diff options
Diffstat (limited to 'src/rocksdb/table/block.cc')
-rw-r--r-- | src/rocksdb/table/block.cc | 960 |
1 files changed, 960 insertions, 0 deletions
diff --git a/src/rocksdb/table/block.cc b/src/rocksdb/table/block.cc new file mode 100644 index 00000000..7c83ebb6 --- /dev/null +++ b/src/rocksdb/table/block.cc @@ -0,0 +1,960 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. +// +// Decodes the blocks generated by block_builder.cc. + +#include "table/block.h" +#include <algorithm> +#include <string> +#include <unordered_map> +#include <vector> + +#include "monitoring/perf_context_imp.h" +#include "port/port.h" +#include "port/stack_trace.h" +#include "rocksdb/comparator.h" +#include "table/block_prefix_index.h" +#include "table/data_block_footer.h" +#include "table/format.h" +#include "util/coding.h" +#include "util/logging.h" + +namespace rocksdb { + +// Helper routine: decode the next block entry starting at "p", +// storing the number of shared key bytes, non_shared key bytes, +// and the length of the value in "*shared", "*non_shared", and +// "*value_length", respectively. Will not derefence past "limit". +// +// If any errors are detected, returns nullptr. Otherwise, returns a +// pointer to the key delta (just past the three decoded values). +struct DecodeEntry { + inline const char* operator()(const char* p, const char* limit, + uint32_t* shared, uint32_t* non_shared, + uint32_t* value_length) { + // We need 2 bytes for shared and non_shared size. We also need one more + // byte either for value size or the actual value in case of value delta + // encoding. + assert(limit - p >= 3); + *shared = reinterpret_cast<const unsigned char*>(p)[0]; + *non_shared = reinterpret_cast<const unsigned char*>(p)[1]; + *value_length = reinterpret_cast<const unsigned char*>(p)[2]; + if ((*shared | *non_shared | *value_length) < 128) { + // Fast path: all three values are encoded in one byte each + p += 3; + } else { + if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr; + if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr; + if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) { + return nullptr; + } + } + + // Using an assert in place of "return null" since we should not pay the + // cost of checking for corruption on every single key decoding + assert(!(static_cast<uint32_t>(limit - p) < (*non_shared + *value_length))); + return p; + } +}; + +// Helper routine: similar to DecodeEntry but does not have assertions. +// Instead, returns nullptr so that caller can detect and report failure. +struct CheckAndDecodeEntry { + inline const char* operator()(const char* p, const char* limit, + uint32_t* shared, uint32_t* non_shared, + uint32_t* value_length) { + // We need 2 bytes for shared and non_shared size. We also need one more + // byte either for value size or the actual value in case of value delta + // encoding. + if (limit - p < 3) { + return nullptr; + } + *shared = reinterpret_cast<const unsigned char*>(p)[0]; + *non_shared = reinterpret_cast<const unsigned char*>(p)[1]; + *value_length = reinterpret_cast<const unsigned char*>(p)[2]; + if ((*shared | *non_shared | *value_length) < 128) { + // Fast path: all three values are encoded in one byte each + p += 3; + } else { + if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr; + if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr; + if ((p = GetVarint32Ptr(p, limit, value_length)) == nullptr) { + return nullptr; + } + } + + if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) { + return nullptr; + } + return p; + } +}; + +struct DecodeKey { + inline const char* operator()(const char* p, const char* limit, + uint32_t* shared, uint32_t* non_shared) { + uint32_t value_length; + return DecodeEntry()(p, limit, shared, non_shared, &value_length); + } +}; + +// In format_version 4, which is used by index blocks, the value size is not +// encoded before the entry, as the value is known to be the handle with the +// known size. +struct DecodeKeyV4 { + inline const char* operator()(const char* p, const char* limit, + uint32_t* shared, uint32_t* non_shared) { + // We need 2 bytes for shared and non_shared size. We also need one more + // byte either for value size or the actual value in case of value delta + // encoding. + if (limit - p < 3) return nullptr; + *shared = reinterpret_cast<const unsigned char*>(p)[0]; + *non_shared = reinterpret_cast<const unsigned char*>(p)[1]; + if ((*shared | *non_shared) < 128) { + // Fast path: all three values are encoded in one byte each + p += 2; + } else { + if ((p = GetVarint32Ptr(p, limit, shared)) == nullptr) return nullptr; + if ((p = GetVarint32Ptr(p, limit, non_shared)) == nullptr) return nullptr; + } + return p; + } +}; + +void DataBlockIter::Next() { + assert(Valid()); + ParseNextDataKey<DecodeEntry>(); +} + +void DataBlockIter::NextOrReport() { + assert(Valid()); + ParseNextDataKey<CheckAndDecodeEntry>(); +} + +void IndexBlockIter::Next() { + assert(Valid()); + ParseNextIndexKey(); +} + +void IndexBlockIter::Prev() { + assert(Valid()); + // Scan backwards to a restart point before current_ + const uint32_t original = current_; + while (GetRestartPoint(restart_index_) >= original) { + if (restart_index_ == 0) { + // No more entries + current_ = restarts_; + restart_index_ = num_restarts_; + return; + } + restart_index_--; + } + SeekToRestartPoint(restart_index_); + do { + if (!ParseNextIndexKey()) { + break; + } + // Loop until end of current entry hits the start of original entry + } while (NextEntryOffset() < original); +} + +// Similar to IndexBlockIter::Prev but also caches the prev entries +void DataBlockIter::Prev() { + assert(Valid()); + + assert(prev_entries_idx_ == -1 || + static_cast<size_t>(prev_entries_idx_) < prev_entries_.size()); + // Check if we can use cached prev_entries_ + if (prev_entries_idx_ > 0 && + prev_entries_[prev_entries_idx_].offset == current_) { + // Read cached CachedPrevEntry + prev_entries_idx_--; + const CachedPrevEntry& current_prev_entry = + prev_entries_[prev_entries_idx_]; + + const char* key_ptr = nullptr; + if (current_prev_entry.key_ptr != nullptr) { + // The key is not delta encoded and stored in the data block + key_ptr = current_prev_entry.key_ptr; + key_pinned_ = true; + } else { + // The key is delta encoded and stored in prev_entries_keys_buff_ + key_ptr = prev_entries_keys_buff_.data() + current_prev_entry.key_offset; + key_pinned_ = false; + } + const Slice current_key(key_ptr, current_prev_entry.key_size); + + current_ = current_prev_entry.offset; + key_.SetKey(current_key, false /* copy */); + value_ = current_prev_entry.value; + + return; + } + + // Clear prev entries cache + prev_entries_idx_ = -1; + prev_entries_.clear(); + prev_entries_keys_buff_.clear(); + + // Scan backwards to a restart point before current_ + const uint32_t original = current_; + while (GetRestartPoint(restart_index_) >= original) { + if (restart_index_ == 0) { + // No more entries + current_ = restarts_; + restart_index_ = num_restarts_; + return; + } + restart_index_--; + } + + SeekToRestartPoint(restart_index_); + + do { + if (!ParseNextDataKey<DecodeEntry>()) { + break; + } + Slice current_key = key(); + + if (key_.IsKeyPinned()) { + // The key is not delta encoded + prev_entries_.emplace_back(current_, current_key.data(), 0, + current_key.size(), value()); + } else { + // The key is delta encoded, cache decoded key in buffer + size_t new_key_offset = prev_entries_keys_buff_.size(); + prev_entries_keys_buff_.append(current_key.data(), current_key.size()); + + prev_entries_.emplace_back(current_, nullptr, new_key_offset, + current_key.size(), value()); + } + // Loop until end of current entry hits the start of original entry + } while (NextEntryOffset() < original); + prev_entries_idx_ = static_cast<int32_t>(prev_entries_.size()) - 1; +} + +void DataBlockIter::Seek(const Slice& target) { + Slice seek_key = target; + PERF_TIMER_GUARD(block_seek_nanos); + if (data_ == nullptr) { // Not init yet + return; + } + uint32_t index = 0; + bool ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index, + comparator_); + + if (!ok) { + return; + } + SeekToRestartPoint(index); + // Linear search (within restart block) for first key >= target + + while (true) { + if (!ParseNextDataKey<DecodeEntry>() || Compare(key_, seek_key) >= 0) { + return; + } + } +} + +// Optimized Seek for point lookup for an internal key `target` +// target = "seek_user_key @ type | seqno". +// +// For any type other than kTypeValue, kTypeDeletion, kTypeSingleDeletion, +// or kTypeBlobIndex, this function behaves identically as Seek(). +// +// For any type in kTypeValue, kTypeDeletion, kTypeSingleDeletion, +// or kTypeBlobIndex: +// +// If the return value is FALSE, iter location is undefined, and it means: +// 1) there is no key in this block falling into the range: +// ["seek_user_key @ type | seqno", "seek_user_key @ kTypeDeletion | 0"], +// inclusive; AND +// 2) the last key of this block has a greater user_key from seek_user_key +// +// If the return value is TRUE, iter location has two possibilies: +// 1) If iter is valid, it is set to a location as if set by BinarySeek. In +// this case, it points to the first key_ with a larger user_key or a +// matching user_key with a seqno no greater than the seeking seqno. +// 2) If the iter is invalid, it means that either all the user_key is less +// than the seek_user_key, or the block ends with a matching user_key but +// with a smaller [ type | seqno ] (i.e. a larger seqno, or the same seqno +// but larger type). +bool DataBlockIter::SeekForGetImpl(const Slice& target) { + Slice user_key = ExtractUserKey(target); + uint32_t map_offset = restarts_ + num_restarts_ * sizeof(uint32_t); + uint8_t entry = data_block_hash_index_->Lookup(data_, map_offset, user_key); + + if (entry == kCollision) { + // HashSeek not effective, falling back + Seek(target); + return true; + } + + if (entry == kNoEntry) { + // Even if we cannot find the user_key in this block, the result may + // exist in the next block. Consider this exmpale: + // + // Block N: [aab@100, ... , app@120] + // bounary key: axy@50 (we make minimal assumption about a boundary key) + // Block N+1: [axy@10, ... ] + // + // If seek_key = axy@60, the search will starts from Block N. + // Even if the user_key is not found in the hash map, the caller still + // have to conntinue searching the next block. + // + // In this case, we pretend the key is the the last restart interval. + // The while-loop below will search the last restart interval for the + // key. It will stop at the first key that is larger than the seek_key, + // or to the end of the block if no one is larger. + entry = static_cast<uint8_t>(num_restarts_ - 1); + } + + uint32_t restart_index = entry; + + // check if the key is in the restart_interval + assert(restart_index < num_restarts_); + SeekToRestartPoint(restart_index); + + const char* limit = nullptr; + if (restart_index_ + 1 < num_restarts_) { + limit = data_ + GetRestartPoint(restart_index_ + 1); + } else { + limit = data_ + restarts_; + } + + while (true) { + // Here we only linear seek the target key inside the restart interval. + // If a key does not exist inside a restart interval, we avoid + // further searching the block content accross restart interval boundary. + // + // TODO(fwu): check the left and write boundary of the restart interval + // to avoid linear seek a target key that is out of range. + if (!ParseNextDataKey<DecodeEntry>(limit) || Compare(key_, target) >= 0) { + // we stop at the first potential matching user key. + break; + } + } + + if (current_ == restarts_) { + // Search reaches to the end of the block. There are three possibilites: + // 1) there is only one user_key match in the block (otherwise collsion). + // the matching user_key resides in the last restart interval, and it + // is the last key of the restart interval and of the block as well. + // ParseNextDataKey() skiped it as its [ type | seqno ] is smaller. + // + // 2) The seek_key is not found in the HashIndex Lookup(), i.e. kNoEntry, + // AND all existing user_keys in the restart interval are smaller than + // seek_user_key. + // + // 3) The seek_key is a false positive and happens to be hashed to the + // last restart interval, AND all existing user_keys in the restart + // interval are smaller than seek_user_key. + // + // The result may exist in the next block each case, so we return true. + return true; + } + + if (user_comparator_->Compare(key_.GetUserKey(), user_key) != 0) { + // the key is not in this block and cannot be at the next block either. + return false; + } + + // Here we are conservative and only support a limited set of cases + ValueType value_type = ExtractValueType(key_.GetKey()); + if (value_type != ValueType::kTypeValue && + value_type != ValueType::kTypeDeletion && + value_type != ValueType::kTypeSingleDeletion && + value_type != ValueType::kTypeBlobIndex) { + Seek(target); + return true; + } + + // Result found, and the iter is correctly set. + return true; +} + +void IndexBlockIter::Seek(const Slice& target) { + Slice seek_key = target; + if (!key_includes_seq_) { + seek_key = ExtractUserKey(target); + } + PERF_TIMER_GUARD(block_seek_nanos); + if (data_ == nullptr) { // Not init yet + return; + } + uint32_t index = 0; + bool ok = false; + if (prefix_index_) { + ok = PrefixSeek(target, &index); + } else if (value_delta_encoded_) { + ok = BinarySeek<DecodeKeyV4>(seek_key, 0, num_restarts_ - 1, &index, + comparator_); + } else { + ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index, + comparator_); + } + + if (!ok) { + return; + } + SeekToRestartPoint(index); + // Linear search (within restart block) for first key >= target + + while (true) { + if (!ParseNextIndexKey() || Compare(key_, seek_key) >= 0) { + return; + } + } +} + +void DataBlockIter::SeekForPrev(const Slice& target) { + PERF_TIMER_GUARD(block_seek_nanos); + Slice seek_key = target; + if (data_ == nullptr) { // Not init yet + return; + } + uint32_t index = 0; + bool ok = BinarySeek<DecodeKey>(seek_key, 0, num_restarts_ - 1, &index, + comparator_); + + if (!ok) { + return; + } + SeekToRestartPoint(index); + // Linear search (within restart block) for first key >= seek_key + + while (ParseNextDataKey<DecodeEntry>() && Compare(key_, seek_key) < 0) { + } + if (!Valid()) { + SeekToLast(); + } else { + while (Valid() && Compare(key_, seek_key) > 0) { + Prev(); + } + } +} + +void DataBlockIter::SeekToFirst() { + if (data_ == nullptr) { // Not init yet + return; + } + SeekToRestartPoint(0); + ParseNextDataKey<DecodeEntry>(); +} + +void DataBlockIter::SeekToFirstOrReport() { + if (data_ == nullptr) { // Not init yet + return; + } + SeekToRestartPoint(0); + ParseNextDataKey<CheckAndDecodeEntry>(); +} + +void IndexBlockIter::SeekToFirst() { + if (data_ == nullptr) { // Not init yet + return; + } + SeekToRestartPoint(0); + ParseNextIndexKey(); +} + +void DataBlockIter::SeekToLast() { + if (data_ == nullptr) { // Not init yet + return; + } + SeekToRestartPoint(num_restarts_ - 1); + while (ParseNextDataKey<DecodeEntry>() && NextEntryOffset() < restarts_) { + // Keep skipping + } +} + +void IndexBlockIter::SeekToLast() { + if (data_ == nullptr) { // Not init yet + return; + } + SeekToRestartPoint(num_restarts_ - 1); + while (ParseNextIndexKey() && NextEntryOffset() < restarts_) { + // Keep skipping + } +} + +template <class TValue> +void BlockIter<TValue>::CorruptionError() { + current_ = restarts_; + restart_index_ = num_restarts_; + status_ = Status::Corruption("bad entry in block"); + key_.Clear(); + value_.clear(); +} + +template <typename DecodeEntryFunc> +bool DataBlockIter::ParseNextDataKey(const char* limit) { + current_ = NextEntryOffset(); + const char* p = data_ + current_; + if (!limit) { + limit = data_ + restarts_; // Restarts come right after data + } + + if (p >= limit) { + // No more entries to return. Mark as invalid. + current_ = restarts_; + restart_index_ = num_restarts_; + return false; + } + + // Decode next entry + uint32_t shared, non_shared, value_length; + p = DecodeEntryFunc()(p, limit, &shared, &non_shared, &value_length); + if (p == nullptr || key_.Size() < shared) { + CorruptionError(); + return false; + } else { + if (shared == 0) { + // If this key dont share any bytes with prev key then we dont need + // to decode it and can use it's address in the block directly. + key_.SetKey(Slice(p, non_shared), false /* copy */); + key_pinned_ = true; + } else { + // This key share `shared` bytes with prev key, we need to decode it + key_.TrimAppend(shared, p, non_shared); + key_pinned_ = false; + } + + if (global_seqno_ != kDisableGlobalSequenceNumber) { + // If we are reading a file with a global sequence number we should + // expect that all encoded sequence numbers are zeros and any value + // type is kTypeValue, kTypeMerge, kTypeDeletion, or kTypeRangeDeletion. + assert(GetInternalKeySeqno(key_.GetInternalKey()) == 0); + + ValueType value_type = ExtractValueType(key_.GetKey()); + assert(value_type == ValueType::kTypeValue || + value_type == ValueType::kTypeMerge || + value_type == ValueType::kTypeDeletion || + value_type == ValueType::kTypeRangeDeletion); + + if (key_pinned_) { + // TODO(tec): Investigate updating the seqno in the loaded block + // directly instead of doing a copy and update. + + // We cannot use the key address in the block directly because + // we have a global_seqno_ that will overwrite the encoded one. + key_.OwnKey(); + key_pinned_ = false; + } + + key_.UpdateInternalKey(global_seqno_, value_type); + } + + value_ = Slice(p + non_shared, value_length); + if (shared == 0) { + while (restart_index_ + 1 < num_restarts_ && + GetRestartPoint(restart_index_ + 1) < current_) { + ++restart_index_; + } + } + // else we are in the middle of a restart interval and the restart_index_ + // thus has not changed + return true; + } +} + +bool IndexBlockIter::ParseNextIndexKey() { + current_ = NextEntryOffset(); + const char* p = data_ + current_; + const char* limit = data_ + restarts_; // Restarts come right after data + if (p >= limit) { + // No more entries to return. Mark as invalid. + current_ = restarts_; + restart_index_ = num_restarts_; + return false; + } + + // Decode next entry + uint32_t shared, non_shared, value_length; + if (value_delta_encoded_) { + p = DecodeKeyV4()(p, limit, &shared, &non_shared); + value_length = 0; + } else { + p = DecodeEntry()(p, limit, &shared, &non_shared, &value_length); + } + if (p == nullptr || key_.Size() < shared) { + CorruptionError(); + return false; + } + if (shared == 0) { + // If this key dont share any bytes with prev key then we dont need + // to decode it and can use it's address in the block directly. + key_.SetKey(Slice(p, non_shared), false /* copy */); + key_pinned_ = true; + } else { + // This key share `shared` bytes with prev key, we need to decode it + key_.TrimAppend(shared, p, non_shared); + key_pinned_ = false; + } + value_ = Slice(p + non_shared, value_length); + if (shared == 0) { + while (restart_index_ + 1 < num_restarts_ && + GetRestartPoint(restart_index_ + 1) < current_) { + ++restart_index_; + } + } + // else we are in the middle of a restart interval and the restart_index_ + // thus has not changed + if (value_delta_encoded_) { + assert(value_length == 0); + DecodeCurrentValue(shared); + } + return true; +} + +// The format: +// restart_point 0: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz) +// restart_point 1: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz) +// ... +// restart_point n-1: k, v (off, sz), k, v (delta-sz), ..., k, v (delta-sz) +// where, k is key, v is value, and its encoding is in parenthesis. +// The format of each key is (shared_size, non_shared_size, shared, non_shared) +// The format of each value, i.e., block hanlde, is (offset, size) whenever the +// shared_size is 0, which included the first entry in each restart point. +// Otherwise the format is delta-size = block handle size - size of last block +// handle. +void IndexBlockIter::DecodeCurrentValue(uint32_t shared) { + assert(value_delta_encoded_); + const char* limit = data_ + restarts_; + if (shared == 0) { + uint64_t o, s; + const char* newp = GetVarint64Ptr(value_.data(), limit, &o); + assert(newp); + newp = GetVarint64Ptr(newp, limit, &s); + assert(newp); + decoded_value_ = BlockHandle(o, s); + value_ = Slice(value_.data(), newp - value_.data()); + } else { + uint64_t next_value_base = + decoded_value_.offset() + decoded_value_.size() + kBlockTrailerSize; + int64_t delta; + const char* newp = GetVarsignedint64Ptr(value_.data(), limit, &delta); + decoded_value_ = + BlockHandle(next_value_base, decoded_value_.size() + delta); + value_ = Slice(value_.data(), newp - value_.data()); + } +} + +// Binary search in restart array to find the first restart point that +// is either the last restart point with a key less than target, +// which means the key of next restart point is larger than target, or +// the first restart point with a key = target +template <class TValue> +template <typename DecodeKeyFunc> +bool BlockIter<TValue>::BinarySeek(const Slice& target, uint32_t left, + uint32_t right, uint32_t* index, + const Comparator* comp) { + assert(left <= right); + + while (left < right) { + uint32_t mid = (left + right + 1) / 2; + uint32_t region_offset = GetRestartPoint(mid); + uint32_t shared, non_shared; + const char* key_ptr = DecodeKeyFunc()( + data_ + region_offset, data_ + restarts_, &shared, &non_shared); + if (key_ptr == nullptr || (shared != 0)) { + CorruptionError(); + return false; + } + Slice mid_key(key_ptr, non_shared); + int cmp = comp->Compare(mid_key, target); + if (cmp < 0) { + // Key at "mid" is smaller than "target". Therefore all + // blocks before "mid" are uninteresting. + left = mid; + } else if (cmp > 0) { + // Key at "mid" is >= "target". Therefore all blocks at or + // after "mid" are uninteresting. + right = mid - 1; + } else { + left = right = mid; + } + } + + *index = left; + return true; +} + +// Compare target key and the block key of the block of `block_index`. +// Return -1 if error. +int IndexBlockIter::CompareBlockKey(uint32_t block_index, const Slice& target) { + uint32_t region_offset = GetRestartPoint(block_index); + uint32_t shared, non_shared; + const char* key_ptr = + value_delta_encoded_ + ? DecodeKeyV4()(data_ + region_offset, data_ + restarts_, &shared, + &non_shared) + : DecodeKey()(data_ + region_offset, data_ + restarts_, &shared, + &non_shared); + if (key_ptr == nullptr || (shared != 0)) { + CorruptionError(); + return 1; // Return target is smaller + } + Slice block_key(key_ptr, non_shared); + return Compare(block_key, target); +} + +// Binary search in block_ids to find the first block +// with a key >= target +bool IndexBlockIter::BinaryBlockIndexSeek(const Slice& target, + uint32_t* block_ids, uint32_t left, + uint32_t right, uint32_t* index) { + assert(left <= right); + uint32_t left_bound = left; + + while (left <= right) { + uint32_t mid = (right + left) / 2; + + int cmp = CompareBlockKey(block_ids[mid], target); + if (!status_.ok()) { + return false; + } + if (cmp < 0) { + // Key at "target" is larger than "mid". Therefore all + // blocks before or at "mid" are uninteresting. + left = mid + 1; + } else { + // Key at "target" is <= "mid". Therefore all blocks + // after "mid" are uninteresting. + // If there is only one block left, we found it. + if (left == right) break; + right = mid; + } + } + + if (left == right) { + // In one of the two following cases: + // (1) left is the first one of block_ids + // (2) there is a gap of blocks between block of `left` and `left-1`. + // we can further distinguish the case of key in the block or key not + // existing, by comparing the target key and the key of the previous + // block to the left of the block found. + if (block_ids[left] > 0 && + (left == left_bound || block_ids[left - 1] != block_ids[left] - 1) && + CompareBlockKey(block_ids[left] - 1, target) > 0) { + current_ = restarts_; + return false; + } + + *index = block_ids[left]; + return true; + } else { + assert(left > right); + // Mark iterator invalid + current_ = restarts_; + return false; + } +} + +bool IndexBlockIter::PrefixSeek(const Slice& target, uint32_t* index) { + assert(prefix_index_); + Slice seek_key = target; + if (!key_includes_seq_) { + seek_key = ExtractUserKey(target); + } + uint32_t* block_ids = nullptr; + uint32_t num_blocks = prefix_index_->GetBlocks(target, &block_ids); + + if (num_blocks == 0) { + current_ = restarts_; + return false; + } else { + return BinaryBlockIndexSeek(seek_key, block_ids, 0, num_blocks - 1, index); + } +} + +uint32_t Block::NumRestarts() const { + assert(size_ >= 2 * sizeof(uint32_t)); + uint32_t block_footer = DecodeFixed32(data_ + size_ - sizeof(uint32_t)); + uint32_t num_restarts = block_footer; + if (size_ > kMaxBlockSizeSupportedByHashIndex) { + // In BlockBuilder, we have ensured a block with HashIndex is less than + // kMaxBlockSizeSupportedByHashIndex (64KiB). + // + // Therefore, if we encounter a block with a size > 64KiB, the block + // cannot have HashIndex. So the footer will directly interpreted as + // num_restarts. + // + // Such check is for backward compatibility. We can ensure legacy block + // with a vary large num_restarts i.e. >= 0x80000000 can be interpreted + // correctly as no HashIndex even if the MSB of num_restarts is set. + return num_restarts; + } + BlockBasedTableOptions::DataBlockIndexType index_type; + UnPackIndexTypeAndNumRestarts(block_footer, &index_type, &num_restarts); + return num_restarts; +} + +BlockBasedTableOptions::DataBlockIndexType Block::IndexType() const { + assert(size_ >= 2 * sizeof(uint32_t)); + if (size_ > kMaxBlockSizeSupportedByHashIndex) { + // The check is for the same reason as that in NumRestarts() + return BlockBasedTableOptions::kDataBlockBinarySearch; + } + uint32_t block_footer = DecodeFixed32(data_ + size_ - sizeof(uint32_t)); + uint32_t num_restarts = block_footer; + BlockBasedTableOptions::DataBlockIndexType index_type; + UnPackIndexTypeAndNumRestarts(block_footer, &index_type, &num_restarts); + return index_type; +} + +Block::~Block() { + // This sync point can be re-enabled if RocksDB can control the + // initialization order of any/all static options created by the user. + // TEST_SYNC_POINT("Block::~Block"); +} + +Block::Block(BlockContents&& contents, SequenceNumber _global_seqno, + size_t read_amp_bytes_per_bit, Statistics* statistics) + : contents_(std::move(contents)), + data_(contents_.data.data()), + size_(contents_.data.size()), + restart_offset_(0), + num_restarts_(0), + global_seqno_(_global_seqno) { + TEST_SYNC_POINT("Block::Block:0"); + if (size_ < sizeof(uint32_t)) { + size_ = 0; // Error marker + } else { + // Should only decode restart points for uncompressed blocks + num_restarts_ = NumRestarts(); + switch (IndexType()) { + case BlockBasedTableOptions::kDataBlockBinarySearch: + restart_offset_ = static_cast<uint32_t>(size_) - + (1 + num_restarts_) * sizeof(uint32_t); + if (restart_offset_ > size_ - sizeof(uint32_t)) { + // The size is too small for NumRestarts() and therefore + // restart_offset_ wrapped around. + size_ = 0; + } + break; + case BlockBasedTableOptions::kDataBlockBinaryAndHash: + if (size_ < sizeof(uint32_t) /* block footer */ + + sizeof(uint16_t) /* NUM_BUCK */) { + size_ = 0; + break; + } + + uint16_t map_offset; + data_block_hash_index_.Initialize( + contents.data.data(), + static_cast<uint16_t>(contents.data.size() - + sizeof(uint32_t)), /*chop off + NUM_RESTARTS*/ + &map_offset); + + restart_offset_ = map_offset - num_restarts_ * sizeof(uint32_t); + + if (restart_offset_ > map_offset) { + // map_offset is too small for NumRestarts() and + // therefore restart_offset_ wrapped around. + size_ = 0; + break; + } + break; + default: + size_ = 0; // Error marker + } + } + if (read_amp_bytes_per_bit != 0 && statistics && size_ != 0) { + read_amp_bitmap_.reset(new BlockReadAmpBitmap( + restart_offset_, read_amp_bytes_per_bit, statistics)); + } +} + +template <> +DataBlockIter* Block::NewIterator(const Comparator* cmp, const Comparator* ucmp, + DataBlockIter* iter, Statistics* stats, + bool /*total_order_seek*/, + bool /*key_includes_seq*/, + bool /*value_is_full*/, + bool block_contents_pinned, + BlockPrefixIndex* /*prefix_index*/) { + DataBlockIter* ret_iter; + if (iter != nullptr) { + ret_iter = iter; + } else { + ret_iter = new DataBlockIter; + } + if (size_ < 2 * sizeof(uint32_t)) { + ret_iter->Invalidate(Status::Corruption("bad block contents")); + return ret_iter; + } + if (num_restarts_ == 0) { + // Empty block. + ret_iter->Invalidate(Status::OK()); + return ret_iter; + } else { + ret_iter->Initialize( + cmp, ucmp, data_, restart_offset_, num_restarts_, global_seqno_, + read_amp_bitmap_.get(), block_contents_pinned, + data_block_hash_index_.Valid() ? &data_block_hash_index_ : nullptr); + if (read_amp_bitmap_) { + if (read_amp_bitmap_->GetStatistics() != stats) { + // DB changed the Statistics pointer, we need to notify read_amp_bitmap_ + read_amp_bitmap_->SetStatistics(stats); + } + } + } + + return ret_iter; +} + +template <> +IndexBlockIter* Block::NewIterator(const Comparator* cmp, + const Comparator* ucmp, IndexBlockIter* iter, + Statistics* /*stats*/, bool total_order_seek, + bool key_includes_seq, bool value_is_full, + bool block_contents_pinned, + BlockPrefixIndex* prefix_index) { + IndexBlockIter* ret_iter; + if (iter != nullptr) { + ret_iter = iter; + } else { + ret_iter = new IndexBlockIter; + } + if (size_ < 2 * sizeof(uint32_t)) { + ret_iter->Invalidate(Status::Corruption("bad block contents")); + return ret_iter; + } + if (num_restarts_ == 0) { + // Empty block. + ret_iter->Invalidate(Status::OK()); + return ret_iter; + } else { + BlockPrefixIndex* prefix_index_ptr = + total_order_seek ? nullptr : prefix_index; + ret_iter->Initialize(cmp, ucmp, data_, restart_offset_, num_restarts_, + prefix_index_ptr, key_includes_seq, value_is_full, + block_contents_pinned, + nullptr /* data_block_hash_index */); + } + + return ret_iter; +} + +size_t Block::ApproximateMemoryUsage() const { + size_t usage = usable_size(); +#ifdef ROCKSDB_MALLOC_USABLE_SIZE + usage += malloc_usable_size((void*)this); +#else + usage += sizeof(*this); +#endif // ROCKSDB_MALLOC_USABLE_SIZE + if (read_amp_bitmap_) { + usage += read_amp_bitmap_->ApproximateMemoryUsage(); + } + return usage; +} + +} // namespace rocksdb |