// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*- /* * This file is open source software, licensed to you under the terms * of the Apache License, Version 2.0 (the "License"). See the NOTICE file * distributed with this work for additional information regarding copyright * ownership. You may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Copyright (C) 2014 Cloudius Systems, Ltd. * */ /* * Ceph - scalable distributed file system * * Copyright (C) 2015 XSky * * Author: Haomai Wang * * This is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License version 2.1, as published by the Free Software * Foundation. See file COPYING. * */ #include "common/perf_counters.h" #include "capture.h" #include "IP.h" #include "toeplitz.h" #include "common/dout.h" #include "include/ceph_assert.h" #define dout_subsys ceph_subsys_dpdk #undef dout_prefix #define dout_prefix *_dout << "dpdk " std::ostream& operator<<(std::ostream& os, const ipv4_address& a) { auto ip = a.ip; return os << ((ip >> 24) & 0xff) << "." << ((ip >> 16) & 0xff) << "." << ((ip >> 8) & 0xff) << "." << ((ip >> 0) & 0xff); } utime_t ipv4::_frag_timeout = utime_t(30, 0); constexpr uint32_t ipv4::_frag_low_thresh; constexpr uint32_t ipv4::_frag_high_thresh; class C_handle_frag_timeout : public EventCallback { ipv4 *_ipv4; public: C_handle_frag_timeout(ipv4 *i): _ipv4(i) {} void do_request(uint64_t fd_or_id) { _ipv4->frag_timeout(); } }; enum { l_dpdk_qp_first = 99000, l_dpdk_total_linearize_operations, l_dpdk_qp_last }; ipv4::ipv4(CephContext *c, EventCenter *cen, interface* netif) : cct(c), center(cen), _netif(netif), _global_arp(netif), _arp(c, _global_arp, cen), _host_address(0), _gw_address(0), _netmask(0), _l3(netif, eth_protocol_num::ipv4, [this] { return get_packet(); }), _rx_packets( _l3.receive( [this] (Packet p, ethernet_address ea) { return handle_received_packet(std::move(p), ea); }, [this] (forward_hash& out_hash_data, Packet& p, size_t off) { return forward(out_hash_data, p, off); } ) ), _tcp(*this, cen), _icmp(c, *this), _l4({{ uint8_t(ip_protocol_num::tcp), &_tcp }, { uint8_t(ip_protocol_num::icmp), &_icmp }}), _packet_filter(nullptr) { PerfCountersBuilder plb(cct, "ipv4", l_dpdk_qp_first, l_dpdk_qp_last); plb.add_u64_counter(l_dpdk_total_linearize_operations, "dpdk_ip_linearize_operations", "DPDK IP Packet linearization operations"); perf_logger = plb.create_perf_counters(); cct->get_perfcounters_collection()->add(perf_logger); frag_handler = new C_handle_frag_timeout(this); } bool ipv4::forward(forward_hash& out_hash_data, Packet& p, size_t off) { auto iph = p.get_header(off); out_hash_data.push_back(iph->src_ip.ip); out_hash_data.push_back(iph->dst_ip.ip); auto h = iph->ntoh(); auto l4 = _l4[h.ip_proto]; if (l4) { if (h.mf() == false && h.offset() == 0) { // This IP datagram is atomic, forward according to tcp connection hash l4->forward(out_hash_data, p, off + sizeof(ip_hdr)); } // else forward according to ip fields only } return true; } int ipv4::handle_received_packet(Packet p, ethernet_address from) { auto iph = p.get_header(0); if (!iph) { return 0; } // Skip checking csum of reassembled IP datagram if (!get_hw_features().rx_csum_offload && !p.offload_info_ref().reassembled) { checksummer csum; csum.sum(reinterpret_cast(iph), sizeof(*iph)); if (csum.get() != 0) { return 0; } } auto h = iph->ntoh(); unsigned ip_len = h.len; unsigned ip_hdr_len = h.ihl * 4; unsigned pkt_len = p.len(); auto offset = h.offset(); ldout(cct, 10) << __func__ << " get " << std::hex << int(h.ip_proto) << std::dec << " packet from " << h.src_ip << " -> " << h.dst_ip << " id=" << h.id << " ip_len=" << ip_len << " ip_hdr_len=" << ip_hdr_len << " pkt_len=" << pkt_len << " offset=" << offset << dendl; if (pkt_len > ip_len) { // Trim extra data in the packet beyond IP total length p.trim_back(pkt_len - ip_len); } else if (pkt_len < ip_len) { // Drop if it contains less than IP total length return 0; } // Drop if the reassembled datagram will be larger than maximum IP size if (offset + p.len() > ip_packet_len_max) { return 0; } // FIXME: process options if (in_my_netmask(h.src_ip) && h.src_ip != _host_address) { ldout(cct, 20) << __func__ << " learn mac " << from << " with " << h.src_ip << dendl; _arp.learn(from, h.src_ip); } if (_packet_filter) { bool handled = false; _packet_filter->handle(p, &h, from, handled); if (handled) { return 0; } } if (h.dst_ip != _host_address) { // FIXME: forward return 0; } // Does this IP datagram need reassembly auto mf = h.mf(); if (mf == true || offset != 0) { frag_limit_mem(); auto frag_id = ipv4_frag_id{h.src_ip, h.dst_ip, h.id, h.ip_proto}; auto& frag = _frags[frag_id]; if (mf == false) { frag.last_frag_received = true; } // This is a newly created frag_id if (frag.mem_size == 0) { _frags_age.push_back(frag_id); frag.rx_time = ceph_clock_now(); } auto added_size = frag.merge(h, offset, std::move(p)); _frag_mem += added_size; if (frag.is_complete()) { // All the fragments are received auto dropped_size = frag.mem_size; auto& ip_data = frag.data.map.begin()->second; // Choose a cpu to forward this packet auto cpu_id = center->get_id(); auto l4 = _l4[h.ip_proto]; if (l4) { size_t l4_offset = 0; forward_hash hash_data; hash_data.push_back(hton(h.src_ip.ip)); hash_data.push_back(hton(h.dst_ip.ip)); l4->forward(hash_data, ip_data, l4_offset); cpu_id = _netif->hash2cpu(toeplitz_hash(_netif->rss_key(), hash_data)); } // No need to forward if the dst cpu is the current cpu if (cpu_id == center->get_id()) { l4->received(std::move(ip_data), h.src_ip, h.dst_ip); } else { auto to = _netif->hw_address(); auto pkt = frag.get_assembled_packet(from, to); _netif->forward(center, cpu_id, std::move(pkt)); } // Delete this frag from _frags and _frags_age frag_drop(frag_id, dropped_size); _frags_age.remove(frag_id); perf_logger->set(l_dpdk_total_linearize_operations, ipv4_packet_merger::linearizations()); } else { // Some of the fragments are missing if (frag_timefd) { frag_arm(); } } return 0; } auto l4 = _l4[h.ip_proto]; if (l4) { // Trim IP header and pass to upper layer p.trim_front(ip_hdr_len); l4->received(std::move(p), h.src_ip, h.dst_ip); } return 0; } void ipv4::wait_l2_dst_address(ipv4_address to, Packet p, resolution_cb cb) { // Figure out where to send the packet to. If it is a directly connected // host, send to it directly, otherwise send to the default gateway. ipv4_address dst; if (in_my_netmask(to)) { dst = to; } else { dst = _gw_address; } _arp.wait(std::move(dst), std::move(p), std::move(cb)); } const hw_features& ipv4::get_hw_features() const { return _netif->get_hw_features(); } void ipv4::send(ipv4_address to, ip_protocol_num proto_num, Packet p, ethernet_address e_dst) { auto needs_frag = this->needs_frag(p, proto_num, get_hw_features()); auto send_pkt = [this, to, proto_num, needs_frag, e_dst] (Packet& pkt, uint16_t remaining, uint16_t offset) mutable { static uint16_t id = 0; auto iph = pkt.prepend_header(); iph->ihl = sizeof(*iph) / 4; iph->ver = 4; iph->dscp = 0; iph->ecn = 0; iph->len = pkt.len(); // FIXME: a proper id iph->id = id++; if (needs_frag) { uint16_t mf = remaining > 0; // The fragment offset is measured in units of 8 octets (64 bits) auto off = offset / 8; iph->frag = (mf << uint8_t(ip_hdr::frag_bits::mf)) | off; } else { iph->frag = 0; } iph->ttl = 64; iph->ip_proto = (uint8_t)proto_num; iph->csum = 0; iph->src_ip = _host_address; iph->dst_ip = to; ldout(cct, 20) << " ipv4::send " << " id=" << iph->id << " " << _host_address << " -> " << to << " len " << pkt.len() << dendl; *iph = iph->hton(); if (get_hw_features().tx_csum_ip_offload) { iph->csum = 0; pkt.offload_info_ref().needs_ip_csum = true; } else { checksummer csum; csum.sum(reinterpret_cast(iph), sizeof(*iph)); iph->csum = csum.get(); } _packetq.push_back( l3_protocol::l3packet{eth_protocol_num::ipv4, e_dst, std::move(pkt)}); }; if (needs_frag) { uint16_t offset = 0; uint16_t remaining = p.len(); auto mtu = get_hw_features().mtu; while (remaining) { auto can_send = std::min(uint16_t(mtu - ipv4_hdr_len_min), remaining); remaining -= can_send; auto pkt = p.share(offset, can_send); send_pkt(pkt, remaining, offset); offset += can_send; } } else { // The whole packet can be send in one shot send_pkt(p, 0, 0); } } Tub ipv4::get_packet() { // _packetq will be mostly empty here unless it hold remnants of previously // fragmented packet if (_packetq.empty()) { for (size_t i = 0; i < _pkt_providers.size(); i++) { auto l4p = _pkt_providers[_pkt_provider_idx++](); if (_pkt_provider_idx == _pkt_providers.size()) { _pkt_provider_idx = 0; } if (l4p) { ldout(cct, 20) << " ipv4::get_packet len " << l4p->p.len() << dendl; send(l4p->to, l4p->proto_num, std::move(l4p->p), l4p->e_dst); break; } } } Tub p; if (!_packetq.empty()) { p = std::move(_packetq.front()); _packetq.pop_front(); } return p; } void ipv4::frag_limit_mem() { if (_frag_mem <= _frag_high_thresh) { return; } auto drop = _frag_mem - _frag_low_thresh; while (drop) { if (_frags_age.empty()) { return; } // Drop the oldest frag (first element) from _frags_age auto frag_id = _frags_age.front(); _frags_age.pop_front(); // Drop from _frags as well auto& frag = _frags[frag_id]; auto dropped_size = frag.mem_size; frag_drop(frag_id, dropped_size); drop -= std::min(drop, dropped_size); } } void ipv4::frag_timeout() { if (_frags.empty()) { return; } auto now = ceph_clock_now(); for (auto it = _frags_age.begin(); it != _frags_age.end();) { auto frag_id = *it; auto& frag = _frags[frag_id]; if (now > frag.rx_time + _frag_timeout) { auto dropped_size = frag.mem_size; // Drop from _frags frag_drop(frag_id, dropped_size); // Drop from _frags_age it = _frags_age.erase(it); } else { // The further items can only be younger break; } } if (_frags.size() != 0) { frag_arm(now); } else { _frag_mem = 0; } } int32_t ipv4::frag::merge(ip_hdr &h, uint16_t offset, Packet p) { uint32_t old = mem_size; unsigned ip_hdr_len = h.ihl * 4; // Store IP header if (offset == 0) { header = p.share(0, ip_hdr_len); } // Sotre IP payload p.trim_front(ip_hdr_len); data.merge(offset, std::move(p)); // Update mem size mem_size = header.memory(); for (const auto& x : data.map) { mem_size += x.second.memory(); } auto added_size = mem_size - old; return added_size; } bool ipv4::frag::is_complete() { // If all the fragments are received, ipv4::frag::merge() should merge all // the fragments into a single packet auto offset = data.map.begin()->first; auto nr_packet = data.map.size(); return last_frag_received && nr_packet == 1 && offset == 0; } Packet ipv4::frag::get_assembled_packet(ethernet_address from, ethernet_address to) { auto& ip_header = header; auto& ip_data = data.map.begin()->second; // Append a ethernet header, needed for forwarding auto eh = ip_header.prepend_header(); eh->src_mac = from; eh->dst_mac = to; eh->eth_proto = uint16_t(eth_protocol_num::ipv4); *eh = eh->hton(); // Prepare a packet contains both ethernet header, ip header and ip data ip_header.append(std::move(ip_data)); auto pkt = std::move(ip_header); auto iph = pkt.get_header(sizeof(eth_hdr)); // len is the sum of each fragment iph->len = hton(uint16_t(pkt.len() - sizeof(eth_hdr))); // No fragmentation for the assembled datagram iph->frag = 0; // Since each fragment's csum is checked, no need to csum // again for the assembled datagram offload_info oi; oi.reassembled = true; pkt.set_offload_info(oi); return pkt; } void icmp::received(Packet p, ipaddr from, ipaddr to) { auto hdr = p.get_header(0); if (!hdr || hdr->type != icmp_hdr::msg_type::echo_request) { return; } hdr->type = icmp_hdr::msg_type::echo_reply; hdr->code = 0; hdr->csum = 0; checksummer csum; csum.sum(reinterpret_cast(hdr), p.len()); hdr->csum = csum.get(); if (_queue_space.get_or_fail(p.len())) { // drop packets that do not fit the queue auto cb = [this, from] (const ethernet_address e_dst, Packet p, int r) mutable { if (r == 0) { _packetq.emplace_back(ipv4_traits::l4packet{from, std::move(p), e_dst, ip_protocol_num::icmp}); } }; _inet.wait_l2_dst_address(from, std::move(p), cb); } }