/* * This file is open source software, licensed to you under the terms * of the Apache License, Version 2.0 (the "License"). See the NOTICE file * distributed with this work for additional information regarding copyright * ownership. You may not use this file except in compliance with the License. * * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ /* * Copyright (C) 2016 Scylla DB Ltd */ #include #include #include #include #include #include #include #include #include using namespace seastar; using namespace std::chrono_literals; template future<> compute_intensive_task(Duration duration, unsigned& counter, Func func) { auto end = std::chrono::steady_clock::now() + duration; while (std::chrono::steady_clock::now() < end) { func(); } ++counter; return make_ready_future<>(); } future<> heavy_task(unsigned& counter) { return compute_intensive_task(1ms, counter, [] { static thread_local double x = 1; x = std::exp(x) / 3; }); } future<> light_task(unsigned& counter) { return compute_intensive_task(100us, counter, [] { static thread_local double x = 0.1; x = std::log(x + 1); }); } future<> medium_task(unsigned& counter) { return compute_intensive_task(400us, counter, [] { static thread_local double x = 0.1; x = std::cos(x); }); } using done_func = std::function; future<> run_compute_intensive_tasks(seastar::scheduling_group sg, done_func done, unsigned concurrency, unsigned& counter, std::function (unsigned& counter)> task) { return seastar::async([task, sg, concurrency, done, &counter] { while (!done()) { parallel_for_each(boost::irange(0u, concurrency), [task, sg, &counter] (unsigned i) { return with_scheduling_group(sg, [task, &counter] { return task(counter); }); }).get(); } }); } future<> run_compute_intensive_tasks_in_threads(seastar::scheduling_group sg, done_func done, unsigned concurrency, unsigned& counter, std::function (unsigned& counter)> task) { auto attr = seastar::thread_attributes(); attr.sched_group = sg; return parallel_for_each(boost::irange(0u, concurrency), [attr, done, &counter, task] (unsigned i) { return seastar::async(attr, [done, &counter, task] { while (!done()) { task(counter).get(); } }); }); } future<> run_with_duty_cycle(float utilization, std::chrono::steady_clock::duration period, done_func done, std::function (done_func done)> task) { return seastar::async([=] { bool duty_toggle = true; auto t0 = std::chrono::steady_clock::now(); condition_variable cv; timer<> tmr_on([&] { duty_toggle = true; cv.signal(); }); timer<> tmr_off([&] { duty_toggle = false; }); tmr_on.arm(t0, period); tmr_off.arm(t0 + std::chrono::duration_cast(period * utilization), period); auto combined_done = [&] { return done() || !duty_toggle; }; while (!done()) { while (!combined_done()) { task(std::cref(combined_done)).get(); } cv.wait([&] { return done() || duty_toggle; }).get(); } tmr_on.cancel(); tmr_off.cancel(); }); } #include template auto var_fn(T& var) { return [&var] { return var; }; } int main(int ac, char** av) { app_template app; return app.run(ac, av, [] { return seastar::async([] { auto sg100 = seastar::create_scheduling_group("sg100", 100).get0(); auto ksg100 = seastar::defer([&] { seastar::destroy_scheduling_group(sg100).get(); }); auto sg20 = seastar::create_scheduling_group("sg20", 20).get0(); auto ksg20 = seastar::defer([&] { seastar::destroy_scheduling_group(sg20).get(); }); auto sg50 = seastar::create_scheduling_group("sg50", 50).get0(); auto ksg50 = seastar::defer([&] { seastar::destroy_scheduling_group(sg50).get(); }); bool done = false; auto end = timer<>([&done] { done = true; }); end.arm(10s); unsigned ctr100 = 0, ctr20 = 0, ctr50 = 0; fmt::print("running three scheduling groups with 100% duty cycle each:\n"); when_all( run_compute_intensive_tasks(sg100, var_fn(done), 5, ctr100, heavy_task), run_compute_intensive_tasks(sg20, var_fn(done), 3, ctr20, light_task), run_compute_intensive_tasks_in_threads(sg50, var_fn(done), 2, ctr50, medium_task) ).get(); fmt::print("{:10} {:15} {:10} {:12} {:8}\n", "shares", "task_time (us)", "executed", "runtime (ms)", "vruntime"); fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 100, 1000, ctr100, ctr100 * 1000 / 1000, ctr100 * 1000 / 1000 / 100.); fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 20, 100, ctr20, ctr20 * 100 / 1000, ctr20 * 100 / 1000 / 20.); fmt::print("{:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 50, 400, ctr50, ctr50 * 400 / 1000, ctr50 * 400 / 1000 / 50.); fmt::print("\n"); fmt::print("running two scheduling groups with 100%/50% duty cycles (period=1s:\n"); unsigned ctr100_2 = 0, ctr50_2 = 0; done = false; end.arm(10s); when_all( run_compute_intensive_tasks(sg50, var_fn(done), 5, ctr50_2, heavy_task), run_with_duty_cycle(0.5, 1s, var_fn(done), [=, &ctr100_2] (done_func done) { return run_compute_intensive_tasks(sg100, done, 4, ctr100_2, heavy_task); }) ).get(); fmt::print("{:10} {:10} {:15} {:10} {:12} {:8}\n", "shares", "duty", "task_time (us)", "executed", "runtime (ms)", "vruntime"); fmt::print("{:10d} {:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 100, 50, 1000, ctr100_2, ctr100_2 * 1000 / 1000, ctr100_2 * 1000 / 1000 / 100.); fmt::print("{:10d} {:10d} {:15d} {:10d} {:12d} {:8.2f}\n", 50, 100, 400, ctr50_2, ctr50_2 * 1000 / 1000, ctr50_2 * 1000 / 1000 / 50.); return 0; }); }); }