/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/nvme.h" #include "spdk/queue.h" struct dev_ctx { TAILQ_ENTRY(dev_ctx) tailq; bool is_new; bool is_removed; bool is_draining; struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; struct spdk_nvme_qpair *qpair; uint32_t io_size_blocks; uint64_t size_in_ios; uint64_t io_completed; uint64_t prev_io_completed; uint64_t current_queue_depth; uint64_t offset_in_ios; char name[1024]; }; struct perf_task { struct dev_ctx *dev; void *buf; }; static TAILQ_HEAD(, dev_ctx) g_devs = TAILQ_HEAD_INITIALIZER(g_devs); static uint64_t g_tsc_rate; static uint32_t g_io_size_bytes = 4096; static int g_queue_depth = 4; static int g_time_in_sec; static int g_expected_insert_times = -1; static int g_expected_removal_times = -1; static int g_insert_times; static int g_removal_times; static int g_shm_id = -1; static void task_complete(struct perf_task *task); static void register_dev(struct spdk_nvme_ctrlr *ctrlr) { struct dev_ctx *dev; const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); dev = calloc(1, sizeof(*dev)); if (dev == NULL) { perror("dev_ctx malloc"); exit(1); } snprintf(dev->name, sizeof(dev->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); dev->ctrlr = ctrlr; dev->is_new = true; dev->is_removed = false; dev->is_draining = false; dev->ns = spdk_nvme_ctrlr_get_ns(ctrlr, 1); if (!dev->ns || !spdk_nvme_ns_is_active(dev->ns)) { fprintf(stderr, "Controller %s: No active namespace; skipping\n", dev->name); goto skip; } if (spdk_nvme_ns_get_size(dev->ns) < g_io_size_bytes || spdk_nvme_ns_get_sector_size(dev->ns) > g_io_size_bytes) { fprintf(stderr, "Controller %s: Invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", dev->name, spdk_nvme_ns_get_size(dev->ns), spdk_nvme_ns_get_sector_size(dev->ns), g_io_size_bytes); goto skip; } dev->size_in_ios = spdk_nvme_ns_get_size(dev->ns) / g_io_size_bytes; dev->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(dev->ns); dev->qpair = spdk_nvme_ctrlr_alloc_io_qpair(ctrlr, NULL, 0); if (!dev->qpair) { fprintf(stderr, "ERROR: spdk_nvme_ctrlr_alloc_io_qpair() failed\n"); goto skip; } g_insert_times++; TAILQ_INSERT_TAIL(&g_devs, dev, tailq); return; skip: free(dev); } static void unregister_dev(struct dev_ctx *dev) { fprintf(stderr, "unregister_dev: %s\n", dev->name); spdk_nvme_ctrlr_free_io_qpair(dev->qpair); spdk_nvme_detach(dev->ctrlr); TAILQ_REMOVE(&g_devs, dev, tailq); free(dev); } static struct perf_task * alloc_task(struct dev_ctx *dev) { struct perf_task *task; task = calloc(1, sizeof(*task)); if (task == NULL) { return NULL; } task->buf = spdk_dma_zmalloc(g_io_size_bytes, 0x200, NULL); if (task->buf == NULL) { free(task); return NULL; } task->dev = dev; return task; } static void free_task(struct perf_task *task) { spdk_dma_free(task->buf); free(task); } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static void submit_single_io(struct perf_task *task) { struct dev_ctx *dev = task->dev; uint64_t offset_in_ios; int rc; offset_in_ios = dev->offset_in_ios++; if (dev->offset_in_ios == dev->size_in_ios) { dev->offset_in_ios = 0; } rc = spdk_nvme_ns_cmd_read(dev->ns, dev->qpair, task->buf, offset_in_ios * dev->io_size_blocks, dev->io_size_blocks, io_complete, task, 0); if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); free_task(task); } else { dev->current_queue_depth++; } } static void task_complete(struct perf_task *task) { struct dev_ctx *dev; dev = task->dev; dev->current_queue_depth--; dev->io_completed++; /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (!dev->is_draining && !dev->is_removed) { submit_single_io(task); } else { free_task(task); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { task_complete((struct perf_task *)ctx); } static void check_io(struct dev_ctx *dev) { spdk_nvme_qpair_process_completions(dev->qpair, 0); } static void submit_io(struct dev_ctx *dev, int queue_depth) { struct perf_task *task; while (queue_depth-- > 0) { task = alloc_task(dev); if (task == NULL) { fprintf(stderr, "task allocation failed\n"); exit(1); } submit_single_io(task); } } static void drain_io(struct dev_ctx *dev) { dev->is_draining = true; while (dev->current_queue_depth > 0) { check_io(dev); } } static void print_stats(void) { struct dev_ctx *dev; TAILQ_FOREACH(dev, &g_devs, tailq) { fprintf(stderr, "%-43.43s: %10" PRIu64 " I/Os completed (+%" PRIu64 ")\n", dev->name, dev->io_completed, dev->io_completed - dev->prev_io_completed); dev->prev_io_completed = dev->io_completed; } fprintf(stderr, "\n"); } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { fprintf(stderr, "Attaching to %s\n", trid->traddr); return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { fprintf(stderr, "Attached to %s\n", trid->traddr); register_dev(ctrlr); } static void remove_cb(void *cb_ctx, struct spdk_nvme_ctrlr *ctrlr) { struct dev_ctx *dev; TAILQ_FOREACH(dev, &g_devs, tailq) { if (dev->ctrlr == ctrlr) { /* * Mark the device as removed, but don't detach yet. * * The I/O handling code will detach once it sees that * is_removed is true and all outstanding I/O have been completed. */ dev->is_removed = true; fprintf(stderr, "Controller removed: %s\n", dev->name); return; } } /* * If we get here, this remove_cb is for a controller that we are not tracking * in g_devs (for example, because we skipped it during register_dev), * so immediately detach it. */ spdk_nvme_detach(ctrlr); } static void io_loop(void) { struct dev_ctx *dev, *dev_tmp; uint64_t tsc_end; uint64_t next_stats_tsc; tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; next_stats_tsc = spdk_get_ticks(); while (1) { uint64_t now; /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ TAILQ_FOREACH(dev, &g_devs, tailq) { if (dev->is_new) { /* Submit initial I/O for this controller. */ submit_io(dev, g_queue_depth); dev->is_new = false; } check_io(dev); } /* * Check for hotplug events. */ if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, remove_cb) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); break; } /* * Check for devices which were hot-removed and have finished * processing outstanding I/Os. * * unregister_dev() may remove devs from the list, so use the * removal-safe iterator. */ TAILQ_FOREACH_SAFE(dev, &g_devs, tailq, dev_tmp) { if (dev->is_removed && dev->current_queue_depth == 0) { g_removal_times++; unregister_dev(dev); } } now = spdk_get_ticks(); if (now > tsc_end) { break; } if (now > next_stats_tsc) { print_stats(); next_stats_tsc += g_tsc_rate; } if (g_insert_times == g_expected_insert_times && g_removal_times == g_expected_removal_times) { break; } } TAILQ_FOREACH_SAFE(dev, &g_devs, tailq, dev_tmp) { drain_io(dev); unregister_dev(dev); } } static void usage(char *program_name) { printf("%s options", program_name); printf("\n"); printf("\t[-i shm id (optional)]\n"); printf("\t[-n expected hot insert times]\n"); printf("\t[-r expected hot removal times]\n"); printf("\t[-t time in seconds]\n"); } static int parse_args(int argc, char **argv) { int op; /* default value */ g_time_in_sec = 0; while ((op = getopt(argc, argv, "i:n:r:t:")) != -1) { switch (op) { case 'i': g_shm_id = atoi(optarg); break; case 'n': g_expected_insert_times = atoi(optarg); break; case 'r': g_expected_removal_times = atoi(optarg); break; case 't': g_time_in_sec = atoi(optarg); break; default: usage(argv[0]); return 1; } } if (!g_time_in_sec) { usage(argv[0]); return 1; } return 0; } static int register_controllers(void) { fprintf(stderr, "Initializing NVMe Controllers\n"); if (spdk_nvme_probe(NULL, NULL, probe_cb, attach_cb, remove_cb) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } /* Reset g_insert_times to 0 so that we do not count controllers attached at start as hotplug events. */ g_insert_times = 0; return 0; } int main(int argc, char **argv) { int rc; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "hotplug"; opts.core_mask = "0x1"; if (g_shm_id > -1) { opts.shm_id = g_shm_id; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); return 1; } g_tsc_rate = spdk_get_ticks_hz(); /* Detect the controllers that are plugged in at startup. */ if (register_controllers() != 0) { return 1; } fprintf(stderr, "Initialization complete. Starting I/O...\n"); io_loop(); if (g_expected_insert_times != -1 && g_insert_times != g_expected_insert_times) { fprintf(stderr, "Expected inserts %d != actual inserts %d\n", g_expected_insert_times, g_insert_times); return 1; } if (g_expected_removal_times != -1 && g_removal_times != g_expected_removal_times) { fprintf(stderr, "Expected removals %d != actual removals %d\n", g_expected_removal_times, g_removal_times); return 1; } return 0; }