From 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 20:24:20 +0200 Subject: Adding upstream version 14.2.21. Signed-off-by: Daniel Baumann --- .../libs/math/test/univariate_statistics_test.cpp | 794 +++++++++++++++++++++ 1 file changed, 794 insertions(+) create mode 100644 src/boost/libs/math/test/univariate_statistics_test.cpp (limited to 'src/boost/libs/math/test/univariate_statistics_test.cpp') diff --git a/src/boost/libs/math/test/univariate_statistics_test.cpp b/src/boost/libs/math/test/univariate_statistics_test.cpp new file mode 100644 index 00000000..5cee9888 --- /dev/null +++ b/src/boost/libs/math/test/univariate_statistics_test.cpp @@ -0,0 +1,794 @@ +/* + * (C) Copyright Nick Thompson 2018. + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using boost::multiprecision::cpp_bin_float_50; +using boost::multiprecision::cpp_complex_50; + +/* + * Test checklist: + * 1) Does it work with multiprecision? + * 2) Does it work with .cbegin()/.cend() if the data is not altered? + * 3) Does it work with ublas and std::array? (Checking Eigen and Armadillo will make the CI system really unhappy.) + * 4) Does it work with std::forward_list if a forward iterator is all that is required? + * 5) Does it work with complex data if complex data is sensible? + */ + + // To stress test, set global_seed = 0, global_size = huge. + static const constexpr size_t global_seed = 0; + static const constexpr size_t global_size = 128; + +template +std::vector generate_random_vector(size_t size, size_t seed) +{ + if (seed == 0) + { + std::random_device rd; + seed = rd(); + } + std::vector v(size); + + std::mt19937 gen(seed); + + if constexpr (std::is_floating_point::value) + { + std::normal_distribution dis(0, 1); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = dis(gen); + } + return v; + } + else if constexpr (std::is_integral::value) + { + // Rescaling by larger than 2 is UB! + std::uniform_int_distribution dis(std::numeric_limits::lowest()/2, (std::numeric_limits::max)()/2); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = dis(gen); + } + return v; + } + else if constexpr (boost::is_complex::value) + { + std::normal_distribution dis(0, 1); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = {dis(gen), dis(gen)}; + } + return v; + } + else if constexpr (boost::multiprecision::number_category::value == boost::multiprecision::number_kind_complex) + { + std::normal_distribution dis(0, 1); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = {dis(gen), dis(gen)}; + } + return v; + } + else if constexpr (boost::multiprecision::number_category::value == boost::multiprecision::number_kind_floating_point) + { + std::normal_distribution dis(0, 1); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = dis(gen); + } + return v; + } + else + { + BOOST_ASSERT_MSG(false, "Could not identify type for random vector generation."); + return v; + } +} + + +template +void test_integer_mean() +{ + double tol = 100*std::numeric_limits::epsilon(); + std::vector v{1,2,3,4,5}; + double mu = boost::math::statistics::mean(v); + BOOST_TEST(abs(mu - 3) < tol); + + // Work with std::array? + std::array w{1,2,3,4,5}; + mu = boost::math::statistics::mean(w); + BOOST_TEST(abs(mu - 3) < tol); + + v = generate_random_vector(global_size, global_seed); + Z scale = 2; + + double m1 = scale*boost::math::statistics::mean(v); + for (auto & x : v) + { + x *= scale; + } + double m2 = boost::math::statistics::mean(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); +} + +template +auto naive_mean(RandomAccessContainer const & v) +{ + typename RandomAccessContainer::value_type sum = 0; + for (auto & x : v) + { + sum += x; + } + return sum/v.size(); +} + +template +void test_mean() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,2,3,4,5}; + Real mu = boost::math::statistics::mean(v.begin(), v.end()); + BOOST_TEST(abs(mu - 3) < tol); + + // Does range call work? + mu = boost::math::statistics::mean(v); + BOOST_TEST(abs(mu - 3) < tol); + + // Can we successfully average only part of the vector? + mu = boost::math::statistics::mean(v.begin(), v.begin() + 3); + BOOST_TEST(abs(mu - 2) < tol); + + // Does it work when we const qualify? + mu = boost::math::statistics::mean(v.cbegin(), v.cend()); + BOOST_TEST(abs(mu - 3) < tol); + + // Does it work for std::array? + std::array u{1,2,3,4,5,6,7}; + mu = boost::math::statistics::mean(u.begin(), u.end()); + BOOST_TEST(abs(mu - 4) < tol); + + // Does it work for a forward iterator? + std::forward_list l{1,2,3,4,5,6,7}; + mu = boost::math::statistics::mean(l.begin(), l.end()); + BOOST_TEST(abs(mu - 4) < tol); + + // Does it work with ublas vectors? + boost::numeric::ublas::vector w(7); + for (size_t i = 0; i < w.size(); ++i) + { + w[i] = i+1; + } + mu = boost::math::statistics::mean(w.cbegin(), w.cend()); + BOOST_TEST(abs(mu - 4) < tol); + + v = generate_random_vector(global_size, global_seed); + Real scale = 2; + Real m1 = scale*boost::math::statistics::mean(v); + for (auto & x : v) + { + x *= scale; + } + Real m2 = boost::math::statistics::mean(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); + + // Stress test: + for (size_t i = 1; i < 30; ++i) + { + v = generate_random_vector(i, 12803); + auto naive_ = naive_mean(v); + auto higham_ = boost::math::statistics::mean(v); + if (abs(higham_ - naive_) >= 100*tol*abs(naive_)) + { + std::cout << std::hexfloat; + std::cout << "Terms = " << v.size() << "\n"; + std::cout << "higham = " << higham_ << "\n"; + std::cout << "naive_ = " << naive_ << "\n"; + } + BOOST_TEST(abs(higham_ - naive_) < 100*tol*abs(naive_)); + } + +} + +template +void test_complex_mean() +{ + typedef typename Complex::value_type Real; + Real tol = std::numeric_limits::epsilon(); + std::vector v{{0,1},{0,2},{0,3},{0,4},{0,5}}; + auto mu = boost::math::statistics::mean(v.begin(), v.end()); + BOOST_TEST(abs(mu.imag() - 3) < tol); + BOOST_TEST(abs(mu.real()) < tol); + + // Does range work? + mu = boost::math::statistics::mean(v); + BOOST_TEST(abs(mu.imag() - 3) < tol); + BOOST_TEST(abs(mu.real()) < tol); +} + +template +void test_variance() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1,1,1,1}; + Real sigma_sq = boost::math::statistics::variance(v.begin(), v.end()); + BOOST_TEST(abs(sigma_sq) < tol); + + sigma_sq = boost::math::statistics::variance(v); + BOOST_TEST(abs(sigma_sq) < tol); + + Real s_sq = boost::math::statistics::sample_variance(v); + BOOST_TEST(abs(s_sq) < tol); + + std::vector u{1}; + sigma_sq = boost::math::statistics::variance(u.cbegin(), u.cend()); + BOOST_TEST(abs(sigma_sq) < tol); + + std::array w{0,1,0,1,0,1,0,1}; + sigma_sq = boost::math::statistics::variance(w.begin(), w.end()); + BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol); + + sigma_sq = boost::math::statistics::variance(w); + BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol); + + std::forward_list l{0,1,0,1,0,1,0,1}; + sigma_sq = boost::math::statistics::variance(l.begin(), l.end()); + BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol); + + v = generate_random_vector(global_size, global_seed); + Real scale = 2; + Real m1 = scale*scale*boost::math::statistics::variance(v); + for (auto & x : v) + { + x *= scale; + } + Real m2 = boost::math::statistics::variance(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); + + // Wikipedia example for a variance of N sided die: + // https://en.wikipedia.org/wiki/Variance + for (size_t j = 16; j < 2048; j *= 2) + { + v.resize(1024); + Real n = v.size(); + for (size_t i = 0; i < v.size(); ++i) + { + v[i] = i + 1; + } + + sigma_sq = boost::math::statistics::variance(v); + + BOOST_TEST(abs(sigma_sq - (n*n-1)/Real(12)) <= tol*sigma_sq); + } + +} + +template +void test_integer_variance() +{ + double tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1,1,1,1}; + double sigma_sq = boost::math::statistics::variance(v); + BOOST_TEST(abs(sigma_sq) < tol); + + std::forward_list l{0,1,0,1,0,1,0,1}; + sigma_sq = boost::math::statistics::variance(l.begin(), l.end()); + BOOST_TEST(abs(sigma_sq - 1.0/4.0) < tol); + + v = generate_random_vector(global_size, global_seed); + Z scale = 2; + double m1 = scale*scale*boost::math::statistics::variance(v); + for (auto & x : v) + { + x *= scale; + } + double m2 = boost::math::statistics::variance(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); +} + +template +void test_integer_skewness() +{ + double tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1}; + double skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew) < tol); + + // Dataset is symmetric about the mean: + v = {1,2,3,4,5}; + skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew) < tol); + + v = {0,0,0,0,5}; + // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2 + skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew - 3.0/2.0) < tol); + + std::forward_list v2{0,0,0,0,5}; + skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew - 3.0/2.0) < tol); + + + v = generate_random_vector(global_size, global_seed); + Z scale = 2; + double m1 = boost::math::statistics::skewness(v); + for (auto & x : v) + { + x *= scale; + } + double m2 = boost::math::statistics::skewness(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); + +} + +template +void test_skewness() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1}; + Real skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew) < tol); + + // Dataset is symmetric about the mean: + v = {1,2,3,4,5}; + skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew) < tol); + + v = {0,0,0,0,5}; + // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2 + skew = boost::math::statistics::skewness(v); + BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol); + + std::array w1{0,0,0,0,5}; + skew = boost::math::statistics::skewness(w1); + BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol); + + std::forward_list w2{0,0,0,0,5}; + skew = boost::math::statistics::skewness(w2); + BOOST_TEST(abs(skew - Real(3)/Real(2)) < tol); + + v = generate_random_vector(global_size, global_seed); + Real scale = 2; + Real m1 = boost::math::statistics::skewness(v); + for (auto & x : v) + { + x *= scale; + } + Real m2 = boost::math::statistics::skewness(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); +} + +template +void test_kurtosis() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1}; + Real kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt) < tol); + + v = {1,2,3,4,5}; + // mu =1, sigma^2 = 2, kurtosis = 17/10 + kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt - Real(17)/Real(10)) < tol); + + v = {0,0,0,0,5}; + // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4 + kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol); + + std::array v1{0,0,0,0,5}; + kurt = boost::math::statistics::kurtosis(v1); + BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol); + + std::forward_list v2{0,0,0,0,5}; + kurt = boost::math::statistics::kurtosis(v2); + BOOST_TEST(abs(kurt - Real(13)/Real(4)) < tol); + + std::vector v3(10000); + std::mt19937 gen(42); + std::normal_distribution dis(0, 1); + for (size_t i = 0; i < v3.size(); ++i) { + v3[i] = dis(gen); + } + kurt = boost::math::statistics::kurtosis(v3); + BOOST_TEST(abs(kurt - 3) < 0.1); + + std::uniform_real_distribution udis(-1, 3); + for (size_t i = 0; i < v3.size(); ++i) { + v3[i] = udis(gen); + } + auto excess_kurtosis = boost::math::statistics::excess_kurtosis(v3); + BOOST_TEST(abs(excess_kurtosis + 6.0/5.0) < 0.2); + + v = generate_random_vector(global_size, global_seed); + Real scale = 2; + Real m1 = boost::math::statistics::kurtosis(v); + for (auto & x : v) + { + x *= scale; + } + Real m2 = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); + + // This test only passes when there are a large number of samples. + // Otherwise, the distribution doesn't generate enough outliers to give, + // or generates too many, giving pretty wildly different values of kurtosis on different runs. + // However, by kicking up the samples to 1,000,000, I got very close to 6 for the excess kurtosis on every run. + // The CI system, however, would die on a million long doubles. + //v3.resize(1000000); + //std::exponential_distribution edis(0.1); + //for (size_t i = 0; i < v3.size(); ++i) { + // v3[i] = edis(gen); + //} + //excess_kurtosis = boost::math::statistics::kurtosis(v3) - 3; + //BOOST_TEST(abs(excess_kurtosis - 6.0) < 0.2); +} + +template +void test_integer_kurtosis() +{ + double tol = std::numeric_limits::epsilon(); + std::vector v{1,1,1}; + double kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt) < tol); + + v = {1,2,3,4,5}; + // mu =1, sigma^2 = 2, kurtosis = 17/10 + kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt - 17.0/10.0) < tol); + + v = {0,0,0,0,5}; + // mu = 1, sigma^2 = 4, sigma = 2, skew = 3/2, kurtosis = 13/4 + kurt = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(kurt - 13.0/4.0) < tol); + + v = generate_random_vector(global_size, global_seed); + Z scale = 2; + double m1 = boost::math::statistics::kurtosis(v); + for (auto & x : v) + { + x *= scale; + } + double m2 = boost::math::statistics::kurtosis(v); + BOOST_TEST(abs(m1 - m2) < tol*abs(m1)); +} + +template +void test_first_four_moments() +{ + Real tol = 10*std::numeric_limits::epsilon(); + std::vector v{1,1,1}; + auto [M1_1, M2_1, M3_1, M4_1] = boost::math::statistics::first_four_moments(v); + BOOST_TEST(abs(M1_1 - 1) < tol); + BOOST_TEST(abs(M2_1) < tol); + BOOST_TEST(abs(M3_1) < tol); + BOOST_TEST(abs(M4_1) < tol); + + v = {1, 2, 3, 4, 5}; + auto [M1_2, M2_2, M3_2, M4_2] = boost::math::statistics::first_four_moments(v); + BOOST_TEST(abs(M1_2 - 3) < tol); + BOOST_TEST(abs(M2_2 - 2) < tol); + BOOST_TEST(abs(M3_2) < tol); + BOOST_TEST(abs(M4_2 - Real(34)/Real(5)) < tol); +} + +template +void test_median() +{ + std::mt19937 g(12); + std::vector v{1,2,3,4,5,6,7}; + + Real m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 4); + + std::shuffle(v.begin(), v.end(), g); + // Does range call work? + m = boost::math::statistics::median(v); + BOOST_TEST_EQ(m, 4); + + v = {1,2,3,3,4,5}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 3); + std::shuffle(v.begin(), v.end(), g); + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 3); + + v = {1}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 1); + + v = {1,1}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 1); + + v = {2,4}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 3); + + v = {1,1,1}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 1); + + v = {1,2,3}; + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 2); + std::shuffle(v.begin(), v.end(), g); + m = boost::math::statistics::median(v.begin(), v.end()); + BOOST_TEST_EQ(m, 2); + + // Does it work with std::array? + std::array w{1,2,3}; + m = boost::math::statistics::median(w); + BOOST_TEST_EQ(m, 2); + + // Does it work with ublas? + boost::numeric::ublas::vector w1(3); + w1[0] = 1; + w1[1] = 2; + w1[2] = 3; + m = boost::math::statistics::median(w); + BOOST_TEST_EQ(m, 2); +} + +template +void test_median_absolute_deviation() +{ + std::vector v{-1, 2, -3, 4, -5, 6, -7}; + + Real m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 4); + + std::mt19937 g(12); + std::shuffle(v.begin(), v.end(), g); + m = boost::math::statistics::median_absolute_deviation(v, 0); + BOOST_TEST_EQ(m, 4); + + v = {1, -2, -3, 3, -4, -5}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 3); + std::shuffle(v.begin(), v.end(), g); + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 3); + + v = {-1}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 1); + + v = {-1, 1}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 1); + // The median is zero, so coincides with the default: + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end()); + BOOST_TEST_EQ(m, 1); + + m = boost::math::statistics::median_absolute_deviation(v); + BOOST_TEST_EQ(m, 1); + + + v = {2, -4}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 3); + + v = {1, -1, 1}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 1); + + v = {1, 2, -3}; + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 2); + std::shuffle(v.begin(), v.end(), g); + m = boost::math::statistics::median_absolute_deviation(v.begin(), v.end(), 0); + BOOST_TEST_EQ(m, 2); + + std::array w{1, 2, -3}; + m = boost::math::statistics::median_absolute_deviation(w, 0); + BOOST_TEST_EQ(m, 2); + + // boost.ublas vector? + boost::numeric::ublas::vector u(6); + u[0] = 1; + u[1] = 2; + u[2] = -3; + u[3] = 1; + u[4] = 2; + u[5] = -3; + m = boost::math::statistics::median_absolute_deviation(u, 0); + BOOST_TEST_EQ(m, 2); +} + + +template +void test_sample_gini_coefficient() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,0,0}; + Real gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini - 1) < tol); + + gini = boost::math::statistics::sample_gini_coefficient(v); + BOOST_TEST(abs(gini - 1) < tol); + + v[0] = 1; + v[1] = 1; + v[2] = 1; + gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + v[0] = 0; + v[1] = 0; + v[2] = 0; + gini = boost::math::statistics::sample_gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + std::array w{0,0,0}; + gini = boost::math::statistics::sample_gini_coefficient(w); + BOOST_TEST(abs(gini) < tol); +} + + +template +void test_gini_coefficient() +{ + Real tol = std::numeric_limits::epsilon(); + std::vector v{1,0,0}; + Real gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + Real expected = Real(2)/Real(3); + BOOST_TEST(abs(gini - expected) < tol); + + gini = boost::math::statistics::gini_coefficient(v); + BOOST_TEST(abs(gini - expected) < tol); + + v[0] = 1; + v[1] = 1; + v[2] = 1; + gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + v[0] = 0; + v[1] = 0; + v[2] = 0; + gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + std::array w{0,0,0}; + gini = boost::math::statistics::gini_coefficient(w); + BOOST_TEST(abs(gini) < tol); + + boost::numeric::ublas::vector w1(3); + w1[0] = 1; + w1[1] = 1; + w1[2] = 1; + gini = boost::math::statistics::gini_coefficient(w1); + BOOST_TEST(abs(gini) < tol); + + std::mt19937 gen(18); + // Gini coefficient for a uniform distribution is (b-a)/(3*(b+a)); + std::uniform_real_distribution dis(0, 3); + expected = (dis.b() - dis.a())/(3*(dis.b()+ dis.a())); + v.resize(1024); + for(size_t i = 0; i < v.size(); ++i) + { + v[i] = dis(gen); + } + gini = boost::math::statistics::gini_coefficient(v); + BOOST_TEST(abs(gini - expected) < 0.01); + +} + +template +void test_integer_gini_coefficient() +{ + double tol = std::numeric_limits::epsilon(); + std::vector v{1,0,0}; + double gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + double expected = 2.0/3.0; + BOOST_TEST(abs(gini - expected) < tol); + + gini = boost::math::statistics::gini_coefficient(v); + BOOST_TEST(abs(gini - expected) < tol); + + v[0] = 1; + v[1] = 1; + v[2] = 1; + gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + v[0] = 0; + v[1] = 0; + v[2] = 0; + gini = boost::math::statistics::gini_coefficient(v.begin(), v.end()); + BOOST_TEST(abs(gini) < tol); + + std::array w{0,0,0}; + gini = boost::math::statistics::gini_coefficient(w); + BOOST_TEST(abs(gini) < tol); + + boost::numeric::ublas::vector w1(3); + w1[0] = 1; + w1[1] = 1; + w1[2] = 1; + gini = boost::math::statistics::gini_coefficient(w1); + BOOST_TEST(abs(gini) < tol); +} + +int main() +{ + test_mean(); + test_mean(); + test_mean(); + test_mean(); + + test_integer_mean(); + test_integer_mean(); + + test_complex_mean>(); + test_complex_mean(); + + test_variance(); + test_variance(); + test_variance(); + test_variance(); + + test_integer_variance(); + test_integer_variance(); + + test_skewness(); + test_skewness(); + test_skewness(); + test_skewness(); + + test_integer_skewness(); + test_integer_skewness(); + + test_first_four_moments(); + test_first_four_moments(); + test_first_four_moments(); + test_first_four_moments(); + + test_kurtosis(); + test_kurtosis(); + test_kurtosis(); + // Kinda expensive: + //test_kurtosis(); + + test_integer_kurtosis(); + test_integer_kurtosis(); + + test_median(); + test_median(); + test_median(); + test_median(); + test_median(); + + test_median_absolute_deviation(); + test_median_absolute_deviation(); + test_median_absolute_deviation(); + test_median_absolute_deviation(); + + test_gini_coefficient(); + test_gini_coefficient(); + test_gini_coefficient(); + test_gini_coefficient(); + + test_integer_gini_coefficient(); + test_integer_gini_coefficient(); + + test_sample_gini_coefficient(); + test_sample_gini_coefficient(); + test_sample_gini_coefficient(); + test_sample_gini_coefficient(); + + return boost::report_errors(); +} -- cgit v1.2.3