summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_rdma.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/spdk/lib/nvme/nvme_rdma.c1634
1 files changed, 1634 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_rdma.c b/src/spdk/lib/nvme/nvme_rdma.c
new file mode 100644
index 00000000..b356e3a1
--- /dev/null
+++ b/src/spdk/lib/nvme/nvme_rdma.c
@@ -0,0 +1,1634 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * NVMe over RDMA transport
+ */
+
+#include "spdk/stdinc.h"
+
+#include <infiniband/verbs.h>
+#include <rdma/rdma_cma.h>
+#include <rdma/rdma_verbs.h>
+
+#include "spdk/assert.h"
+#include "spdk/log.h"
+#include "spdk/trace.h"
+#include "spdk/event.h"
+#include "spdk/queue.h"
+#include "spdk/nvme.h"
+#include "spdk/nvmf_spec.h"
+#include "spdk/string.h"
+#include "spdk/endian.h"
+#include "spdk/likely.h"
+
+#include "nvme_internal.h"
+
+#define NVME_RDMA_TIME_OUT_IN_MS 2000
+#define NVME_RDMA_RW_BUFFER_SIZE 131072
+
+/*
+ * NVME RDMA qpair Resource Defaults
+ */
+#define NVME_RDMA_DEFAULT_TX_SGE 2
+#define NVME_RDMA_DEFAULT_RX_SGE 1
+
+
+/* Max number of NVMe-oF SGL descriptors supported by the host */
+#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
+struct spdk_nvmf_cmd {
+ struct spdk_nvme_cmd cmd;
+ struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
+};
+
+/* Mapping from virtual address to ibv_mr pointer for a protection domain */
+struct spdk_nvme_rdma_mr_map {
+ struct ibv_pd *pd;
+ struct spdk_mem_map *map;
+ uint64_t ref;
+ LIST_ENTRY(spdk_nvme_rdma_mr_map) link;
+};
+
+/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
+struct nvme_rdma_ctrlr {
+ struct spdk_nvme_ctrlr ctrlr;
+};
+
+/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
+struct nvme_rdma_qpair {
+ struct spdk_nvme_qpair qpair;
+
+ struct rdma_event_channel *cm_channel;
+
+ struct rdma_cm_id *cm_id;
+
+ struct ibv_cq *cq;
+
+ struct spdk_nvme_rdma_req *rdma_reqs;
+
+ uint16_t num_entries;
+
+ /* Parallel arrays of response buffers + response SGLs of size num_entries */
+ struct ibv_sge *rsp_sgls;
+ struct spdk_nvme_cpl *rsps;
+
+ struct ibv_recv_wr *rsp_recv_wrs;
+
+ /* Memory region describing all rsps for this qpair */
+ struct ibv_mr *rsp_mr;
+
+ /*
+ * Array of num_entries NVMe commands registered as RDMA message buffers.
+ * Indexed by rdma_req->id.
+ */
+ struct spdk_nvmf_cmd *cmds;
+
+ /* Memory region describing all cmds for this qpair */
+ struct ibv_mr *cmd_mr;
+
+ struct spdk_nvme_rdma_mr_map *mr_map;
+
+ TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
+ TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
+};
+
+struct spdk_nvme_rdma_req {
+ int id;
+
+ struct ibv_send_wr send_wr;
+
+ struct nvme_request *req;
+
+ struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
+
+ TAILQ_ENTRY(spdk_nvme_rdma_req) link;
+};
+
+static const char *rdma_cm_event_str[] = {
+ "RDMA_CM_EVENT_ADDR_RESOLVED",
+ "RDMA_CM_EVENT_ADDR_ERROR",
+ "RDMA_CM_EVENT_ROUTE_RESOLVED",
+ "RDMA_CM_EVENT_ROUTE_ERROR",
+ "RDMA_CM_EVENT_CONNECT_REQUEST",
+ "RDMA_CM_EVENT_CONNECT_RESPONSE",
+ "RDMA_CM_EVENT_CONNECT_ERROR",
+ "RDMA_CM_EVENT_UNREACHABLE",
+ "RDMA_CM_EVENT_REJECTED",
+ "RDMA_CM_EVENT_ESTABLISHED",
+ "RDMA_CM_EVENT_DISCONNECTED",
+ "RDMA_CM_EVENT_DEVICE_REMOVAL",
+ "RDMA_CM_EVENT_MULTICAST_JOIN",
+ "RDMA_CM_EVENT_MULTICAST_ERROR",
+ "RDMA_CM_EVENT_ADDR_CHANGE",
+ "RDMA_CM_EVENT_TIMEWAIT_EXIT"
+};
+
+static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
+static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;
+
+static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair);
+
+static inline struct nvme_rdma_qpair *
+nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
+{
+ assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
+ return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
+}
+
+static inline struct nvme_rdma_ctrlr *
+nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
+{
+ assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
+ return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
+}
+
+static struct spdk_nvme_rdma_req *
+nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
+{
+ struct spdk_nvme_rdma_req *rdma_req;
+
+ rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
+ if (rdma_req) {
+ TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
+ TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
+ }
+
+ return rdma_req;
+}
+
+static void
+nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
+{
+ TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
+ TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
+}
+
+static void
+nvme_rdma_req_complete(struct nvme_request *req,
+ struct spdk_nvme_cpl *rsp)
+{
+ nvme_complete_request(req, rsp);
+ nvme_free_request(req);
+}
+
+static const char *
+nvme_rdma_cm_event_str_get(uint32_t event)
+{
+ if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
+ return rdma_cm_event_str[event];
+ } else {
+ return "Undefined";
+ }
+}
+
+static struct rdma_cm_event *
+nvme_rdma_get_event(struct rdma_event_channel *channel,
+ enum rdma_cm_event_type evt)
+{
+ struct rdma_cm_event *event;
+ int rc;
+
+ rc = rdma_get_cm_event(channel, &event);
+ if (rc < 0) {
+ SPDK_ERRLOG("Failed to get event from CM event channel. Error %d (%s)\n",
+ errno, spdk_strerror(errno));
+ return NULL;
+ }
+
+ if (event->event != evt) {
+ SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
+ nvme_rdma_cm_event_str_get(evt),
+ nvme_rdma_cm_event_str_get(event->event), event->event, event->status);
+ rdma_ack_cm_event(event);
+ return NULL;
+ }
+
+ return event;
+}
+
+static int
+nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
+{
+ int rc;
+ struct ibv_qp_init_attr attr;
+
+ rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
+ if (!rqpair->cq) {
+ SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
+ return -1;
+ }
+
+ memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
+ attr.qp_type = IBV_QPT_RC;
+ attr.send_cq = rqpair->cq;
+ attr.recv_cq = rqpair->cq;
+ attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
+ attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
+ attr.cap.max_send_sge = NVME_RDMA_DEFAULT_TX_SGE;
+ attr.cap.max_recv_sge = NVME_RDMA_DEFAULT_RX_SGE;
+
+ rc = rdma_create_qp(rqpair->cm_id, NULL, &attr);
+ if (rc) {
+ SPDK_ERRLOG("rdma_create_qp failed\n");
+ return -1;
+ }
+
+ rqpair->cm_id->context = &rqpair->qpair;
+
+ return 0;
+}
+
+#define nvme_rdma_trace_ibv_sge(sg_list) \
+ if (sg_list) { \
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \
+ (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
+ }
+
+static int
+nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
+{
+ struct ibv_recv_wr *wr, *bad_wr = NULL;
+ int rc;
+
+ wr = &rqpair->rsp_recv_wrs[rsp_idx];
+ nvme_rdma_trace_ibv_sge(wr->sg_list);
+
+ rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr);
+ if (rc) {
+ SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
+ }
+
+ return rc;
+}
+
+static void
+nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) {
+ SPDK_ERRLOG("Unable to de-register rsp_mr\n");
+ }
+ rqpair->rsp_mr = NULL;
+
+ free(rqpair->rsps);
+ rqpair->rsps = NULL;
+ free(rqpair->rsp_sgls);
+ rqpair->rsp_sgls = NULL;
+ free(rqpair->rsp_recv_wrs);
+ rqpair->rsp_recv_wrs = NULL;
+}
+
+static int
+nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ uint16_t i;
+
+ rqpair->rsp_mr = NULL;
+ rqpair->rsps = NULL;
+ rqpair->rsp_recv_wrs = NULL;
+
+ rqpair->rsp_sgls = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
+ if (!rqpair->rsp_sgls) {
+ SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
+ goto fail;
+ }
+
+ rqpair->rsp_recv_wrs = calloc(rqpair->num_entries,
+ sizeof(*rqpair->rsp_recv_wrs));
+ if (!rqpair->rsp_recv_wrs) {
+ SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
+ goto fail;
+ }
+
+ rqpair->rsps = calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
+ if (!rqpair->rsps) {
+ SPDK_ERRLOG("can not allocate rdma rsps\n");
+ goto fail;
+ }
+
+ rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps,
+ rqpair->num_entries * sizeof(*rqpair->rsps));
+ if (rqpair->rsp_mr == NULL) {
+ SPDK_ERRLOG("Unable to register rsp_mr\n");
+ goto fail;
+ }
+
+ for (i = 0; i < rqpair->num_entries; i++) {
+ struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
+
+ rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
+ rsp_sgl->length = sizeof(rqpair->rsps[i]);
+ rsp_sgl->lkey = rqpair->rsp_mr->lkey;
+
+ rqpair->rsp_recv_wrs[i].wr_id = i;
+ rqpair->rsp_recv_wrs[i].next = NULL;
+ rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
+ rqpair->rsp_recv_wrs[i].num_sge = 1;
+
+ if (nvme_rdma_post_recv(rqpair, i)) {
+ SPDK_ERRLOG("Unable to post connection rx desc\n");
+ goto fail;
+ }
+ }
+
+ return 0;
+
+fail:
+ nvme_rdma_free_rsps(rqpair);
+ return -ENOMEM;
+}
+
+static void
+nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ if (!rqpair->rdma_reqs) {
+ return;
+ }
+
+ if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) {
+ SPDK_ERRLOG("Unable to de-register cmd_mr\n");
+ }
+ rqpair->cmd_mr = NULL;
+
+ free(rqpair->cmds);
+ rqpair->cmds = NULL;
+
+ free(rqpair->rdma_reqs);
+ rqpair->rdma_reqs = NULL;
+}
+
+static int
+nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ int i;
+
+ rqpair->rdma_reqs = calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
+ if (rqpair->rdma_reqs == NULL) {
+ SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
+ goto fail;
+ }
+
+ rqpair->cmds = calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
+ if (!rqpair->cmds) {
+ SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
+ goto fail;
+ }
+
+ rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds,
+ rqpair->num_entries * sizeof(*rqpair->cmds));
+ if (!rqpair->cmd_mr) {
+ SPDK_ERRLOG("Unable to register cmd_mr\n");
+ goto fail;
+ }
+
+ TAILQ_INIT(&rqpair->free_reqs);
+ TAILQ_INIT(&rqpair->outstanding_reqs);
+ for (i = 0; i < rqpair->num_entries; i++) {
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct spdk_nvmf_cmd *cmd;
+
+ rdma_req = &rqpair->rdma_reqs[i];
+ cmd = &rqpair->cmds[i];
+
+ rdma_req->id = i;
+
+ /* The first RDMA sgl element will always point
+ * at this data structure. Depending on whether
+ * an NVMe-oF SGL is required, the length of
+ * this element may change. */
+ rdma_req->send_sgl[0].addr = (uint64_t)cmd;
+ rdma_req->send_sgl[0].lkey = rqpair->cmd_mr->lkey;
+
+ rdma_req->send_wr.wr_id = (uint64_t)rdma_req;
+ rdma_req->send_wr.next = NULL;
+ rdma_req->send_wr.opcode = IBV_WR_SEND;
+ rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
+ rdma_req->send_wr.sg_list = rdma_req->send_sgl;
+ rdma_req->send_wr.imm_data = 0;
+
+ TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
+ }
+
+ return 0;
+
+fail:
+ nvme_rdma_free_reqs(rqpair);
+ return -ENOMEM;
+}
+
+static int
+nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, uint64_t rsp_idx)
+{
+ struct spdk_nvme_qpair *qpair = &rqpair->qpair;
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct spdk_nvme_cpl *rsp;
+ struct nvme_request *req;
+
+ assert(rsp_idx < rqpair->num_entries);
+ rsp = &rqpair->rsps[rsp_idx];
+ rdma_req = &rqpair->rdma_reqs[rsp->cid];
+
+ req = rdma_req->req;
+ nvme_rdma_req_complete(req, rsp);
+
+ nvme_rdma_req_put(rqpair, rdma_req);
+ if (nvme_rdma_post_recv(rqpair, rsp_idx)) {
+ SPDK_ERRLOG("Unable to re-post rx descriptor\n");
+ return -1;
+ }
+
+ if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) {
+ req = STAILQ_FIRST(&qpair->queued_req);
+ STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
+ nvme_qpair_submit_request(qpair, req);
+ }
+
+ return 0;
+}
+
+static int
+nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
+ struct sockaddr *src_addr,
+ struct sockaddr *dst_addr,
+ struct rdma_event_channel *cm_channel)
+{
+ int ret;
+ struct rdma_cm_event *event;
+
+ ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
+ NVME_RDMA_TIME_OUT_IN_MS);
+ if (ret) {
+ SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
+ return ret;
+ }
+
+ event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
+ if (event == NULL) {
+ SPDK_ERRLOG("RDMA address resolution error\n");
+ return -1;
+ }
+ rdma_ack_cm_event(event);
+
+ ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
+ if (ret) {
+ SPDK_ERRLOG("rdma_resolve_route\n");
+ return ret;
+ }
+
+ event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
+ if (event == NULL) {
+ SPDK_ERRLOG("RDMA route resolution error\n");
+ return -1;
+ }
+ rdma_ack_cm_event(event);
+
+ return 0;
+}
+
+static int
+nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
+{
+ struct rdma_conn_param param = {};
+ struct spdk_nvmf_rdma_request_private_data request_data = {};
+ struct spdk_nvmf_rdma_accept_private_data *accept_data;
+ struct ibv_device_attr attr;
+ int ret;
+ struct rdma_cm_event *event;
+ struct spdk_nvme_ctrlr *ctrlr;
+
+ ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
+ if (ret != 0) {
+ SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
+ return ret;
+ }
+
+ param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
+
+ ctrlr = rqpair->qpair.ctrlr;
+ if (!ctrlr) {
+ return -1;
+ }
+
+ request_data.qid = rqpair->qpair.id;
+ request_data.hrqsize = rqpair->num_entries;
+ request_data.hsqsize = rqpair->num_entries - 1;
+ request_data.cntlid = ctrlr->cntlid;
+
+ param.private_data = &request_data;
+ param.private_data_len = sizeof(request_data);
+ param.retry_count = 7;
+ param.rnr_retry_count = 7;
+
+ ret = rdma_connect(rqpair->cm_id, &param);
+ if (ret) {
+ SPDK_ERRLOG("nvme rdma connect error\n");
+ return ret;
+ }
+
+ event = nvme_rdma_get_event(rqpair->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
+ if (event == NULL) {
+ SPDK_ERRLOG("RDMA connect error\n");
+ return -1;
+ }
+
+ accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
+ if (accept_data == NULL) {
+ rdma_ack_cm_event(event);
+ SPDK_ERRLOG("NVMe-oF target did not return accept data\n");
+ return -1;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n",
+ rqpair->num_entries, accept_data->crqsize);
+
+ rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
+
+ rdma_ack_cm_event(event);
+
+ return 0;
+}
+
+static int
+nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
+{
+ struct addrinfo *res;
+ struct addrinfo hints;
+ int ret;
+
+ memset(&hints, 0, sizeof(hints));
+ hints.ai_family = family;
+ hints.ai_socktype = SOCK_STREAM;
+ hints.ai_protocol = 0;
+
+ ret = getaddrinfo(addr, service, &hints, &res);
+ if (ret) {
+ SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
+ return ret;
+ }
+
+ if (res->ai_addrlen > sizeof(*sa)) {
+ SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
+ ret = EINVAL;
+ } else {
+ memcpy(sa, res->ai_addr, res->ai_addrlen);
+ }
+
+ freeaddrinfo(res);
+ return ret;
+}
+
+static int
+nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
+ enum spdk_mem_map_notify_action action,
+ void *vaddr, size_t size)
+{
+ struct ibv_pd *pd = cb_ctx;
+ struct ibv_mr *mr;
+ int rc;
+
+ switch (action) {
+ case SPDK_MEM_MAP_NOTIFY_REGISTER:
+ mr = ibv_reg_mr(pd, vaddr, size,
+ IBV_ACCESS_LOCAL_WRITE |
+ IBV_ACCESS_REMOTE_READ |
+ IBV_ACCESS_REMOTE_WRITE);
+ if (mr == NULL) {
+ SPDK_ERRLOG("ibv_reg_mr() failed\n");
+ return -EFAULT;
+ } else {
+ rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
+ }
+ break;
+ case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
+ mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
+ rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
+ if (mr) {
+ ibv_dereg_mr(mr);
+ }
+ break;
+ default:
+ SPDK_UNREACHABLE();
+ }
+
+ return rc;
+}
+
+static int
+nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
+{
+ struct ibv_pd *pd = rqpair->cm_id->qp->pd;
+ struct spdk_nvme_rdma_mr_map *mr_map;
+ const struct spdk_mem_map_ops nvme_rdma_map_ops = {
+ .notify_cb = nvme_rdma_mr_map_notify,
+ .are_contiguous = NULL
+ };
+
+ pthread_mutex_lock(&g_rdma_mr_maps_mutex);
+
+ /* Look up existing mem map registration for this pd */
+ LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
+ if (mr_map->pd == pd) {
+ mr_map->ref++;
+ rqpair->mr_map = mr_map;
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return 0;
+ }
+ }
+
+ mr_map = calloc(1, sizeof(*mr_map));
+ if (mr_map == NULL) {
+ SPDK_ERRLOG("calloc() failed\n");
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return -1;
+ }
+
+ mr_map->ref = 1;
+ mr_map->pd = pd;
+ mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd);
+ if (mr_map->map == NULL) {
+ SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
+ free(mr_map);
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return -1;
+ }
+
+ rqpair->mr_map = mr_map;
+ LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);
+
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+
+ return 0;
+}
+
+static void
+nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
+{
+ struct spdk_nvme_rdma_mr_map *mr_map;
+
+ mr_map = rqpair->mr_map;
+ rqpair->mr_map = NULL;
+
+ if (mr_map == NULL) {
+ return;
+ }
+
+ pthread_mutex_lock(&g_rdma_mr_maps_mutex);
+
+ assert(mr_map->ref > 0);
+ mr_map->ref--;
+ if (mr_map->ref == 0) {
+ LIST_REMOVE(mr_map, link);
+ spdk_mem_map_free(&mr_map->map);
+ free(mr_map);
+ }
+
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+}
+
+static int
+nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair)
+{
+ struct sockaddr_storage dst_addr;
+ struct sockaddr_storage src_addr;
+ bool src_addr_specified;
+ int rc;
+ struct spdk_nvme_ctrlr *ctrlr;
+ int family;
+
+ rqpair->cm_channel = rdma_create_event_channel();
+ if (rqpair->cm_channel == NULL) {
+ SPDK_ERRLOG("rdma_create_event_channel() failed\n");
+ return -1;
+ }
+
+ ctrlr = rqpair->qpair.ctrlr;
+
+ switch (ctrlr->trid.adrfam) {
+ case SPDK_NVMF_ADRFAM_IPV4:
+ family = AF_INET;
+ break;
+ case SPDK_NVMF_ADRFAM_IPV6:
+ family = AF_INET6;
+ break;
+ default:
+ SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
+ return -1;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
+
+ memset(&dst_addr, 0, sizeof(dst_addr));
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
+ rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
+ if (rc != 0) {
+ SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
+ return -1;
+ }
+
+ if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
+ memset(&src_addr, 0, sizeof(src_addr));
+ rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
+ if (rc != 0) {
+ SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
+ return -1;
+ }
+ src_addr_specified = true;
+ } else {
+ src_addr_specified = false;
+ }
+
+ rc = rdma_create_id(rqpair->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
+ if (rc < 0) {
+ SPDK_ERRLOG("rdma_create_id() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_resolve_addr(rqpair,
+ src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
+ (struct sockaddr *)&dst_addr, rqpair->cm_channel);
+ if (rc < 0) {
+ SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_qpair_init(rqpair);
+ if (rc < 0) {
+ SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_connect(rqpair);
+ if (rc != 0) {
+ SPDK_ERRLOG("Unable to connect the rqpair\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_alloc_reqs(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc) {
+ SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
+ return -1;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n");
+
+ rc = nvme_rdma_alloc_rsps(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc < 0) {
+ SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
+ return -1;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n");
+
+ rc = nvme_rdma_register_mem(rqpair);
+ if (rc < 0) {
+ SPDK_ERRLOG("Unable to register memory for RDMA\n");
+ return -1;
+ }
+
+ rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
+ if (rc < 0) {
+ SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * Build SGL describing empty payload.
+ */
+static int
+nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ /* The RDMA SGL needs one element describing the NVMe command. */
+ rdma_req->send_wr.num_sge = 1;
+
+ req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ req->cmd.dptr.sgl1.keyed.length = 0;
+ req->cmd.dptr.sgl1.keyed.key = 0;
+ req->cmd.dptr.sgl1.address = 0;
+
+ return 0;
+}
+
+/*
+ * Build inline SGL describing contiguous payload buffer.
+ */
+static int
+nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ struct ibv_mr *mr;
+ void *payload;
+ uint64_t requested_size;
+
+ payload = req->payload.contig_or_cb_arg + req->payload_offset;
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+
+ requested_size = req->payload_size;
+ mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map,
+ (uint64_t)payload, &requested_size);
+
+ if (mr == NULL || requested_size < req->payload_size) {
+ return -EINVAL;
+ }
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ rdma_req->send_sgl[1].addr = (uint64_t)payload;
+ rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
+ rdma_req->send_sgl[1].lkey = mr->lkey;
+
+ /* The RDMA SGL contains two elements. The first describes
+ * the NVMe command and the second describes the data
+ * payload. */
+ rdma_req->send_wr.num_sge = 2;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
+ /* Inline only supported for icdoff == 0 currently. This function will
+ * not get called for controllers with other values. */
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+
+ return 0;
+}
+
+/*
+ * Build SGL describing contiguous payload buffer.
+ */
+static int
+nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
+ struct ibv_mr *mr;
+ uint64_t requested_size;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+
+ requested_size = req->payload_size;
+ mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload,
+ &requested_size);
+ if (mr == NULL || requested_size < req->payload_size) {
+ return -1;
+ }
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ /* The RDMA SGL needs one element describing the NVMe command. */
+ rdma_req->send_wr.num_sge = 1;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ req->cmd.dptr.sgl1.keyed.length = req->payload_size;
+ req->cmd.dptr.sgl1.keyed.key = mr->rkey;
+ req->cmd.dptr.sgl1.address = (uint64_t)payload;
+
+ return 0;
+}
+
+/*
+ * Build SGL describing scattered payload buffer.
+ */
+static int
+nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
+ struct ibv_mr *mr = NULL;
+ void *virt_addr;
+ uint64_t remaining_size, mr_length;
+ uint32_t sge_length;
+ int rc, max_num_sgl, num_sgl_desc;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ max_num_sgl = req->qpair->ctrlr->max_sges;
+
+ remaining_size = req->payload_size;
+ num_sgl_desc = 0;
+ do {
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
+ if (rc) {
+ return -1;
+ }
+
+ sge_length = spdk_min(remaining_size, sge_length);
+ mr_length = sge_length;
+
+ mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr,
+ &mr_length);
+
+ if (mr == NULL || mr_length < sge_length) {
+ return -1;
+ }
+
+ cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ cmd->sgl[num_sgl_desc].keyed.length = sge_length;
+ cmd->sgl[num_sgl_desc].keyed.key = mr->rkey;
+ cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;
+
+ remaining_size -= sge_length;
+ num_sgl_desc++;
+ } while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
+
+
+ /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
+ if (remaining_size > 0) {
+ return -1;
+ }
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+
+ /* The RDMA SGL needs one element describing some portion
+ * of the spdk_nvmf_cmd structure. */
+ rdma_req->send_wr.num_sge = 1;
+
+ /*
+ * If only one SGL descriptor is required, it can be embedded directly in the command
+ * as a data block descriptor.
+ */
+ if (num_sgl_desc == 1) {
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ req->cmd.dptr.sgl1.keyed.length = req->payload_size;
+ req->cmd.dptr.sgl1.keyed.key = mr->rkey;
+ req->cmd.dptr.sgl1.address = rqpair->cmds[rdma_req->id].sgl[0].address;
+ } else {
+ /*
+ * Otherwise, The SGL descriptor embedded in the command must point to the list of
+ * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
+ */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct
+ spdk_nvme_sgl_descriptor) * num_sgl_desc;
+
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor);
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+ }
+
+ return 0;
+}
+
+/*
+ * Build inline SGL describing sgl payload buffer.
+ */
+static int
+nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ struct ibv_mr *mr;
+ uint32_t length;
+ uint64_t requested_size;
+ void *virt_addr;
+ int rc;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ /* TODO: for now, we only support a single SGL entry */
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
+ if (rc) {
+ return -1;
+ }
+
+ if (length < req->payload_size) {
+ SPDK_ERRLOG("multi-element SGL currently not supported for RDMA\n");
+ return -1;
+ }
+
+ requested_size = req->payload_size;
+ mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr,
+ &requested_size);
+ if (mr == NULL || requested_size < req->payload_size) {
+ return -1;
+ }
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ rdma_req->send_sgl[1].addr = (uint64_t)virt_addr;
+ rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
+ rdma_req->send_sgl[1].lkey = mr->lkey;
+
+ /* The RDMA SGL contains two elements. The first describes
+ * the NVMe command and the second describes the data
+ * payload. */
+ rdma_req->send_wr.num_sge = 2;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
+ /* Inline only supported for icdoff == 0 currently. This function will
+ * not get called for controllers with other values. */
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+
+ return 0;
+}
+
+static inline unsigned int
+nvme_rdma_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr)
+{
+ return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd));
+}
+
+static int
+nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
+ int rc;
+
+ rdma_req->req = req;
+ req->cmd.cid = rdma_req->id;
+
+ if (req->payload_size == 0) {
+ rc = nvme_rdma_build_null_request(rdma_req);
+ } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
+ /*
+ * Check if icdoff is non zero, to avoid interop conflicts with
+ * targets with non-zero icdoff. Both SPDK and the Linux kernel
+ * targets use icdoff = 0. For targets with non-zero icdoff, we
+ * will currently just not use inline data for now.
+ */
+ if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
+ req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
+ (ctrlr->cdata.nvmf_specific.icdoff == 0)) {
+ rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
+ } else {
+ rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
+ }
+ } else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
+ if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
+ req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
+ ctrlr->cdata.nvmf_specific.icdoff == 0) {
+ rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
+ } else {
+ rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
+ }
+ } else {
+ rc = -1;
+ }
+
+ if (rc) {
+ return rc;
+ }
+
+ memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
+ return 0;
+}
+
+static struct spdk_nvme_qpair *
+nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
+ uint16_t qid, uint32_t qsize,
+ enum spdk_nvme_qprio qprio,
+ uint32_t num_requests)
+{
+ struct nvme_rdma_qpair *rqpair;
+ struct spdk_nvme_qpair *qpair;
+ int rc;
+
+ rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
+ if (!rqpair) {
+ SPDK_ERRLOG("failed to get create rqpair\n");
+ return NULL;
+ }
+
+ rqpair->num_entries = qsize;
+
+ qpair = &rqpair->qpair;
+
+ rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
+ if (rc != 0) {
+ return NULL;
+ }
+
+ rc = nvme_rdma_qpair_connect(rqpair);
+ if (rc < 0) {
+ nvme_rdma_qpair_destroy(qpair);
+ return NULL;
+ }
+
+ return qpair;
+}
+
+static int
+nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_rdma_qpair *rqpair;
+
+ if (!qpair) {
+ return -1;
+ }
+ nvme_qpair_deinit(qpair);
+
+ rqpair = nvme_rdma_qpair(qpair);
+
+ nvme_rdma_unregister_mem(rqpair);
+ nvme_rdma_free_reqs(rqpair);
+ nvme_rdma_free_rsps(rqpair);
+
+ if (rqpair->cm_id) {
+ if (rqpair->cm_id->qp) {
+ rdma_destroy_qp(rqpair->cm_id);
+ }
+ rdma_destroy_id(rqpair->cm_id);
+ }
+
+ if (rqpair->cq) {
+ ibv_destroy_cq(rqpair->cq);
+ }
+
+ if (rqpair->cm_channel) {
+ rdma_destroy_event_channel(rqpair->cm_channel);
+ }
+
+ free(rqpair);
+
+ return 0;
+}
+
+struct spdk_nvme_qpair *
+nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
+ const struct spdk_nvme_io_qpair_opts *opts)
+{
+ return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
+ opts->io_queue_requests);
+}
+
+int
+nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /* do nothing here */
+ return 0;
+}
+
+/* This function must only be called while holding g_spdk_nvme_driver->lock */
+int
+nvme_rdma_ctrlr_scan(const struct spdk_nvme_transport_id *discovery_trid,
+ void *cb_ctx,
+ spdk_nvme_probe_cb probe_cb,
+ spdk_nvme_remove_cb remove_cb,
+ bool direct_connect)
+{
+ struct spdk_nvme_ctrlr_opts discovery_opts;
+ struct spdk_nvme_ctrlr *discovery_ctrlr;
+ union spdk_nvme_cc_register cc;
+ int rc;
+ struct nvme_completion_poll_status status;
+
+ if (strcmp(discovery_trid->subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) {
+ /* It is not a discovery_ctrlr info and try to directly connect it */
+ rc = nvme_ctrlr_probe(discovery_trid, NULL, probe_cb, cb_ctx);
+ return rc;
+ }
+
+ spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts));
+ /* For discovery_ctrlr set the timeout to 0 */
+ discovery_opts.keep_alive_timeout_ms = 0;
+
+ discovery_ctrlr = nvme_rdma_ctrlr_construct(discovery_trid, &discovery_opts, NULL);
+ if (discovery_ctrlr == NULL) {
+ return -1;
+ }
+
+ /* TODO: this should be using the normal NVMe controller initialization process */
+ cc.raw = 0;
+ cc.bits.en = 1;
+ cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
+ cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
+ rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
+ cc.raw);
+ if (rc < 0) {
+ SPDK_ERRLOG("Failed to set cc\n");
+ nvme_ctrlr_destruct(discovery_ctrlr);
+ return -1;
+ }
+
+ /* get the cdata info */
+ rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
+ &discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata),
+ nvme_completion_poll_cb, &status);
+ if (rc != 0) {
+ SPDK_ERRLOG("Failed to identify cdata\n");
+ return rc;
+ }
+
+ if (spdk_nvme_wait_for_completion(discovery_ctrlr->adminq, &status)) {
+ SPDK_ERRLOG("nvme_identify_controller failed!\n");
+ return -ENXIO;
+ }
+
+ /* Direct attach through spdk_nvme_connect() API */
+ if (direct_connect == true) {
+ /* Set the ready state to skip the normal init process */
+ discovery_ctrlr->state = NVME_CTRLR_STATE_READY;
+ nvme_ctrlr_connected(discovery_ctrlr);
+ nvme_ctrlr_add_process(discovery_ctrlr, 0);
+ return 0;
+ }
+
+ rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, cb_ctx, probe_cb);
+ nvme_ctrlr_destruct(discovery_ctrlr);
+ return rc;
+}
+
+struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts,
+ void *devhandle)
+{
+ struct nvme_rdma_ctrlr *rctrlr;
+ union spdk_nvme_cap_register cap;
+ union spdk_nvme_vs_register vs;
+ int rc;
+
+ rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr));
+ if (rctrlr == NULL) {
+ SPDK_ERRLOG("could not allocate ctrlr\n");
+ return NULL;
+ }
+
+ rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
+ rctrlr->ctrlr.opts = *opts;
+ memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid));
+
+ rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
+ if (rc != 0) {
+ free(rctrlr);
+ return NULL;
+ }
+
+ rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
+ SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES);
+ if (!rctrlr->ctrlr.adminq) {
+ SPDK_ERRLOG("failed to create admin qpair\n");
+ nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr);
+ return NULL;
+ }
+
+ if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
+ SPDK_ERRLOG("get_cap() failed\n");
+ nvme_ctrlr_destruct(&rctrlr->ctrlr);
+ return NULL;
+ }
+
+ if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
+ SPDK_ERRLOG("get_vs() failed\n");
+ nvme_ctrlr_destruct(&rctrlr->ctrlr);
+ return NULL;
+ }
+
+ if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
+ SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
+ nvme_ctrlr_destruct(&rctrlr->ctrlr);
+ return NULL;
+ }
+
+ nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n");
+ return &rctrlr->ctrlr;
+}
+
+int
+nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
+
+ if (ctrlr->adminq) {
+ nvme_rdma_qpair_destroy(ctrlr->adminq);
+ }
+
+ nvme_ctrlr_destruct_finish(ctrlr);
+
+ free(rctrlr);
+
+ return 0;
+}
+
+int
+nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
+{
+ return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value);
+}
+
+int
+nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
+{
+ return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value);
+}
+
+int
+nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
+{
+ return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value);
+}
+
+int
+nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
+{
+ return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value);
+}
+
+int
+nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
+ struct nvme_request *req)
+{
+ struct nvme_rdma_qpair *rqpair;
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct ibv_send_wr *wr, *bad_wr = NULL;
+ int rc;
+
+ rqpair = nvme_rdma_qpair(qpair);
+ assert(rqpair != NULL);
+ assert(req != NULL);
+
+ rdma_req = nvme_rdma_req_get(rqpair);
+ if (!rdma_req) {
+ /*
+ * No rdma_req is available. Queue the request to be processed later.
+ */
+ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
+ return 0;
+ }
+
+ if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
+ SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
+ nvme_rdma_req_put(rqpair, rdma_req);
+ return -1;
+ }
+
+ req->timed_out = false;
+ if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
+ req->submit_tick = spdk_get_ticks();
+ } else {
+ req->submit_tick = 0;
+ }
+
+ wr = &rdma_req->send_wr;
+
+ nvme_rdma_trace_ibv_sge(wr->sg_list);
+
+ rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr);
+ if (rc) {
+ SPDK_ERRLOG("Failure posting rdma send for NVMf completion: %d (%s)\n", rc, spdk_strerror(rc));
+ }
+
+ return rc;
+}
+
+int
+nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ return nvme_rdma_qpair_destroy(qpair);
+}
+
+int
+nvme_rdma_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ return nvme_rdma_qpair_connect(nvme_rdma_qpair(qpair));
+}
+
+int
+nvme_rdma_qpair_enable(struct spdk_nvme_qpair *qpair)
+{
+ /* Currently, doing nothing here */
+ return 0;
+}
+
+int
+nvme_rdma_qpair_disable(struct spdk_nvme_qpair *qpair)
+{
+ /* Currently, doing nothing here */
+ return 0;
+}
+
+int
+nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
+{
+ /* Currently, doing nothing here */
+ return 0;
+}
+
+int
+nvme_rdma_qpair_fail(struct spdk_nvme_qpair *qpair)
+{
+ /* Currently, doing nothing here */
+ return 0;
+}
+
+static void
+nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
+{
+ uint64_t t02;
+ struct spdk_nvme_rdma_req *rdma_req, *tmp;
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /* Don't check timeouts during controller initialization. */
+ if (ctrlr->state != NVME_CTRLR_STATE_READY) {
+ return;
+ }
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
+ } else {
+ active_proc = qpair->active_proc;
+ }
+
+ /* Only check timeouts if the current process has a timeout callback. */
+ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
+ return;
+ }
+
+ t02 = spdk_get_ticks();
+ TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
+ assert(rdma_req->req != NULL);
+
+ if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
+ /*
+ * The requests are in order, so as soon as one has not timed out,
+ * stop iterating.
+ */
+ break;
+ }
+ }
+}
+
+#define MAX_COMPLETIONS_PER_POLL 128
+
+int
+nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
+ uint32_t max_completions)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
+ int i, rc, batch_size;
+ uint32_t reaped;
+ struct ibv_cq *cq;
+
+ if (max_completions == 0) {
+ max_completions = rqpair->num_entries;
+ } else {
+ max_completions = spdk_min(max_completions, rqpair->num_entries);
+ }
+
+ cq = rqpair->cq;
+
+ reaped = 0;
+ do {
+ batch_size = spdk_min((max_completions - reaped),
+ MAX_COMPLETIONS_PER_POLL);
+ rc = ibv_poll_cq(cq, batch_size, wc);
+ if (rc < 0) {
+ SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
+ errno, spdk_strerror(errno));
+ return -1;
+ } else if (rc == 0) {
+ /* Ran out of completions */
+ break;
+ }
+
+ for (i = 0; i < rc; i++) {
+ if (wc[i].status) {
+ SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
+ qpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
+ return -1;
+ }
+
+ switch (wc[i].opcode) {
+ case IBV_WC_RECV:
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n");
+
+ reaped++;
+
+ if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
+ SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
+ return -1;
+ }
+
+ if (nvme_rdma_recv(rqpair, wc[i].wr_id)) {
+ SPDK_ERRLOG("nvme_rdma_recv processing failure\n");
+ return -1;
+ }
+ break;
+
+ case IBV_WC_SEND:
+ break;
+
+ default:
+ SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", wc[i].opcode);
+ return -1;
+ }
+ }
+ } while (reaped < max_completions);
+
+ if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
+ nvme_rdma_qpair_check_timeout(qpair);
+ }
+
+ return reaped;
+}
+
+uint32_t
+nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /* Todo, which should get from the NVMF target */
+ return NVME_RDMA_RW_BUFFER_SIZE;
+}
+
+uint16_t
+nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
+{
+ return spdk_min(ctrlr->cdata.nvmf_specific.msdbd, NVME_RDMA_MAX_SGL_DESCRIPTORS);
+}
+
+void *
+nvme_rdma_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
+{
+ return NULL;
+}
+
+int
+nvme_rdma_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
+{
+ return 0;
+}