From 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 20:24:20 +0200 Subject: Adding upstream version 14.2.21. Signed-off-by: Daniel Baumann --- .../libs/math/example/root_elliptic_finding.cpp | 878 +++++++++++++++++++++ 1 file changed, 878 insertions(+) create mode 100644 src/boost/libs/math/example/root_elliptic_finding.cpp (limited to 'src/boost/libs/math/example/root_elliptic_finding.cpp') diff --git a/src/boost/libs/math/example/root_elliptic_finding.cpp b/src/boost/libs/math/example/root_elliptic_finding.cpp new file mode 100644 index 00000000..a1c81124 --- /dev/null +++ b/src/boost/libs/math/example/root_elliptic_finding.cpp @@ -0,0 +1,878 @@ +// Copyright Paul A. Bristow 2015 + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +// Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms. +// root_n_finding_algorithms.cpp Generalised for nth root version. + +// http://en.wikipedia.org/wiki/Cube_root + +// Note that this file contains Quickbook mark-up as well as code +// and comments, don't change any of the special comment mark-ups! +// This program also writes files in Quickbook tables mark-up format. + +#include +#include +#include +#include +#include +#include +#include + +//using boost::math::policies::policy; +//using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits. +//using boost::math::tools::bracket_and_solve_root; +//using boost::math::tools::toms748_solve; +//using boost::math::tools::halley_iterate; +//using boost::math::tools::newton_raphson_iterate; +//using boost::math::tools::schroder_iterate; + +#include // For float_distance. + +#include // is binary. +using boost::multiprecision::cpp_bin_float_100; +using boost::multiprecision::cpp_bin_float_50; + +#include +#include +#include + +// STL +#include +#include +#include +#include +#include +#include // std::ofstream +#include +#include // for type name using typid(thingy).name(); + +#ifdef __FILE__ + std::string sourcefilename = __FILE__; +#else + std::string sourcefilename(""); +#endif + + std::string chop_last(std::string s) + { + std::string::size_type pos = s.find_last_of("\\/"); + if(pos != std::string::npos) + s.erase(pos); + else if(s.empty()) + abort(); + else + s.erase(); + return s; + } + + std::string make_root() + { + std::string result; + if(sourcefilename.find_first_of(":") != std::string::npos) + { + result = chop_last(sourcefilename); // lose filename part + result = chop_last(result); // lose /example/ + result = chop_last(result); // lose /math/ + result = chop_last(result); // lose /libs/ + } + else + { + result = chop_last(sourcefilename); // lose filename part + if(result.empty()) + result = "."; + result += "/../../.."; + } + return result; + } + + std::string short_file_name(std::string s) + { + std::string::size_type pos = s.find_last_of("\\/"); + if(pos != std::string::npos) + s.erase(0, pos + 1); + return s; + } + + std::string boost_root = make_root(); + + +std::string fp_hardware; // Any hardware features like SEE or AVX + +const std::string roots_name = "libs/math/doc/roots/"; + +const std::string full_roots_name(boost_root + "/libs/math/doc/roots/"); + +const std::size_t nooftypes = 4; +const std::size_t noofalgos = 4; + +double digits_accuracy = 1.0; // 1 == maximum possible accuracy. + +std::stringstream ss; + +std::ofstream fout; + +std::vector algo_names = +{ + "TOMS748", "Newton", "Halley", "Schr'''ö'''der" +}; + +std::vector names = +{ + "float", "double", "long double", "cpp_bin_float50" +}; + +uintmax_t iters; // Global as value of iterations is not returned. + +struct root_info +{ // for a floating-point type, float, double ... + std::size_t max_digits10; // for type. + std::string full_typename; // for type from type_id.name(). + std::string short_typename; // for type "float", "double", "cpp_bin_float_50" .... + std::size_t bin_digits; // binary in floating-point type numeric_limits::digits; + int get_digits; // fraction of maximum possible accuracy required. + // = digits * digits_accuracy + // Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder. + //std::vector< boost::int_least64_t> times; converted to int. + std::vector times; // arbirary units (ticks). + //boost::int_least64_t min_time = std::numeric_limits::max(); // Used to normalize times (as int). + std::vector normed_times; + int min_time = (std::numeric_limits::max)(); // Used to normalize times. + std::vector iterations; + std::vector distances; + std::vector full_results; +}; // struct root_info + +std::vector root_infos; // One element for each floating-point type used. + +inline std::string build_test_name(const char* type_name, const char* test_name) +{ + std::string result(BOOST_COMPILER); + result += "|"; + result += BOOST_STDLIB; + result += "|"; + result += BOOST_PLATFORM; + result += "|"; + result += type_name; + result += "|"; + result += test_name; +#if defined(_DEBUG) || !defined(NDEBUG) + result += "|"; + result += " debug"; +#else + result += "|"; + result += " release"; +#endif + result += "|"; + return result; +} // std::string build_test_name + +// Algorithms ////////////////////////////////////////////// + +// No derivatives - using TOMS748 internally. +//[elliptic_noderv_func +template +struct elliptic_root_functor_noderiv +{ // Nth root of x using only function - no derivatives. + elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) + { // Constructor just stores value a to find root of. + } + T operator()(T const& x) + { + using std::sqrt; + // return the difference between required arc-length, and the calculated arc-length for an + // ellipse with radii m_radius and x: + T a = (std::max)(m_radius, x); + T b = (std::min)(m_radius, x); + T k = sqrt(1 - b * b / (a * a)); + return 4 * a * boost::math::ellint_2(k) - m_arc; + } +private: + T m_arc; // length of arc. + T m_radius; // one of the two radii of the ellipse +}; // template struct elliptic_root_functor_noderiv +//] +//[elliptic_root_noderiv +template +T elliptic_root_noderiv(T radius, T arc) +{ // return the other radius of an ellipse, given one radii and the arc-length + using namespace std; // Help ADL of std functions. + using namespace boost::math::tools; // For bracket_and_solve_root. + + T guess = sqrt(arc * arc / 16 - radius * radius); + T factor = 1.2; // How big steps to take when searching. + + const boost::uintmax_t maxit = 50; // Limit to maximum iterations. + boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual. + bool is_rising = true; // arc-length increases if one radii increases, so function is rising + // Define a termination condition, stop when nearly all digits are correct, but allow for + // the fact that we are returning a range, and must have some inaccuracy in the elliptic integral: + eps_tolerance tol(std::numeric_limits::digits - 2); + // Call bracket_and_solve_root to find the solution, note that this is a rising function: + std::pair r = bracket_and_solve_root(elliptic_root_functor_noderiv(arc, radius), guess, factor, is_rising, tol, it); + //<- + iters = it; + //-> + // Result is midway between the endpoints of the range: + return r.first + (r.second - r.first) / 2; +} // template T elliptic_root_noderiv(T x) +//] +// Using 1st derivative only Newton-Raphson +//[elliptic_1deriv_func +template +struct elliptic_root_functor_1deriv +{ // Functor also returning 1st derviative. + BOOST_STATIC_ASSERT_MSG(boost::is_integral::value == false, "Only floating-point type types can be used!"); + + elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) + { // Constructor just stores value a to find root of. + } + std::pair operator()(T const& x) + { + using std::sqrt; + // Return the difference between required arc-length, and the calculated arc-length for an + // ellipse with radii m_radius and x, plus it's derivative. + // See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29] + // We require two elliptic integral calls, but from these we can calculate both + // the function and it's derivative: + T a = (std::max)(m_radius, x); + T b = (std::min)(m_radius, x); + T a2 = a * a; + T b2 = b * b; + T k = sqrt(1 - b2 / a2); + T Ek = boost::math::ellint_2(k); + T Kk = boost::math::ellint_1(k); + T fx = 4 * a * Ek - m_arc; + T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2); + return std::make_pair(fx, dfx); + } +private: + T m_arc; // length of arc. + T m_radius; // one of the two radii of the ellipse +}; // struct elliptic_root__functor_1deriv +//] +//[elliptic_1deriv +template +T elliptic_root_1deriv(T radius, T arc) +{ + using namespace std; // Help ADL of std functions. + using namespace boost::math::tools; // For newton_raphson_iterate. + + BOOST_STATIC_ASSERT_MSG(boost::is_integral::value == false, "Only floating-point type types can be used!"); + + T guess = sqrt(arc * arc / 16 - radius * radius); + T min = 0; // Minimum possible value is zero. + T max = arc; // Maximum possible value is the arc length. + + // Accuracy doubles at each step, so stop when just over half of the digits are + // correct, and rely on that step to polish off the remainder: + int get_digits = static_cast(std::numeric_limits::digits * 0.6); + const boost::uintmax_t maxit = 20; + boost::uintmax_t it = maxit; + T result = newton_raphson_iterate(elliptic_root_functor_1deriv(arc, radius), guess, min, max, get_digits, it); + //<- + iters = it; + //-> + return result; +} // T elliptic_root_1_deriv Newton-Raphson +//] + +// Using 1st and 2nd derivatives with Halley algorithm. +//[elliptic_2deriv_func +template +struct elliptic_root_functor_2deriv +{ // Functor returning both 1st and 2nd derivatives. + BOOST_STATIC_ASSERT_MSG(boost::is_integral::value == false, "Only floating-point type types can be used!"); + + elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {} + std::tuple operator()(T const& x) + { + using std::sqrt; + // Return the difference between required arc-length, and the calculated arc-length for an + // ellipse with radii m_radius and x, plus it's derivative. + // See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29] + // for the second derivative. + T a = (std::max)(m_radius, x); + T b = (std::min)(m_radius, x); + T a2 = a * a; + T b2 = b * b; + T k = sqrt(1 - b2 / a2); + T Ek = boost::math::ellint_2(k); + T Kk = boost::math::ellint_1(k); + T fx = 4 * a * Ek - m_arc; + T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2); + T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2)); + return std::make_tuple(fx, dfx, dfx2); + } +private: + T m_arc; // length of arc. + T m_radius; // one of the two radii of the ellipse +}; +//] +//[elliptic_2deriv +template +T elliptic_root_2deriv(T radius, T arc) +{ + using namespace std; // Help ADL of std functions. + using namespace boost::math::tools; // For halley_iterate. + + BOOST_STATIC_ASSERT_MSG(boost::is_integral::value == false, "Only floating-point type types can be used!"); + + T guess = sqrt(arc * arc / 16 - radius * radius); + T min = 0; // Minimum possible value is zero. + T max = arc; // radius can't be larger than the arc length. + + // Accuracy triples at each step, so stop when just over one-third of the digits + // are correct, and the last iteration will polish off the remaining digits: + int get_digits = static_cast(std::numeric_limits::digits * 0.4); + const boost::uintmax_t maxit = 20; + boost::uintmax_t it = maxit; + T result = halley_iterate(elliptic_root_functor_2deriv(arc, radius), guess, min, max, get_digits, it); + //<- + iters = it; + //-> + return result; +} // nth_2deriv Halley +//] +// Using 1st and 2nd derivatives using Schroder algorithm. + +template +T elliptic_root_2deriv_s(T arc, T radius) +{ // return nth root of x using 1st and 2nd derivatives and Schroder. + + using namespace std; // Help ADL of std functions. + using namespace boost::math::tools; // For schroder_iterate. + + BOOST_STATIC_ASSERT_MSG(boost::is_integral::value == false, "Only floating-point type types can be used!"); + + T guess = sqrt(arc * arc / 16 - radius * radius); + T min = 0; // Minimum possible value is zero. + T max = arc; // radius can't be larger than the arc length. + + int digits = std::numeric_limits::digits; // Maximum possible binary digits accuracy for type T. + int get_digits = static_cast(digits * digits_accuracy); + const boost::uintmax_t maxit = 20; + boost::uintmax_t it = maxit; + T result = schroder_iterate(elliptic_root_functor_2deriv(arc, radius), guess, min, max, get_digits, it); + iters = it; + + return result; +} // T elliptic_root_2deriv_s Schroder + +//////////////////////////////////////////////////////// end of algorithms - perhaps in a separate .hpp? + +//! Print 4 floating-point types info: max_digits10, digits and required accuracy digits as a Quickbook table. +int table_type_info(double digits_accuracy) +{ + std::string qbk_name = full_roots_name; // Prefix by boost_root file. + + qbk_name += "type_info_table"; + std::stringstream ss; + ss.precision(3); + ss << "_" << digits_accuracy * 100; + qbk_name += ss.str(); + +#ifdef _MSC_VER + qbk_name += "_msvc.qbk"; +#else // assume GCC + qbk_name += "_gcc.qbk"; +#endif + + // Example: type_info_table_100_msvc.qbk + fout.open(qbk_name, std::ios_base::out); + + if (fout.is_open()) + { + std::cout << "Output type table to " << qbk_name << std::endl; + } + else + { // Failed to open. + std::cout << " Open file " << qbk_name << " for output failed!" << std::endl; + std::cout << "errno " << errno << std::endl; + return errno; + } + + fout << + "[/" + << qbk_name + << "\n" + "Copyright 2015 Paul A. Bristow.""\n" + "Copyright 2015 John Maddock.""\n" + "Distributed under the Boost Software License, Version 1.0.""\n" + "(See accompanying file LICENSE_1_0.txt or copy at""\n" + "http://www.boost.org/LICENSE_1_0.txt).""\n" + "]""\n" + << std::endl; + + fout << "[h6 Fraction of maximum possible bits of accuracy required is " << digits_accuracy << ".]\n" << std::endl; + + std::string table_id("type_info"); + table_id += ss.str(); // Fraction digits accuracy. + +#ifdef _MSC_VER + table_id += "_msvc"; +#else // assume GCC + table_id += "_gcc"; +#endif + + fout << "[table:" << table_id << " Digits for float, double, long double and cpp_bin_float_50\n" + << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header. + + // For all fout types: + + fout << "[[" << "float" << "]" + << "[" << std::numeric_limits::max_digits10 << "]" // max_digits10 + << "[" << std::numeric_limits::digits << "]"// < "Binary digits + << "[" << static_cast(std::numeric_limits::digits * digits_accuracy) << "]]\n"; // Accuracy digits. + + fout << "[[" << "float" << "]" + << "[" << std::numeric_limits::max_digits10 << "]" // max_digits10 + << "[" << std::numeric_limits::digits << "]"// < "Binary digits + << "[" << static_cast(std::numeric_limits::digits * digits_accuracy) << "]]\n"; // Accuracy digits. + + fout << "[[" << "long double" << "]" + << "[" << std::numeric_limits::max_digits10 << "]" // max_digits10 + << "[" << std::numeric_limits::digits << "]"// < "Binary digits + << "[" << static_cast(std::numeric_limits::digits * digits_accuracy) << "]]\n"; // Accuracy digits. + + fout << "[[" << "cpp_bin_float_50" << "]" + << "[" << std::numeric_limits::max_digits10 << "]" // max_digits10 + << "[" << std::numeric_limits::digits << "]"// < "Binary digits + << "[" << static_cast(std::numeric_limits::digits * digits_accuracy) << "]]\n"; // Accuracy digits. + + fout << "] [/table table_id_msvc] \n" << std::endl; // End of table. + + fout.close(); + return 0; +} // type_table + +//! Evaluate root N timing for each algorithm, and for one floating-point type T. +template +int test_root(cpp_bin_float_100 big_radius, cpp_bin_float_100 big_arc, cpp_bin_float_100 answer, const char* type_name, std::size_t type_no) +{ + std::size_t max_digits = 2 + std::numeric_limits::digits * 3010 / 10000; + // For new versions use max_digits10 + // std::cout.precision(std::numeric_limits::max_digits10); + std::cout.precision(max_digits); + std::cout << std::showpoint << std::endl; // Show trailing zeros too. + + root_infos.push_back(root_info()); + + root_infos[type_no].max_digits10 = max_digits; + root_infos[type_no].full_typename = typeid(T).name(); // Full typename. + root_infos[type_no].short_typename = type_name; // Short typename. + root_infos[type_no].bin_digits = std::numeric_limits::digits; + root_infos[type_no].get_digits = static_cast(std::numeric_limits::digits * digits_accuracy); + + T radius = static_cast(big_radius); + T arc = static_cast(big_arc); + + T result; // root + T sum = 0; + T ans = static_cast(answer); + + using boost::timer::nanosecond_type; + using boost::timer::cpu_times; + using boost::timer::cpu_timer; + + long eval_count = boost::is_floating_point::value ? 1000000 : 10000; // To give a sufficiently stable timing for the fast built-in types, + // This takes an inconveniently long time for multiprecision cpp_bin_float_50 etc types. + + cpu_times now; // Holds wall, user and system times. + + { // Evaluate times etc for each algorithm. + //algorithm_names.push_back("TOMS748"); // + cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. + ti.start(); + for(long i = eval_count; i >= 0; --i) + { + result = elliptic_root_noderiv(radius, arc); // + sum += result; + } + now = ti.elapsed(); + int time = static_cast(now.user / eval_count); + root_infos[type_no].times.push_back(time); // CPU time taken. + if (time < root_infos[type_no].min_time) + { + root_infos[type_no].min_time = time; + } + ti.stop(); + long int distance = static_cast(boost::math::float_distance(result, ans)); + root_infos[type_no].distances.push_back(distance); + root_infos[type_no].iterations.push_back(iters); // + root_infos[type_no].full_results.push_back(result); + } + { + // algorithm_names.push_back("Newton"); // algorithm + cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. + ti.start(); + for(long i = eval_count; i >= 0; --i) + { + result = elliptic_root_1deriv(radius, arc); // + sum += result; + } + now = ti.elapsed(); + int time = static_cast(now.user / eval_count); + root_infos[type_no].times.push_back(time); // CPU time taken. + if (time < root_infos[type_no].min_time) + { + root_infos[type_no].min_time = time; + } + + ti.stop(); + long int distance = static_cast(boost::math::float_distance(result, ans)); + root_infos[type_no].distances.push_back(distance); + root_infos[type_no].iterations.push_back(iters); // + root_infos[type_no].full_results.push_back(result); + } + { + //algorithm_names.push_back("Halley"); // algorithm + cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. + ti.start(); + for(long i = eval_count; i >= 0; --i) + { + result = elliptic_root_2deriv(radius, arc); // + sum += result; + } + now = ti.elapsed(); + int time = static_cast(now.user / eval_count); + root_infos[type_no].times.push_back(time); // CPU time taken. + ti.stop(); + if (time < root_infos[type_no].min_time) + { + root_infos[type_no].min_time = time; + } + long int distance = static_cast(boost::math::float_distance(result, ans)); + root_infos[type_no].distances.push_back(distance); + root_infos[type_no].iterations.push_back(iters); // + root_infos[type_no].full_results.push_back(result); + } + { + // algorithm_names.push_back("Schr'''ö'''der"); // algorithm + cpu_timer ti; // Can start, pause, resume and stop, and read elapsed. + ti.start(); + for(long i = eval_count; i >= 0; --i) + { + result = elliptic_root_2deriv_s(arc, radius); // + sum += result; + } + now = ti.elapsed(); + int time = static_cast(now.user / eval_count); + root_infos[type_no].times.push_back(time); // CPU time taken. + if (time < root_infos[type_no].min_time) + { + root_infos[type_no].min_time = time; + } + ti.stop(); + long int distance = static_cast(boost::math::float_distance(result, ans)); + root_infos[type_no].distances.push_back(distance); + root_infos[type_no].iterations.push_back(iters); // + root_infos[type_no].full_results.push_back(result); + } + for (size_t i = 0; i != root_infos[type_no].times.size(); i++) // For each time. + { // Normalize times. + root_infos[type_no].normed_times.push_back(static_cast(root_infos[type_no].times[i]) / root_infos[type_no].min_time); + } + + std::cout << "Accumulated result was: " << sum << std::endl; + + return 4; // eval_count of how many algorithms used. +} // test_root + +/*! Fill array of times, interations, etc for Nth root for all 4 types, + and write a table of results in Quickbook format. + */ +void table_root_info(cpp_bin_float_100 radius, cpp_bin_float_100 arc) +{ + using std::abs; + + std::cout << nooftypes << " floating-point types tested:" << std::endl; +#if defined(_DEBUG) || !defined(NDEBUG) + std::cout << "Compiled in debug mode." << std::endl; +#else + std::cout << "Compiled in optimise mode." << std::endl; +#endif + std::cout << "FP hardware " << fp_hardware << std::endl; + // Compute the 'right' answer for root N at 100 decimal digits. + cpp_bin_float_100 full_answer = elliptic_root_noderiv(radius, arc); + + root_infos.clear(); // Erase any previous data. + // Fill the elements of the array for each floating-point type. + + test_root(radius, arc, full_answer, "float", 0); + test_root(radius, arc, full_answer, "double", 1); + test_root(radius, arc, full_answer, "long double", 2); + test_root(radius, arc, full_answer, "cpp_bin_float_50", 3); + + // Use info from 4 floating point types to + + // Prepare Quickbook table for a single root + // with columns of times, iterations, distances repeated for various floating-point types, + // and 4 rows for each algorithm. + + std::stringstream table_info; + table_info.precision(3); + table_info << "[table:elliptic root with radius " << radius << " and arc length " << arc << ") for float, double, long double and cpp_bin_float_50 types"; + if (fp_hardware != "") + { + table_info << ", using " << fp_hardware; + } + table_info << std::endl; + + fout << table_info.str() + << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n" + << "[[Algo ]"; + for (size_t tp = 0; tp != nooftypes; tp++) + { // For all types: + fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]"; + } + fout << "]" << std::endl; + + // Row for all algorithms. + for (std::size_t algo = 0; algo != noofalgos; algo++) + { + fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]"; + for (size_t tp = 0; tp != nooftypes; tp++) + { // For all types: + fout + << "[" << std::right << std::showpoint + << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "][" + << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "]["; + fout << std::setw(3) << std::setprecision(3); + double normed_time = root_infos[tp].normed_times[algo]; + if (abs(normed_time - 1.00) <= 0.05) + { // At or near the best time, so show as blue. + fout << "[role blue " << normed_time << "]"; + } + else if (abs(normed_time) > 4.) + { // markedly poor so show as red. + fout << "[role red " << normed_time << "]"; + } + else + { // Not the best, so normal black. + fout << normed_time; + } + fout << "][" + << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]"; + } // tp + fout << "]" << std::endl; + } // for algo + fout << "] [/end of table root]\n"; +} // void table_root_info + +/*! Output program header, table of type info, and tables for 4 algorithms and 4 floating-point types, + for Nth root required digits_accuracy. + */ + +int roots_tables(cpp_bin_float_100 radius, cpp_bin_float_100 arc, double digits_accuracy) +{ + ::digits_accuracy = digits_accuracy; + // Save globally so that it is available to root-finding algorithms. Ugly :-( + +#if defined(_DEBUG) || !defined(NDEBUG) + std::string debug_or_optimize("Compiled in debug mode."); +#else + std::string debug_or_optimize("Compiled in optimise mode."); +#endif + + // Create filename for roots_table + std::string qbk_name = full_roots_name; + qbk_name += "elliptic_table"; + + std::stringstream ss; + ss.precision(3); + // ss << "_" << N // now put all the tables in one .qbk file? + ss << "_" << digits_accuracy * 100 + << std::flush; + // Assume only save optimize mode runs, so don't add any _DEBUG info. + qbk_name += ss.str(); + +#ifdef _MSC_VER + qbk_name += "_msvc"; +#else // assume GCC + qbk_name += "_gcc"; +#endif + if (fp_hardware != "") + { + qbk_name += fp_hardware; + } + qbk_name += ".qbk"; + + fout.open(qbk_name, std::ios_base::out); + + if (fout.is_open()) + { + std::cout << "Output root table to " << qbk_name << std::endl; + } + else + { // Failed to open. + std::cout << " Open file " << qbk_name << " for output failed!" << std::endl; + std::cout << "errno " << errno << std::endl; + return errno; + } + + fout << + "[/" + << qbk_name + << "\n" + "Copyright 2015 Paul A. Bristow.""\n" + "Copyright 2015 John Maddock.""\n" + "Distributed under the Boost Software License, Version 1.0.""\n" + "(See accompanying file LICENSE_1_0.txt or copy at""\n" + "http://www.boost.org/LICENSE_1_0.txt).""\n" + "]""\n" + << std::endl; + + // Print out the program/compiler/stdlib/platform names as a Quickbook comment: + fout << "\n[h6 Program [@../../example/" << short_file_name(sourcefilename) << " " << short_file_name(sourcefilename) << "],\n " + << BOOST_COMPILER << ", " + << BOOST_STDLIB << ", " + << BOOST_PLATFORM << "\n" + << debug_or_optimize + << ((fp_hardware != "") ? ", " + fp_hardware : "") + << "]" // [h6 close]. + << std::endl; + + //fout << "Fraction of full accuracy " << digits_accuracy << std::endl; + + table_root_info(radius, arc); + + fout.close(); + + // table_type_info(digits_accuracy); + + return 0; +} // roots_tables + + +int main() +{ + using namespace boost::multiprecision; + using namespace boost::math; + + + try + { + std::cout << "Tests run with " << BOOST_COMPILER << ", " + << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", "; + +// How to: Configure Visual C++ Projects to Target 64-Bit Platforms +// https://msdn.microsoft.com/en-us/library/9yb4317s.aspx + +#ifdef _M_X64 // Defined for compilations that target x64 processors. + std::cout << "X64 " << std::endl; + fp_hardware += "_X64"; +#else +# ifdef _M_IX86 + std::cout << "X32 " << std::endl; + fp_hardware += "_X86"; +# endif +#endif + +#ifdef _M_AMD64 + std::cout << "AMD64 " << std::endl; + // fp_hardware += "_AMD64"; +#endif + +// https://msdn.microsoft.com/en-us/library/7t5yh4fd.aspx +// /arch (x86) options /arch:[IA32|SSE|SSE2|AVX|AVX2] +// default is to use SSE and SSE2 instructions by default. +// https://msdn.microsoft.com/en-us/library/jj620901.aspx +// /arch (x64) options /arch:AVX and /arch:AVX2 + +// MSVC doesn't bother to set these SSE macros! +// http://stackoverflow.com/questions/18563978/sse-sse2-is-enabled-control-in-visual-studio +// https://msdn.microsoft.com/en-us/library/b0084kay.aspx predefined macros. + +// But some of these macros are *not* defined by MSVC, +// unlike AVX (but *are* defined by GCC and Clang). +// So the macro code above does define them. +#if (defined(_M_AMD64) || defined (_M_X64)) +# define _M_X64 +# define __SSE2__ +#else +# ifdef _M_IX86_FP // Expands to an integer literal value indicating which /arch compiler option was used: + std::cout << "Floating-point _M_IX86_FP = " << _M_IX86_FP << std::endl; +# if (_M_IX86_FP == 2) // 2 if /arch:SSE2, /arch:AVX or /arch:AVX2 +# define __SSE2__ // x32 +# elif (_M_IX86_FP == 1) // 1 if /arch:SSE was used. +# define __SSE__ // x32 +# elif (_M_IX86_FP == 0) // 0 if /arch:IA32 was used. +# define _X32 // No special FP instructions. +# endif +# endif +#endif +// Set the fp_hardware that is used in the .qbk filename. +#ifdef __AVX2__ + std::cout << "Floating-point AVX2 " << std::endl; + fp_hardware += "_AVX2"; +# else +# ifdef __AVX__ + std::cout << "Floating-point AVX " << std::endl; + fp_hardware += "_AVX"; +# else +# ifdef __SSE2__ + std::cout << "Floating-point SSE2 " << std::endl; + fp_hardware += "_SSE2"; +# else +# ifdef __SSE__ + std::cout << "Floating-point SSE " << std::endl; + fp_hardware += "_SSE"; +# endif +# endif +# endif +# endif + +#ifdef _M_IX86 + std::cout << "Floating-point X86 _M_IX86 = " << _M_IX86 << std::endl; + // https://msdn.microsoft.com/en-us/library/aa273918%28v=vs.60%29.aspx#_predir_table_1..3 + // 600 = Pentium Pro +#endif + +#ifdef _MSC_FULL_VER + std::cout << "Floating-point _MSC_FULL_VER " << _MSC_FULL_VER << std::endl; +#endif + +#ifdef __MSVC_RUNTIME_CHECKS + std::cout << "Runtime __MSVC_RUNTIME_CHECKS " << std::endl; +#endif + + BOOST_MATH_CONTROL_FP; + + cpp_bin_float_100 radius("28."); + cpp_bin_float_100 arc("300."); + // Compute full answer to more than precision of tests. + //T value = 28.; // integer (exactly representable as floating-point) + // whose cube root is *not* exactly representable. + // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits. + // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895 + + std::cout.precision(100); + std::cout << "radius 1" << radius << std::endl; + std::cout << "arc length" << arc << std::endl; + // std::cout << ",\n""answer = " << full_answer << std::endl; + std::cout.precision(6); + // cbrt cpp_bin_float_100 full_answer("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895"); + + // Output the table of types, maxdigits10 and digits and required digits for some accuracies. + + // Output tables for some roots at full accuracy. + roots_tables(radius, arc, 1.); + + // Output tables for some roots at less accuracy. + //roots_tables(full_value, 0.75); + + return boost::exit_success; + } + catch (std::exception const& ex) + { + std::cout << "exception thrown: " << ex.what() << std::endl; + return boost::exit_failure; + } +} // int main() + +/* + +*/ -- cgit v1.2.3