EXPECT_NE(result1, result2);
+
+ std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
+ EXPECT_EQ(1u, vresult.size());
+ EXPECT_NE(nullptr, vresult[0]);
+ EXPECT_EQ(7, *vresult[0]);
+}
+
+#endif // GTEST_HAS_STD_UNIQUE_PTR_
+
+} // Unnamed namespace