From 483eb2f56657e8e7f419ab1a4fab8dce9ade8609 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 20:24:20 +0200 Subject: Adding upstream version 14.2.21. Signed-off-by: Daniel Baumann --- src/rocksdb/db/compaction_job_stats_test.cc | 1047 +++++++++++++++++++++++++++ 1 file changed, 1047 insertions(+) create mode 100644 src/rocksdb/db/compaction_job_stats_test.cc (limited to 'src/rocksdb/db/compaction_job_stats_test.cc') diff --git a/src/rocksdb/db/compaction_job_stats_test.cc b/src/rocksdb/db/compaction_job_stats_test.cc new file mode 100644 index 00000000..48e883bc --- /dev/null +++ b/src/rocksdb/db/compaction_job_stats_test.cc @@ -0,0 +1,1047 @@ +// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. +// This source code is licensed under both the GPLv2 (found in the +// COPYING file in the root directory) and Apache 2.0 License +// (found in the LICENSE.Apache file in the root directory). +// +// Copyright (c) 2011 The LevelDB Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. See the AUTHORS file for names of contributors. + +#ifndef __STDC_FORMAT_MACROS +#define __STDC_FORMAT_MACROS +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "db/db_impl.h" +#include "db/dbformat.h" +#include "db/job_context.h" +#include "db/version_set.h" +#include "db/write_batch_internal.h" +#include "env/mock_env.h" +#include "memtable/hash_linklist_rep.h" +#include "monitoring/statistics.h" +#include "monitoring/thread_status_util.h" +#include "port/stack_trace.h" +#include "rocksdb/cache.h" +#include "rocksdb/compaction_filter.h" +#include "rocksdb/convenience.h" +#include "rocksdb/db.h" +#include "rocksdb/env.h" +#include "rocksdb/experimental.h" +#include "rocksdb/filter_policy.h" +#include "rocksdb/options.h" +#include "rocksdb/perf_context.h" +#include "rocksdb/slice.h" +#include "rocksdb/slice_transform.h" +#include "rocksdb/table.h" +#include "rocksdb/table_properties.h" +#include "rocksdb/thread_status.h" +#include "rocksdb/utilities/checkpoint.h" +#include "rocksdb/utilities/write_batch_with_index.h" +#include "table/block_based_table_factory.h" +#include "table/mock_table.h" +#include "table/plain_table_factory.h" +#include "table/scoped_arena_iterator.h" +#include "util/compression.h" +#include "util/filename.h" +#include "util/hash.h" +#include "util/logging.h" +#include "util/mutexlock.h" +#include "util/rate_limiter.h" +#include "util/string_util.h" +#include "util/sync_point.h" +#include "util/testharness.h" +#include "util/testutil.h" +#include "utilities/merge_operators.h" + +#if !defined(IOS_CROSS_COMPILE) +#ifndef ROCKSDB_LITE +namespace rocksdb { + +static std::string RandomString(Random* rnd, int len, double ratio) { + std::string r; + test::CompressibleString(rnd, ratio, len, &r); + return r; +} + +std::string Key(uint64_t key, int length) { + const int kBufSize = 1000; + char buf[kBufSize]; + if (length > kBufSize) { + length = kBufSize; + } + snprintf(buf, kBufSize, "%0*" PRIu64, length, key); + return std::string(buf); +} + +class CompactionJobStatsTest : public testing::Test, + public testing::WithParamInterface { + public: + std::string dbname_; + std::string alternative_wal_dir_; + Env* env_; + DB* db_; + std::vector handles_; + uint32_t max_subcompactions_; + + Options last_options_; + + CompactionJobStatsTest() : env_(Env::Default()) { + env_->SetBackgroundThreads(1, Env::LOW); + env_->SetBackgroundThreads(1, Env::HIGH); + dbname_ = test::PerThreadDBPath("compaction_job_stats_test"); + alternative_wal_dir_ = dbname_ + "/wal"; + Options options; + options.create_if_missing = true; + max_subcompactions_ = GetParam(); + options.max_subcompactions = max_subcompactions_; + auto delete_options = options; + delete_options.wal_dir = alternative_wal_dir_; + EXPECT_OK(DestroyDB(dbname_, delete_options)); + // Destroy it for not alternative WAL dir is used. + EXPECT_OK(DestroyDB(dbname_, options)); + db_ = nullptr; + Reopen(options); + } + + ~CompactionJobStatsTest() override { + rocksdb::SyncPoint::GetInstance()->DisableProcessing(); + rocksdb::SyncPoint::GetInstance()->LoadDependency({}); + rocksdb::SyncPoint::GetInstance()->ClearAllCallBacks(); + Close(); + Options options; + options.db_paths.emplace_back(dbname_, 0); + options.db_paths.emplace_back(dbname_ + "_2", 0); + options.db_paths.emplace_back(dbname_ + "_3", 0); + options.db_paths.emplace_back(dbname_ + "_4", 0); + EXPECT_OK(DestroyDB(dbname_, options)); + } + + // Required if inheriting from testing::WithParamInterface<> + static void SetUpTestCase() {} + static void TearDownTestCase() {} + + DBImpl* dbfull() { + return reinterpret_cast(db_); + } + + void CreateColumnFamilies(const std::vector& cfs, + const Options& options) { + ColumnFamilyOptions cf_opts(options); + size_t cfi = handles_.size(); + handles_.resize(cfi + cfs.size()); + for (auto cf : cfs) { + ASSERT_OK(db_->CreateColumnFamily(cf_opts, cf, &handles_[cfi++])); + } + } + + void CreateAndReopenWithCF(const std::vector& cfs, + const Options& options) { + CreateColumnFamilies(cfs, options); + std::vector cfs_plus_default = cfs; + cfs_plus_default.insert(cfs_plus_default.begin(), kDefaultColumnFamilyName); + ReopenWithColumnFamilies(cfs_plus_default, options); + } + + void ReopenWithColumnFamilies(const std::vector& cfs, + const std::vector& options) { + ASSERT_OK(TryReopenWithColumnFamilies(cfs, options)); + } + + void ReopenWithColumnFamilies(const std::vector& cfs, + const Options& options) { + ASSERT_OK(TryReopenWithColumnFamilies(cfs, options)); + } + + Status TryReopenWithColumnFamilies( + const std::vector& cfs, + const std::vector& options) { + Close(); + EXPECT_EQ(cfs.size(), options.size()); + std::vector column_families; + for (size_t i = 0; i < cfs.size(); ++i) { + column_families.push_back(ColumnFamilyDescriptor(cfs[i], options[i])); + } + DBOptions db_opts = DBOptions(options[0]); + return DB::Open(db_opts, dbname_, column_families, &handles_, &db_); + } + + Status TryReopenWithColumnFamilies(const std::vector& cfs, + const Options& options) { + Close(); + std::vector v_opts(cfs.size(), options); + return TryReopenWithColumnFamilies(cfs, v_opts); + } + + void Reopen(const Options& options) { + ASSERT_OK(TryReopen(options)); + } + + void Close() { + for (auto h : handles_) { + delete h; + } + handles_.clear(); + delete db_; + db_ = nullptr; + } + + void DestroyAndReopen(const Options& options) { + // Destroy using last options + Destroy(last_options_); + ASSERT_OK(TryReopen(options)); + } + + void Destroy(const Options& options) { + Close(); + ASSERT_OK(DestroyDB(dbname_, options)); + } + + Status ReadOnlyReopen(const Options& options) { + return DB::OpenForReadOnly(options, dbname_, &db_); + } + + Status TryReopen(const Options& options) { + Close(); + last_options_ = options; + return DB::Open(options, dbname_, &db_); + } + + Status Flush(int cf = 0) { + if (cf == 0) { + return db_->Flush(FlushOptions()); + } else { + return db_->Flush(FlushOptions(), handles_[cf]); + } + } + + Status Put(const Slice& k, const Slice& v, WriteOptions wo = WriteOptions()) { + return db_->Put(wo, k, v); + } + + Status Put(int cf, const Slice& k, const Slice& v, + WriteOptions wo = WriteOptions()) { + return db_->Put(wo, handles_[cf], k, v); + } + + Status Delete(const std::string& k) { + return db_->Delete(WriteOptions(), k); + } + + Status Delete(int cf, const std::string& k) { + return db_->Delete(WriteOptions(), handles_[cf], k); + } + + std::string Get(const std::string& k, const Snapshot* snapshot = nullptr) { + ReadOptions options; + options.verify_checksums = true; + options.snapshot = snapshot; + std::string result; + Status s = db_->Get(options, k, &result); + if (s.IsNotFound()) { + result = "NOT_FOUND"; + } else if (!s.ok()) { + result = s.ToString(); + } + return result; + } + + std::string Get(int cf, const std::string& k, + const Snapshot* snapshot = nullptr) { + ReadOptions options; + options.verify_checksums = true; + options.snapshot = snapshot; + std::string result; + Status s = db_->Get(options, handles_[cf], k, &result); + if (s.IsNotFound()) { + result = "NOT_FOUND"; + } else if (!s.ok()) { + result = s.ToString(); + } + return result; + } + + int NumTableFilesAtLevel(int level, int cf = 0) { + std::string property; + if (cf == 0) { + // default cfd + EXPECT_TRUE(db_->GetProperty( + "rocksdb.num-files-at-level" + NumberToString(level), &property)); + } else { + EXPECT_TRUE(db_->GetProperty( + handles_[cf], "rocksdb.num-files-at-level" + NumberToString(level), + &property)); + } + return atoi(property.c_str()); + } + + // Return spread of files per level + std::string FilesPerLevel(int cf = 0) { + int num_levels = + (cf == 0) ? db_->NumberLevels() : db_->NumberLevels(handles_[1]); + std::string result; + size_t last_non_zero_offset = 0; + for (int level = 0; level < num_levels; level++) { + int f = NumTableFilesAtLevel(level, cf); + char buf[100]; + snprintf(buf, sizeof(buf), "%s%d", (level ? "," : ""), f); + result += buf; + if (f > 0) { + last_non_zero_offset = result.size(); + } + } + result.resize(last_non_zero_offset); + return result; + } + + uint64_t Size(const Slice& start, const Slice& limit, int cf = 0) { + Range r(start, limit); + uint64_t size; + if (cf == 0) { + db_->GetApproximateSizes(&r, 1, &size); + } else { + db_->GetApproximateSizes(handles_[1], &r, 1, &size); + } + return size; + } + + void Compact(int cf, const Slice& start, const Slice& limit, + uint32_t target_path_id) { + CompactRangeOptions compact_options; + compact_options.target_path_id = target_path_id; + ASSERT_OK(db_->CompactRange(compact_options, handles_[cf], &start, &limit)); + } + + void Compact(int cf, const Slice& start, const Slice& limit) { + ASSERT_OK( + db_->CompactRange(CompactRangeOptions(), handles_[cf], &start, &limit)); + } + + void Compact(const Slice& start, const Slice& limit) { + ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &limit)); + } + + void TEST_Compact(int level, int cf, const Slice& start, const Slice& limit) { + ASSERT_OK(dbfull()->TEST_CompactRange(level, &start, &limit, handles_[cf], + true /* disallow trivial move */)); + } + + // Do n memtable compactions, each of which produces an sstable + // covering the range [small,large]. + void MakeTables(int n, const std::string& small, const std::string& large, + int cf = 0) { + for (int i = 0; i < n; i++) { + ASSERT_OK(Put(cf, small, "begin")); + ASSERT_OK(Put(cf, large, "end")); + ASSERT_OK(Flush(cf)); + } + } + + static void SetDeletionCompactionStats( + CompactionJobStats *stats, uint64_t input_deletions, + uint64_t expired_deletions, uint64_t records_replaced) { + stats->num_input_deletion_records = input_deletions; + stats->num_expired_deletion_records = expired_deletions; + stats->num_records_replaced = records_replaced; + } + + void MakeTableWithKeyValues( + Random* rnd, uint64_t smallest, uint64_t largest, + int key_size, int value_size, uint64_t interval, + double ratio, int cf = 0) { + for (auto key = smallest; key < largest; key += interval) { + ASSERT_OK(Put(cf, Slice(Key(key, key_size)), + Slice(RandomString(rnd, value_size, ratio)))); + } + ASSERT_OK(Flush(cf)); + } + + // This function behaves with the implicit understanding that two + // rounds of keys are inserted into the database, as per the behavior + // of the DeletionStatsTest. + void SelectivelyDeleteKeys(uint64_t smallest, uint64_t largest, + uint64_t interval, int deletion_interval, int key_size, + uint64_t cutoff_key_num, CompactionJobStats* stats, int cf = 0) { + + // interval needs to be >= 2 so that deletion entries can be inserted + // that are intended to not result in an actual key deletion by using + // an offset of 1 from another existing key + ASSERT_GE(interval, 2); + + uint64_t ctr = 1; + uint32_t deletions_made = 0; + uint32_t num_deleted = 0; + uint32_t num_expired = 0; + for (auto key = smallest; key <= largest; key += interval, ctr++) { + if (ctr % deletion_interval == 0) { + ASSERT_OK(Delete(cf, Key(key, key_size))); + deletions_made++; + num_deleted++; + + if (key > cutoff_key_num) { + num_expired++; + } + } + } + + // Insert some deletions for keys that don't exist that + // are both in and out of the key range + ASSERT_OK(Delete(cf, Key(smallest+1, key_size))); + deletions_made++; + + ASSERT_OK(Delete(cf, Key(smallest-1, key_size))); + deletions_made++; + num_expired++; + + ASSERT_OK(Delete(cf, Key(smallest-9, key_size))); + deletions_made++; + num_expired++; + + ASSERT_OK(Flush(cf)); + SetDeletionCompactionStats(stats, deletions_made, num_expired, + num_deleted); + } +}; + +// An EventListener which helps verify the compaction results in +// test CompactionJobStatsTest. +class CompactionJobStatsChecker : public EventListener { + public: + CompactionJobStatsChecker() + : compression_enabled_(false), verify_next_comp_io_stats_(false) {} + + size_t NumberOfUnverifiedStats() { return expected_stats_.size(); } + + void set_verify_next_comp_io_stats(bool v) { verify_next_comp_io_stats_ = v; } + + // Once a compaction completed, this function will verify the returned + // CompactionJobInfo with the oldest CompactionJobInfo added earlier + // in "expected_stats_" which has not yet being used for verification. + void OnCompactionCompleted(DB* /*db*/, const CompactionJobInfo& ci) override { + if (verify_next_comp_io_stats_) { + ASSERT_GT(ci.stats.file_write_nanos, 0); + ASSERT_GT(ci.stats.file_range_sync_nanos, 0); + ASSERT_GT(ci.stats.file_fsync_nanos, 0); + ASSERT_GT(ci.stats.file_prepare_write_nanos, 0); + verify_next_comp_io_stats_ = false; + } + + std::lock_guard lock(mutex_); + if (expected_stats_.size()) { + Verify(ci.stats, expected_stats_.front()); + expected_stats_.pop(); + } + } + + // A helper function which verifies whether two CompactionJobStats + // match. The verification of all compaction stats are done by + // ASSERT_EQ except for the total input / output bytes, which we + // use ASSERT_GE and ASSERT_LE with a reasonable bias --- + // 10% in uncompressed case and 20% when compression is used. + virtual void Verify(const CompactionJobStats& current_stats, + const CompactionJobStats& stats) { + // time + ASSERT_GT(current_stats.elapsed_micros, 0U); + + ASSERT_EQ(current_stats.num_input_records, + stats.num_input_records); + ASSERT_EQ(current_stats.num_input_files, + stats.num_input_files); + ASSERT_EQ(current_stats.num_input_files_at_output_level, + stats.num_input_files_at_output_level); + + ASSERT_EQ(current_stats.num_output_records, + stats.num_output_records); + ASSERT_EQ(current_stats.num_output_files, + stats.num_output_files); + + ASSERT_EQ(current_stats.is_manual_compaction, + stats.is_manual_compaction); + + // file size + double kFileSizeBias = compression_enabled_ ? 0.20 : 0.10; + ASSERT_GE(current_stats.total_input_bytes * (1.00 + kFileSizeBias), + stats.total_input_bytes); + ASSERT_LE(current_stats.total_input_bytes, + stats.total_input_bytes * (1.00 + kFileSizeBias)); + ASSERT_GE(current_stats.total_output_bytes * (1.00 + kFileSizeBias), + stats.total_output_bytes); + ASSERT_LE(current_stats.total_output_bytes, + stats.total_output_bytes * (1.00 + kFileSizeBias)); + ASSERT_EQ(current_stats.total_input_raw_key_bytes, + stats.total_input_raw_key_bytes); + ASSERT_EQ(current_stats.total_input_raw_value_bytes, + stats.total_input_raw_value_bytes); + + ASSERT_EQ(current_stats.num_records_replaced, + stats.num_records_replaced); + + ASSERT_EQ(current_stats.num_corrupt_keys, + stats.num_corrupt_keys); + + ASSERT_EQ( + std::string(current_stats.smallest_output_key_prefix), + std::string(stats.smallest_output_key_prefix)); + ASSERT_EQ( + std::string(current_stats.largest_output_key_prefix), + std::string(stats.largest_output_key_prefix)); + } + + // Add an expected compaction stats, which will be used to + // verify the CompactionJobStats returned by the OnCompactionCompleted() + // callback. + void AddExpectedStats(const CompactionJobStats& stats) { + std::lock_guard lock(mutex_); + expected_stats_.push(stats); + } + + void EnableCompression(bool flag) { + compression_enabled_ = flag; + } + + bool verify_next_comp_io_stats() const { return verify_next_comp_io_stats_; } + + private: + std::mutex mutex_; + std::queue expected_stats_; + bool compression_enabled_; + bool verify_next_comp_io_stats_; +}; + +// An EventListener which helps verify the compaction statistics in +// the test DeletionStatsTest. +class CompactionJobDeletionStatsChecker : public CompactionJobStatsChecker { + public: + // Verifies whether two CompactionJobStats match. + void Verify(const CompactionJobStats& current_stats, + const CompactionJobStats& stats) override { + ASSERT_EQ( + current_stats.num_input_deletion_records, + stats.num_input_deletion_records); + ASSERT_EQ( + current_stats.num_expired_deletion_records, + stats.num_expired_deletion_records); + ASSERT_EQ( + current_stats.num_records_replaced, + stats.num_records_replaced); + + ASSERT_EQ(current_stats.num_corrupt_keys, + stats.num_corrupt_keys); + } +}; + +namespace { + +uint64_t EstimatedFileSize( + uint64_t num_records, size_t key_size, size_t value_size, + double compression_ratio = 1.0, + size_t block_size = 4096, + int bloom_bits_per_key = 10) { + const size_t kPerKeyOverhead = 8; + const size_t kFooterSize = 512; + + uint64_t data_size = + static_cast( + num_records * (key_size + value_size * compression_ratio + + kPerKeyOverhead)); + + return data_size + kFooterSize + + num_records * bloom_bits_per_key / 8 // filter block + + data_size * (key_size + 8) / block_size; // index block +} + +namespace { + +void CopyPrefix( + const Slice& src, size_t prefix_length, std::string* dst) { + assert(prefix_length > 0); + size_t length = src.size() > prefix_length ? prefix_length : src.size(); + dst->assign(src.data(), length); +} + +} // namespace + +CompactionJobStats NewManualCompactionJobStats( + const std::string& smallest_key, const std::string& largest_key, + size_t num_input_files, size_t num_input_files_at_output_level, + uint64_t num_input_records, size_t key_size, size_t value_size, + size_t num_output_files, uint64_t num_output_records, + double compression_ratio, uint64_t num_records_replaced, + bool is_manual = true) { + CompactionJobStats stats; + stats.Reset(); + + stats.num_input_records = num_input_records; + stats.num_input_files = num_input_files; + stats.num_input_files_at_output_level = num_input_files_at_output_level; + + stats.num_output_records = num_output_records; + stats.num_output_files = num_output_files; + + stats.total_input_bytes = + EstimatedFileSize( + num_input_records / num_input_files, + key_size, value_size, compression_ratio) * num_input_files; + stats.total_output_bytes = + EstimatedFileSize( + num_output_records / num_output_files, + key_size, value_size, compression_ratio) * num_output_files; + stats.total_input_raw_key_bytes = + num_input_records * (key_size + 8); + stats.total_input_raw_value_bytes = + num_input_records * value_size; + + stats.is_manual_compaction = is_manual; + + stats.num_records_replaced = num_records_replaced; + + CopyPrefix(smallest_key, + CompactionJobStats::kMaxPrefixLength, + &stats.smallest_output_key_prefix); + CopyPrefix(largest_key, + CompactionJobStats::kMaxPrefixLength, + &stats.largest_output_key_prefix); + + return stats; +} + +CompressionType GetAnyCompression() { + if (Snappy_Supported()) { + return kSnappyCompression; + } else if (Zlib_Supported()) { + return kZlibCompression; + } else if (BZip2_Supported()) { + return kBZip2Compression; + } else if (LZ4_Supported()) { + return kLZ4Compression; + } else if (XPRESS_Supported()) { + return kXpressCompression; + } + + return kNoCompression; +} + +} // namespace + +TEST_P(CompactionJobStatsTest, CompactionJobStatsTest) { + Random rnd(301); + const int kBufSize = 100; + char buf[kBufSize]; + uint64_t key_base = 100000000l; + // Note: key_base must be multiple of num_keys_per_L0_file + int num_keys_per_L0_file = 100; + const int kTestScale = 8; + const int kKeySize = 10; + const int kValueSize = 1000; + const double kCompressionRatio = 0.5; + double compression_ratio = 1.0; + uint64_t key_interval = key_base / num_keys_per_L0_file; + + // Whenever a compaction completes, this listener will try to + // verify whether the returned CompactionJobStats matches + // what we expect. The expected CompactionJobStats is added + // via AddExpectedStats(). + auto* stats_checker = new CompactionJobStatsChecker(); + Options options; + options.listeners.emplace_back(stats_checker); + options.create_if_missing = true; + // just enough setting to hold off auto-compaction. + options.level0_file_num_compaction_trigger = kTestScale + 1; + options.num_levels = 3; + options.compression = kNoCompression; + options.max_subcompactions = max_subcompactions_; + options.bytes_per_sync = 512 * 1024; + + options.report_bg_io_stats = true; + for (int test = 0; test < 2; ++test) { + DestroyAndReopen(options); + CreateAndReopenWithCF({"pikachu"}, options); + + // 1st Phase: generate "num_L0_files" L0 files. + int num_L0_files = 0; + for (uint64_t start_key = key_base; + start_key <= key_base * kTestScale; + start_key += key_base) { + MakeTableWithKeyValues( + &rnd, start_key, start_key + key_base - 1, + kKeySize, kValueSize, key_interval, + compression_ratio, 1); + snprintf(buf, kBufSize, "%d", ++num_L0_files); + ASSERT_EQ(std::string(buf), FilesPerLevel(1)); + } + ASSERT_EQ(ToString(num_L0_files), FilesPerLevel(1)); + + // 2nd Phase: perform L0 -> L1 compaction. + int L0_compaction_count = 6; + int count = 1; + std::string smallest_key; + std::string largest_key; + for (uint64_t start_key = key_base; + start_key <= key_base * L0_compaction_count; + start_key += key_base, count++) { + smallest_key = Key(start_key, 10); + largest_key = Key(start_key + key_base - key_interval, 10); + stats_checker->AddExpectedStats( + NewManualCompactionJobStats( + smallest_key, largest_key, + 1, 0, num_keys_per_L0_file, + kKeySize, kValueSize, + 1, num_keys_per_L0_file, + compression_ratio, 0)); + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); + TEST_Compact(0, 1, smallest_key, largest_key); + snprintf(buf, kBufSize, "%d,%d", num_L0_files - count, count); + ASSERT_EQ(std::string(buf), FilesPerLevel(1)); + } + + // compact two files into one in the last L0 -> L1 compaction + int num_remaining_L0 = num_L0_files - L0_compaction_count; + smallest_key = Key(key_base * (L0_compaction_count + 1), 10); + largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10); + stats_checker->AddExpectedStats( + NewManualCompactionJobStats( + smallest_key, largest_key, + num_remaining_L0, + 0, num_keys_per_L0_file * num_remaining_L0, + kKeySize, kValueSize, + 1, num_keys_per_L0_file * num_remaining_L0, + compression_ratio, 0)); + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); + TEST_Compact(0, 1, smallest_key, largest_key); + + int num_L1_files = num_L0_files - num_remaining_L0 + 1; + num_L0_files = 0; + snprintf(buf, kBufSize, "%d,%d", num_L0_files, num_L1_files); + ASSERT_EQ(std::string(buf), FilesPerLevel(1)); + + // 3rd Phase: generate sparse L0 files (wider key-range, same num of keys) + int sparseness = 2; + for (uint64_t start_key = key_base; + start_key <= key_base * kTestScale; + start_key += key_base * sparseness) { + MakeTableWithKeyValues( + &rnd, start_key, start_key + key_base * sparseness - 1, + kKeySize, kValueSize, + key_base * sparseness / num_keys_per_L0_file, + compression_ratio, 1); + snprintf(buf, kBufSize, "%d,%d", ++num_L0_files, num_L1_files); + ASSERT_EQ(std::string(buf), FilesPerLevel(1)); + } + + // 4th Phase: perform L0 -> L1 compaction again, expect higher write amp + // When subcompactions are enabled, the number of output files increases + // by 1 because multiple threads are consuming the input and generating + // output files without coordinating to see if the output could fit into + // a smaller number of files like it does when it runs sequentially + int num_output_files = options.max_subcompactions > 1 ? 2 : 1; + for (uint64_t start_key = key_base; + num_L0_files > 1; + start_key += key_base * sparseness) { + smallest_key = Key(start_key, 10); + largest_key = + Key(start_key + key_base * sparseness - key_interval, 10); + stats_checker->AddExpectedStats( + NewManualCompactionJobStats( + smallest_key, largest_key, + 3, 2, num_keys_per_L0_file * 3, + kKeySize, kValueSize, + num_output_files, + num_keys_per_L0_file * 2, // 1/3 of the data will be updated. + compression_ratio, + num_keys_per_L0_file)); + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); + Compact(1, smallest_key, largest_key); + if (options.max_subcompactions == 1) { + --num_L1_files; + } + snprintf(buf, kBufSize, "%d,%d", --num_L0_files, num_L1_files); + ASSERT_EQ(std::string(buf), FilesPerLevel(1)); + } + + // 5th Phase: Do a full compaction, which involves in two sub-compactions. + // Here we expect to have 1 L0 files and 4 L1 files + // In the first sub-compaction, we expect L0 compaction. + smallest_key = Key(key_base, 10); + largest_key = Key(key_base * (kTestScale + 1) - key_interval, 10); + stats_checker->AddExpectedStats( + NewManualCompactionJobStats( + Key(key_base * (kTestScale + 1 - sparseness), 10), largest_key, + 2, 1, num_keys_per_L0_file * 3, + kKeySize, kValueSize, + 1, num_keys_per_L0_file * 2, + compression_ratio, + num_keys_per_L0_file)); + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 1U); + Compact(1, smallest_key, largest_key); + + num_L1_files = options.max_subcompactions > 1 ? 7 : 4; + char L1_buf[4]; + snprintf(L1_buf, sizeof(L1_buf), "0,%d", num_L1_files); + std::string L1_files(L1_buf); + ASSERT_EQ(L1_files, FilesPerLevel(1)); + options.compression = GetAnyCompression(); + if (options.compression == kNoCompression) { + break; + } + stats_checker->EnableCompression(true); + compression_ratio = kCompressionRatio; + + for (int i = 0; i < 5; i++) { + ASSERT_OK(Put(1, Slice(Key(key_base + i, 10)), + Slice(RandomString(&rnd, 512 * 1024, 1)))); + } + + ASSERT_OK(Flush(1)); + reinterpret_cast(db_)->TEST_WaitForCompact(); + + stats_checker->set_verify_next_comp_io_stats(true); + std::atomic first_prepare_write(true); + rocksdb::SyncPoint::GetInstance()->SetCallBack( + "WritableFileWriter::Append:BeforePrepareWrite", [&](void* /*arg*/) { + if (first_prepare_write.load()) { + options.env->SleepForMicroseconds(3); + first_prepare_write.store(false); + } + }); + + std::atomic first_flush(true); + rocksdb::SyncPoint::GetInstance()->SetCallBack( + "WritableFileWriter::Flush:BeforeAppend", [&](void* /*arg*/) { + if (first_flush.load()) { + options.env->SleepForMicroseconds(3); + first_flush.store(false); + } + }); + + std::atomic first_sync(true); + rocksdb::SyncPoint::GetInstance()->SetCallBack( + "WritableFileWriter::SyncInternal:0", [&](void* /*arg*/) { + if (first_sync.load()) { + options.env->SleepForMicroseconds(3); + first_sync.store(false); + } + }); + + std::atomic first_range_sync(true); + rocksdb::SyncPoint::GetInstance()->SetCallBack( + "WritableFileWriter::RangeSync:0", [&](void* /*arg*/) { + if (first_range_sync.load()) { + options.env->SleepForMicroseconds(3); + first_range_sync.store(false); + } + }); + rocksdb::SyncPoint::GetInstance()->EnableProcessing(); + + Compact(1, smallest_key, largest_key); + + ASSERT_TRUE(!stats_checker->verify_next_comp_io_stats()); + ASSERT_TRUE(!first_prepare_write.load()); + ASSERT_TRUE(!first_flush.load()); + ASSERT_TRUE(!first_sync.load()); + ASSERT_TRUE(!first_range_sync.load()); + rocksdb::SyncPoint::GetInstance()->DisableProcessing(); + } + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U); +} + +TEST_P(CompactionJobStatsTest, DeletionStatsTest) { + Random rnd(301); + uint64_t key_base = 100000l; + // Note: key_base must be multiple of num_keys_per_L0_file + int num_keys_per_L0_file = 20; + const int kTestScale = 8; // make sure this is even + const int kKeySize = 10; + const int kValueSize = 100; + double compression_ratio = 1.0; + uint64_t key_interval = key_base / num_keys_per_L0_file; + uint64_t largest_key_num = key_base * (kTestScale + 1) - key_interval; + uint64_t cutoff_key_num = key_base * (kTestScale / 2 + 1) - key_interval; + const std::string smallest_key = Key(key_base - 10, kKeySize); + const std::string largest_key = Key(largest_key_num + 10, kKeySize); + + // Whenever a compaction completes, this listener will try to + // verify whether the returned CompactionJobStats matches + // what we expect. + auto* stats_checker = new CompactionJobDeletionStatsChecker(); + Options options; + options.listeners.emplace_back(stats_checker); + options.create_if_missing = true; + options.level0_file_num_compaction_trigger = kTestScale+1; + options.num_levels = 3; + options.compression = kNoCompression; + options.max_bytes_for_level_multiplier = 2; + options.max_subcompactions = max_subcompactions_; + + DestroyAndReopen(options); + CreateAndReopenWithCF({"pikachu"}, options); + + // Stage 1: Generate several L0 files and then send them to L2 by + // using CompactRangeOptions and CompactRange(). These files will + // have a strict subset of the keys from the full key-range + for (uint64_t start_key = key_base; + start_key <= key_base * kTestScale / 2; + start_key += key_base) { + MakeTableWithKeyValues( + &rnd, start_key, start_key + key_base - 1, + kKeySize, kValueSize, key_interval, + compression_ratio, 1); + } + + CompactRangeOptions cr_options; + cr_options.change_level = true; + cr_options.target_level = 2; + db_->CompactRange(cr_options, handles_[1], nullptr, nullptr); + ASSERT_GT(NumTableFilesAtLevel(2, 1), 0); + + // Stage 2: Generate files including keys from the entire key range + for (uint64_t start_key = key_base; + start_key <= key_base * kTestScale; + start_key += key_base) { + MakeTableWithKeyValues( + &rnd, start_key, start_key + key_base - 1, + kKeySize, kValueSize, key_interval, + compression_ratio, 1); + } + + // Send these L0 files to L1 + TEST_Compact(0, 1, smallest_key, largest_key); + ASSERT_GT(NumTableFilesAtLevel(1, 1), 0); + + // Add a new record and flush so now there is a L0 file + // with a value too (not just deletions from the next step) + ASSERT_OK(Put(1, Key(key_base-6, kKeySize), "test")); + ASSERT_OK(Flush(1)); + + // Stage 3: Generate L0 files with some deletions so now + // there are files with the same key range in L0, L1, and L2 + int deletion_interval = 3; + CompactionJobStats first_compaction_stats; + SelectivelyDeleteKeys(key_base, largest_key_num, + key_interval, deletion_interval, kKeySize, cutoff_key_num, + &first_compaction_stats, 1); + + stats_checker->AddExpectedStats(first_compaction_stats); + + // Stage 4: Trigger compaction and verify the stats + TEST_Compact(0, 1, smallest_key, largest_key); +} + +namespace { +int GetUniversalCompactionInputUnits(uint32_t num_flushes) { + uint32_t compaction_input_units; + for (compaction_input_units = 1; + num_flushes >= compaction_input_units; + compaction_input_units *= 2) { + if ((num_flushes & compaction_input_units) != 0) { + return compaction_input_units > 1 ? compaction_input_units : 0; + } + } + return 0; +} +} // namespace + +TEST_P(CompactionJobStatsTest, UniversalCompactionTest) { + Random rnd(301); + uint64_t key_base = 100000000l; + // Note: key_base must be multiple of num_keys_per_L0_file + int num_keys_per_table = 100; + const uint32_t kTestScale = 6; + const int kKeySize = 10; + const int kValueSize = 900; + double compression_ratio = 1.0; + uint64_t key_interval = key_base / num_keys_per_table; + + auto* stats_checker = new CompactionJobStatsChecker(); + Options options; + options.listeners.emplace_back(stats_checker); + options.create_if_missing = true; + options.num_levels = 3; + options.compression = kNoCompression; + options.level0_file_num_compaction_trigger = 2; + options.target_file_size_base = num_keys_per_table * 1000; + options.compaction_style = kCompactionStyleUniversal; + options.compaction_options_universal.size_ratio = 1; + options.compaction_options_universal.max_size_amplification_percent = 1000; + options.max_subcompactions = max_subcompactions_; + + DestroyAndReopen(options); + CreateAndReopenWithCF({"pikachu"}, options); + + // Generates the expected CompactionJobStats for each compaction + for (uint32_t num_flushes = 2; num_flushes <= kTestScale; num_flushes++) { + // Here we treat one newly flushed file as an unit. + // + // For example, if a newly flushed file is 100k, and a compaction has + // 4 input units, then this compaction inputs 400k. + uint32_t num_input_units = GetUniversalCompactionInputUnits(num_flushes); + if (num_input_units == 0) { + continue; + } + // The following statement determines the expected smallest key + // based on whether it is a full compaction. A full compaction only + // happens when the number of flushes equals to the number of compaction + // input runs. + uint64_t smallest_key = + (num_flushes == num_input_units) ? + key_base : key_base * (num_flushes - 1); + + stats_checker->AddExpectedStats( + NewManualCompactionJobStats( + Key(smallest_key, 10), + Key(smallest_key + key_base * num_input_units - key_interval, 10), + num_input_units, + num_input_units > 2 ? num_input_units / 2 : 0, + num_keys_per_table * num_input_units, + kKeySize, kValueSize, + num_input_units, + num_keys_per_table * num_input_units, + 1.0, 0, false)); + dbfull()->TEST_WaitForCompact(); + } + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 3U); + + for (uint64_t start_key = key_base; + start_key <= key_base * kTestScale; + start_key += key_base) { + MakeTableWithKeyValues( + &rnd, start_key, start_key + key_base - 1, + kKeySize, kValueSize, key_interval, + compression_ratio, 1); + reinterpret_cast(db_)->TEST_WaitForCompact(); + } + ASSERT_EQ(stats_checker->NumberOfUnverifiedStats(), 0U); +} + +INSTANTIATE_TEST_CASE_P(CompactionJobStatsTest, CompactionJobStatsTest, + ::testing::Values(1, 4)); +} // namespace rocksdb + +int main(int argc, char** argv) { + rocksdb::port::InstallStackTraceHandler(); + ::testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} + +#else +#include + +int main(int /*argc*/, char** /*argv*/) { + fprintf(stderr, "SKIPPED, not supported in ROCKSDB_LITE\n"); + return 0; +} + +#endif // !ROCKSDB_LITE + +#else + +int main(int /*argc*/, char** /*argv*/) { return 0; } +#endif // !defined(IOS_CROSS_COMPILE) -- cgit v1.2.3