diff options
Diffstat (limited to 'src/test/perf_local.cc')
-rw-r--r-- | src/test/perf_local.cc | 1033 |
1 files changed, 1033 insertions, 0 deletions
diff --git a/src/test/perf_local.cc b/src/test/perf_local.cc new file mode 100644 index 00000000..c2a2c2bc --- /dev/null +++ b/src/test/perf_local.cc @@ -0,0 +1,1033 @@ +// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- +// vim: ts=8 sw=2 smarttab +/* Copyright (c) 2015 Haomai Wang <haomaiwang@gmail.com> + * Copyright (c) 2011-2014 Stanford University + * Copyright (c) 2011 Facebook + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR(S) DISCLAIM ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL AUTHORS BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +// This program contains a collection of low-level performance measurements +// for Ceph, which can be run either individually or altogether. These +// tests measure performance in a single stand-alone process, not in a cluster +// with multiple servers. Invoke the program like this: +// +// Perf test1 test2 ... +// +// test1 and test2 are the names of individual performance measurements to +// run. If no test names are provided then all of the performance tests +// are run. +// +// To add a new test: +// * Write a function that implements the test. Use existing test functions +// as a guideline, and be sure to generate output in the same form as +// other tests. +// * Create a new entry for the test in the #tests table. +#include <vector> +#include <sched.h> + +#include "acconfig.h" +#ifdef HAVE_SSE +#include <xmmintrin.h> +#endif + +#include "include/buffer.h" +#include "include/encoding.h" +#include "include/ceph_hash.h" +#include "include/spinlock.h" +#include "common/ceph_argparse.h" +#include "common/Cycles.h" +#include "common/Cond.h" +#include "common/Mutex.h" +#include "common/Thread.h" +#include "common/Timer.h" +#include "msg/async/Event.h" +#include "global/global_init.h" + +#include "test/perf_helper.h" + +#include <atomic> + +using namespace ceph; + +/** + * Ask the operating system to pin the current thread to a given CPU. + * + * \param cpu + * Indicates the desired CPU and hyperthread; low order 2 bits + * specify CPU, next bit specifies hyperthread. + */ +void bind_thread_to_cpu(int cpu) +{ +#ifdef HAVE_SCHED + cpu_set_t set; + CPU_ZERO(&set); + CPU_SET(cpu, &set); + sched_setaffinity(0, sizeof(set), &set); +#endif +} + +/* + * This function just discards its argument. It's used to make it + * appear that data is used, so that the compiler won't optimize + * away the code we're trying to measure. + * + * \param value + * Pointer to arbitrary value; it's discarded. + */ +void discard(void* value) { + int x = *reinterpret_cast<int*>(value); + if (x == 0x43924776) { + printf("Value was 0x%x\n", x); + } +} + +//---------------------------------------------------------------------- +// Test functions start here +//---------------------------------------------------------------------- + +// Measure the cost of atomic compare-and-swap +double atomic_int_cmp() +{ + int count = 1000000; + std::atomic<unsigned> value = { 11 }; + unsigned int test = 11; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + value.compare_exchange_strong(test, test+2); + test += 2; + } + uint64_t stop = Cycles::rdtsc(); + // printf("Final value: %d\n", value.load()); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of incrementing an atomic +double atomic_int_inc() +{ + int count = 1000000; + std::atomic<int64_t> value = { 11 }; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + value++; + } + uint64_t stop = Cycles::rdtsc(); + // printf("Final value: %d\n", value.load()); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of reading an atomic +double atomic_int_read() +{ + int count = 1000000; + std::atomic<int64_t> value = { 11 }; + int total = 0; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + total += value; + } + uint64_t stop = Cycles::rdtsc(); + // printf("Total: %d\n", total); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of storing a new value in an atomic +double atomic_int_set() +{ + int count = 1000000; + std::atomic<int64_t> value = { 11 }; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + value = 88; + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of acquiring and releasing a mutex in the +// fast case where the mutex is free. +double mutex_nonblock() +{ + int count = 1000000; + Mutex m("mutex_nonblock::m"); + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + m.Lock(); + m.Unlock(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of allocating and deallocating a buffer, plus +// appending (logically) one ptr. +double buffer_basic() +{ + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + bufferptr ptr("abcdefg", 7); + for (int i = 0; i < count; i++) { + bufferlist b; + b.append(ptr, 0, 5); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +struct DummyBlock { + int a = 1, b = 2, c = 3, d = 4; + void encode(bufferlist &bl) const { + ENCODE_START(1, 1, bl); + encode(a, bl); + encode(b, bl); + encode(c, bl); + encode(d, bl); + ENCODE_FINISH(bl); + } + void decode(bufferlist::const_iterator &bl) { + DECODE_START(1, bl); + decode(a, bl); + decode(b, bl); + decode(c, bl); + decode(d, bl); + DECODE_FINISH(bl); + } +}; +WRITE_CLASS_ENCODER(DummyBlock) + +// Measure the cost of encoding and decoding a buffer, plus +// allocating space for one chunk. +double buffer_encode_decode() +{ + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + bufferlist b; + DummyBlock dummy_block; + encode(dummy_block, b); + auto iter = b.cbegin(); + decode(dummy_block, iter); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of allocating and deallocating a buffer, plus +// copying in a small block. +double buffer_basic_copy() +{ + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + bufferlist b; + b.append("abcdefg", 6); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of making a copy of parts of two ptrs. +double buffer_copy() +{ + int count = 1000000; + bufferlist b; + b.append("abcde", 5); + b.append("01234", 5); + char copy[10]; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + b.copy(2, 6, copy); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of allocating new space by extending the +// bufferlist +double buffer_encode() +{ + int count = 100000; + uint64_t total = 0; + for (int i = 0; i < count; i++) { + bufferlist b; + DummyBlock dummy_block; + encode(dummy_block, b); + uint64_t start = Cycles::rdtsc(); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + encode(dummy_block, b); + total += Cycles::rdtsc() - start; + } + return Cycles::to_seconds(total)/(count*10); +} + +// Measure the cost of creating an iterator and iterating over 10 +// chunks in a buffer. +double buffer_iterator() +{ + bufferlist b; + const char s[] = "abcdefghijklmnopqrstuvwxyz"; + bufferptr ptr(s, sizeof(s)); + for (int i = 0; i < 5; i++) { + b.append(ptr, i, 5); + } + int count = 100000; + int sum = 0; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + auto it = b.cbegin(); + while (!it.end()) { + sum += (static_cast<const char*>(it.get_current_ptr().c_str()))[it.get_remaining()-1]; + ++it; + } + } + uint64_t stop = Cycles::rdtsc(); + discard(&sum); + return Cycles::to_seconds(stop - start)/count; +} + +// Implements the CondPingPong test. +class CondPingPong { + Mutex mutex; + Cond cond; + int prod; + int cons; + const int count; + + class Consumer : public Thread { + CondPingPong *p; + public: + explicit Consumer(CondPingPong *p): p(p) {} + void* entry() override { + p->consume(); + return 0; + } + } consumer; + + public: + CondPingPong(): mutex("CondPingPong::mutex"), prod(0), cons(0), count(10000), consumer(this) {} + + double run() { + consumer.create("consumer"); + uint64_t start = Cycles::rdtsc(); + produce(); + uint64_t stop = Cycles::rdtsc(); + consumer.join(); + return Cycles::to_seconds(stop - start)/count; + } + + void produce() { + Mutex::Locker l(mutex); + while (cons < count) { + while (cons < prod) + cond.Wait(mutex); + ++prod; + cond.Signal(); + } + } + + void consume() { + Mutex::Locker l(mutex); + while (cons < count) { + while (cons == prod) + cond.Wait(mutex); + ++cons; + cond.Signal(); + } + } +}; + +// Measure the cost of coordinating between threads using a condition variable. +double cond_ping_pong() +{ + return CondPingPong().run(); +} + +// Measure the cost of a 32-bit divide. Divides don't take a constant +// number of cycles. Values were chosen here semi-randomly to depict a +// fairly expensive scenario. Someone with fancy ALU knowledge could +// probably pick worse values. +double div32() +{ +#if defined(__i386__) || defined(__x86_64__) + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + // NB: Expect an x86 processor exception is there's overflow. + uint32_t numeratorHi = 0xa5a5a5a5U; + uint32_t numeratorLo = 0x55aa55aaU; + uint32_t divisor = 0xaa55aa55U; + uint32_t quotient; + uint32_t remainder; + for (int i = 0; i < count; i++) { + __asm__ __volatile__("div %4" : + "=a"(quotient), "=d"(remainder) : + "a"(numeratorLo), "d"(numeratorHi), "r"(divisor) : + "cc"); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +#else + return -1; +#endif +} + +// Measure the cost of a 64-bit divide. Divides don't take a constant +// number of cycles. Values were chosen here semi-randomly to depict a +// fairly expensive scenario. Someone with fancy ALU knowledge could +// probably pick worse values. +double div64() +{ +#if defined(__x86_64__) || defined(__amd64__) + int count = 1000000; + // NB: Expect an x86 processor exception is there's overflow. + uint64_t start = Cycles::rdtsc(); + uint64_t numeratorHi = 0x5a5a5a5a5a5UL; + uint64_t numeratorLo = 0x55aa55aa55aa55aaUL; + uint64_t divisor = 0xaa55aa55aa55aa55UL; + uint64_t quotient; + uint64_t remainder; + for (int i = 0; i < count; i++) { + __asm__ __volatile__("divq %4" : + "=a"(quotient), "=d"(remainder) : + "a"(numeratorLo), "d"(numeratorHi), "r"(divisor) : + "cc"); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +#else + return -1; +#endif +} + +// Measure the cost of calling a non-inlined function. +double function_call() +{ + int count = 1000000; + uint64_t x = 0; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + x = PerfHelper::plus_one(x); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the minimum cost of EventCenter::process_events, when there are no +// Pollers and no Timers. +double eventcenter_poll() +{ + int count = 1000000; + EventCenter center(g_ceph_context); + center.init(1000, 0, "posix"); + center.set_owner(); + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + center.process_events(0); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +class CenterWorker : public Thread { + CephContext *cct; + bool done; + + public: + EventCenter center; + explicit CenterWorker(CephContext *c): cct(c), done(false), center(c) { + center.init(100, 0, "posix"); + } + void stop() { + done = true; + center.wakeup(); + } + void* entry() override { + center.set_owner(); + bind_thread_to_cpu(2); + while (!done) + center.process_events(1000); + return 0; + } +}; + +class CountEvent: public EventCallback { + std::atomic<int64_t> *count; + + public: + explicit CountEvent(std::atomic<int64_t> *atomic): count(atomic) {} + void do_request(uint64_t id) override { + (*count)--; + } +}; + +double eventcenter_dispatch() +{ + int count = 100000; + + CenterWorker worker(g_ceph_context); + std::atomic<int64_t> flag = { 1 }; + worker.create("evt_center_disp"); + EventCallbackRef count_event(new CountEvent(&flag)); + + worker.center.dispatch_event_external(count_event); + // Start a new thread and wait for it to ready. + while (flag) + usleep(100); + + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + flag = 1; + worker.center.dispatch_event_external(count_event); + while (flag) + ; + } + uint64_t stop = Cycles::rdtsc(); + worker.stop(); + worker.join(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of copying a given number of bytes with memcpy. +double memcpy_shared(size_t size) +{ + int count = 1000000; + char src[size], dst[size]; + + memset(src, 0, sizeof(src)); + + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + memcpy(dst, src, size); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +double memcpy100() +{ + return memcpy_shared(100); +} + +double memcpy1000() +{ + return memcpy_shared(1000); +} + +double memcpy10000() +{ + return memcpy_shared(10000); +} + +// Benchmark rjenkins hashing performance on cached data. +template <int key_length> +double ceph_str_hash_rjenkins() +{ + int count = 100000; + char buf[key_length]; + + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) + ceph_str_hash(CEPH_STR_HASH_RJENKINS, buf, sizeof(buf)); + uint64_t stop = Cycles::rdtsc(); + + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of reading the fine-grain cycle counter. +double rdtsc_test() +{ + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + uint64_t total = 0; + for (int i = 0; i < count; i++) { + total += Cycles::rdtsc(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of the Cycles::to_seconds method. +double perf_cycles_to_seconds() +{ + int count = 1000000; + double total = 0; + uint64_t cycles = 994261; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + total += Cycles::to_seconds(cycles); + } + uint64_t stop = Cycles::rdtsc(); + // printf("Result: %.4f\n", total/count); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of the Cylcles::toNanoseconds method. +double perf_cycles_to_nanoseconds() +{ + int count = 1000000; + uint64_t total = 0; + uint64_t cycles = 994261; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + total += Cycles::to_nanoseconds(cycles); + } + uint64_t stop = Cycles::rdtsc(); + // printf("Result: %lu\n", total/count); + return Cycles::to_seconds(stop - start)/count; +} + + +#ifdef HAVE_SSE +/** + * Prefetch the cache lines containing [object, object + numBytes) into the + * processor's caches. + * The best docs for this are in the Intel instruction set reference under + * PREFETCH. + * \param object + * The start of the region of memory to prefetch. + * \param num_bytes + * The size of the region of memory to prefetch. + */ +static inline void prefetch(const void *object, uint64_t num_bytes) +{ + uint64_t offset = reinterpret_cast<uint64_t>(object) & 0x3fUL; + const char* p = reinterpret_cast<const char*>(object) - offset; + for (uint64_t i = 0; i < offset + num_bytes; i += 64) + _mm_prefetch(p + i, _MM_HINT_T0); +} +#endif + +// Measure the cost of the prefetch instruction. +double perf_prefetch() +{ +#ifdef HAVE_SSE + uint64_t total_ticks = 0; + int count = 10; + char buf[16 * 64]; + + for (int i = 0; i < count; i++) { + PerfHelper::flush_cache(); + uint64_t start = Cycles::rdtsc(); + prefetch(&buf[576], 64); + prefetch(&buf[0], 64); + prefetch(&buf[512], 64); + prefetch(&buf[960], 64); + prefetch(&buf[640], 64); + prefetch(&buf[896], 64); + prefetch(&buf[256], 64); + prefetch(&buf[704], 64); + prefetch(&buf[320], 64); + prefetch(&buf[384], 64); + prefetch(&buf[128], 64); + prefetch(&buf[448], 64); + prefetch(&buf[768], 64); + prefetch(&buf[832], 64); + prefetch(&buf[64], 64); + prefetch(&buf[192], 64); + uint64_t stop = Cycles::rdtsc(); + total_ticks += stop - start; + } + return Cycles::to_seconds(total_ticks) / count / 16; +#else + return -1; +#endif +} + +#if defined(__x86_64__) +/** + * This function is used to seralize machine instructions so that no + * instructions that appear after it in the current thread can run before any + * instructions that appear before it. + * + * It is useful for putting around rdpmc instructions (to pinpoint cache + * misses) as well as before rdtsc instructions, to prevent time pollution from + * instructions supposed to be executing before the timer starts. + */ +static inline void serialize() { + uint32_t eax, ebx, ecx, edx; + __asm volatile("cpuid" + : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) + : "a" (1U)); +} +#endif + +// Measure the cost of cpuid +double perf_serialize() { +#if defined(__x86_64__) + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + serialize(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +#else + return -1; +#endif +} + +// Measure the cost of an lfence instruction. +double lfence() +{ +#ifdef HAVE_SSE2 + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + __asm__ __volatile__("lfence" ::: "memory"); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +#else + return -1; +#endif +} + +// Measure the cost of an sfence instruction. +double sfence() +{ +#ifdef HAVE_SSE + int count = 1000000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + __asm__ __volatile__("sfence" ::: "memory"); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +#else + return -1; +#endif +} + +// Measure the cost of acquiring and releasing a SpinLock (assuming the +// lock is initially free). +double test_spinlock() +{ + int count = 1000000; + ceph::spinlock lock; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + lock.lock(); + lock.unlock(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Helper for spawn_thread. This is the main function that the thread executes +// (intentionally empty). +class ThreadHelper : public Thread { + void *entry() override { return 0; } +}; + +// Measure the cost of start and joining with a thread. +double spawn_thread() +{ + int count = 10000; + ThreadHelper thread; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + thread.create("thread_helper"); + thread.join(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +class FakeContext : public Context { + public: + void finish(int r) override {} +}; + +// Measure the cost of starting and stopping a Dispatch::Timer. +double perf_timer() +{ + int count = 1000000; + Mutex lock("perf_timer::lock"); + SafeTimer timer(g_ceph_context, lock); + FakeContext **c = new FakeContext*[count]; + for (int i = 0; i < count; i++) { + c[i] = new FakeContext(); + } + uint64_t start = Cycles::rdtsc(); + Mutex::Locker l(lock); + for (int i = 0; i < count; i++) { + if (timer.add_event_after(12345, c[i])) { + timer.cancel_event(c[i]); + } + } + uint64_t stop = Cycles::rdtsc(); + delete[] c; + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of throwing and catching an int. This uses an integer as +// the value thrown, which is presumably as fast as possible. +double throw_int() +{ + int count = 10000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + try { + throw 0; + } catch (int) { // NOLINT + // pass + } + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of throwing and catching an int from a function call. +double throw_int_call() +{ + int count = 10000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + try { + PerfHelper::throw_int(); + } catch (int) { // NOLINT + // pass + } + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of throwing and catching an Exception. This uses an actual +// exception as the value thrown, which may be slower than throwInt. +double throw_exception() +{ + int count = 10000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + try { + throw buffer::end_of_buffer(); + } catch (const buffer::end_of_buffer&) { + // pass + } + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of throwing and catching an Exception from a function call. +double throw_exception_call() +{ + int count = 10000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + try { + PerfHelper::throw_end_of_buffer(); + } catch (const buffer::end_of_buffer&) { + // pass + } + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// Measure the cost of pushing a new element on a std::vector, copying +// from the end to an internal element, and popping the end element. +double vector_push_pop() +{ + int count = 100000; + std::vector<int> vector; + vector.push_back(1); + vector.push_back(2); + vector.push_back(3); + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + vector.push_back(i); + vector.push_back(i+1); + vector.push_back(i+2); + vector[2] = vector.back(); + vector.pop_back(); + vector[0] = vector.back(); + vector.pop_back(); + vector[1] = vector.back(); + vector.pop_back(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/(count*3); +} + +// Measure the cost of ceph_clock_now +double perf_ceph_clock_now() +{ + int count = 100000; + uint64_t start = Cycles::rdtsc(); + for (int i = 0; i < count; i++) { + ceph_clock_now(); + } + uint64_t stop = Cycles::rdtsc(); + return Cycles::to_seconds(stop - start)/count; +} + +// The following struct and table define each performance test in terms of +// a string name and a function that implements the test. +struct TestInfo { + const char* name; // Name of the performance test; this is + // what gets typed on the command line to + // run the test. + double (*func)(); // Function that implements the test; + // returns the time (in seconds) for each + // iteration of that test. + const char *description; // Short description of this test (not more + // than about 40 characters, so the entire + // test output fits on a single line). +}; +TestInfo tests[] = { + {"atomic_int_cmp", atomic_int_cmp, + "atomic_t::compare_and_swap"}, + {"atomic_int_inc", atomic_int_inc, + "atomic_t::inc"}, + {"atomic_int_read", atomic_int_read, + "atomic_t::read"}, + {"atomic_int_set", atomic_int_set, + "atomic_t::set"}, + {"mutex_nonblock", mutex_nonblock, + "Mutex lock/unlock (no blocking)"}, + {"buffer_basic", buffer_basic, + "buffer create, add one ptr, delete"}, + {"buffer_encode_decode", buffer_encode_decode, + "buffer create, encode/decode object, delete"}, + {"buffer_basic_copy", buffer_basic_copy, + "buffer create, copy small block, delete"}, + {"buffer_copy", buffer_copy, + "copy out 2 small ptrs from buffer"}, + {"buffer_encode10", buffer_encode, + "buffer encoding 10 structures onto existing ptr"}, + {"buffer_iterator", buffer_iterator, + "iterate over buffer with 5 ptrs"}, + {"cond_ping_pong", cond_ping_pong, + "condition variable round-trip"}, + {"div32", div32, + "32-bit integer division instruction"}, + {"div64", div64, + "64-bit integer division instruction"}, + {"function_call", function_call, + "Call a function that has not been inlined"}, + {"eventcenter_poll", eventcenter_poll, + "EventCenter::process_events (no timers or events)"}, + {"eventcenter_dispatch", eventcenter_dispatch, + "EventCenter::dispatch_event_external latency"}, + {"memcpy100", memcpy100, + "Copy 100 bytes with memcpy"}, + {"memcpy1000", memcpy1000, + "Copy 1000 bytes with memcpy"}, + {"memcpy10000", memcpy10000, + "Copy 10000 bytes with memcpy"}, + {"ceph_str_hash_rjenkins", ceph_str_hash_rjenkins<16>, + "rjenkins hash on 16 byte of data"}, + {"ceph_str_hash_rjenkins", ceph_str_hash_rjenkins<256>, + "rjenkins hash on 256 bytes of data"}, + {"rdtsc", rdtsc_test, + "Read the fine-grain cycle counter"}, + {"cycles_to_seconds", perf_cycles_to_seconds, + "Convert a rdtsc result to (double) seconds"}, + {"cycles_to_seconds", perf_cycles_to_nanoseconds, + "Convert a rdtsc result to (uint64_t) nanoseconds"}, + {"prefetch", perf_prefetch, + "Prefetch instruction"}, + {"serialize", perf_serialize, + "serialize instruction"}, + {"lfence", lfence, + "Lfence instruction"}, + {"sfence", sfence, + "Sfence instruction"}, + {"spin_lock", test_spinlock, + "Acquire/release SpinLock"}, + {"spawn_thread", spawn_thread, + "Start and stop a thread"}, + {"perf_timer", perf_timer, + "Insert and cancel a SafeTimer"}, + {"throw_int", throw_int, + "Throw an int"}, + {"throw_int_call", throw_int_call, + "Throw an int in a function call"}, + {"throw_exception", throw_exception, + "Throw an Exception"}, + {"throw_exception_call", throw_exception_call, + "Throw an Exception in a function call"}, + {"vector_push_pop", vector_push_pop, + "Push and pop a std::vector"}, + {"ceph_clock_now", perf_ceph_clock_now, + "ceph_clock_now function"}, +}; + +/** + * Runs a particular test and prints a one-line result message. + * + * \param info + * Describes the test to run. + */ +void run_test(TestInfo& info) +{ + double secs = info.func(); + int width = printf("%-24s ", info.name); + if (secs == -1) { + width += printf(" architecture nonsupport "); + } else if (secs < 1.0e-06) { + width += printf("%8.2fns", 1e09*secs); + } else if (secs < 1.0e-03) { + width += printf("%8.2fus", 1e06*secs); + } else if (secs < 1.0) { + width += printf("%8.2fms", 1e03*secs); + } else { + width += printf("%8.2fs", secs); + } + printf("%*s %s\n", 32-width, "", info.description); +} + +int main(int argc, char *argv[]) +{ + vector<const char*> args; + argv_to_vec(argc, (const char **)argv, args); + + auto cct = global_init(NULL, args, CEPH_ENTITY_TYPE_CLIENT, + CODE_ENVIRONMENT_UTILITY, + CINIT_FLAG_NO_DEFAULT_CONFIG_FILE); + common_init_finish(g_ceph_context); + Cycles::init(); + + bind_thread_to_cpu(3); + if (argc == 1) { + // No test names specified; run all tests. + for (size_t i = 0; i < sizeof(tests)/sizeof(TestInfo); ++i) { + run_test(tests[i]); + } + } else { + // Run only the tests that were specified on the command line. + for (int i = 1; i < argc; i++) { + bool found_test = false; + for (size_t j = 0; j < sizeof(tests)/sizeof(TestInfo); ++j) { + if (strcmp(argv[i], tests[j].name) == 0) { + found_test = true; + run_test(tests[j]); + break; + } + } + if (!found_test) { + int width = printf("%-24s ??", argv[i]); + printf("%*s No such test\n", 32-width, ""); + } + } + } +} |