/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/endian.h" #include "spdk/log.h" #include "spdk/nvme.h" #include "spdk/nvme_ocssd.h" #include "spdk/env.h" #include "spdk/nvme_intel.h" #include "spdk/nvmf_spec.h" #include "spdk/pci_ids.h" #include "spdk/string.h" #include "spdk/util.h" #include "spdk/uuid.h" #define MAX_DISCOVERY_LOG_ENTRIES ((uint64_t)1000) #define NUM_CHUNK_INFO_ENTRIES 8 static int outstanding_commands; struct feature { uint32_t result; bool valid; }; static struct feature features[256]; static struct spdk_nvme_error_information_entry error_page[256]; static struct spdk_nvme_health_information_page health_page; static struct spdk_nvme_firmware_page firmware_page; static struct spdk_nvme_cmds_and_effect_log_page cmd_effects_log_page; static struct spdk_nvme_intel_smart_information_page intel_smart_page; static struct spdk_nvme_intel_temperature_page intel_temperature_page; static struct spdk_nvme_intel_marketing_description_page intel_md_page; static struct spdk_nvmf_discovery_log_page *g_discovery_page; static size_t g_discovery_page_size; static uint64_t g_discovery_page_numrec; static struct spdk_ocssd_geometry_data geometry_data; static struct spdk_ocssd_chunk_information_entry g_ocssd_chunk_info_page[NUM_CHUNK_INFO_ENTRIES ]; static bool g_hex_dump = false; static int g_shm_id = -1; static int g_dpdk_mem = 64; static int g_master_core = 0; static char g_core_mask[16] = "0x1"; static struct spdk_nvme_transport_id g_trid; static int g_controllers_found = 0; static void hex_dump(const void *data, size_t size) { size_t offset = 0, i; const uint8_t *bytes = data; while (size) { printf("%08zX:", offset); for (i = 0; i < 16; i++) { if (i == 8) { printf("-"); } else { printf(" "); } if (i < size) { printf("%02X", bytes[offset + i]); } else { printf(" "); } } printf(" "); for (i = 0; i < 16; i++) { if (i < size) { if (bytes[offset + i] > 0x20 && bytes[offset + i] < 0x7F) { printf("%c", bytes[offset + i]); } else { printf("."); } } } printf("\n"); offset += 16; if (size > 16) { size -= 16; } else { break; } } } static void get_feature_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { struct feature *feature = cb_arg; int fid = feature - features; if (spdk_nvme_cpl_is_error(cpl)) { printf("get_feature(0x%02X) failed\n", fid); } else { feature->result = cpl->cdw0; feature->valid = true; } outstanding_commands--; } static void get_log_page_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("get log page failed\n"); } outstanding_commands--; } static void get_ocssd_geometry_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("get ocssd geometry failed\n"); } outstanding_commands--; } static int get_feature(struct spdk_nvme_ctrlr *ctrlr, uint8_t fid) { struct spdk_nvme_cmd cmd = {}; cmd.opc = SPDK_NVME_OPC_GET_FEATURES; cmd.cdw10 = fid; return spdk_nvme_ctrlr_cmd_admin_raw(ctrlr, &cmd, NULL, 0, get_feature_completion, &features[fid]); } static void get_features(struct spdk_nvme_ctrlr *ctrlr) { size_t i; uint8_t features_to_get[] = { SPDK_NVME_FEAT_ARBITRATION, SPDK_NVME_FEAT_POWER_MANAGEMENT, SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD, SPDK_NVME_FEAT_ERROR_RECOVERY, SPDK_NVME_FEAT_NUMBER_OF_QUEUES, SPDK_OCSSD_FEAT_MEDIA_FEEDBACK, }; /* Submit several GET FEATURES commands and wait for them to complete */ outstanding_commands = 0; for (i = 0; i < SPDK_COUNTOF(features_to_get); i++) { if (!spdk_nvme_ctrlr_is_ocssd_supported(ctrlr) && features_to_get[i] == SPDK_OCSSD_FEAT_MEDIA_FEEDBACK) { continue; } if (get_feature(ctrlr, features_to_get[i]) == 0) { outstanding_commands++; } else { printf("get_feature(0x%02X) failed to submit command\n", features_to_get[i]); } } while (outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static int get_error_log_page(struct spdk_nvme_ctrlr *ctrlr) { const struct spdk_nvme_ctrlr_data *cdata; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_ERROR, SPDK_NVME_GLOBAL_NS_TAG, error_page, sizeof(*error_page) * (cdata->elpe + 1), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_health_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_HEALTH_INFORMATION, SPDK_NVME_GLOBAL_NS_TAG, &health_page, sizeof(health_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_firmware_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_FIRMWARE_SLOT, SPDK_NVME_GLOBAL_NS_TAG, &firmware_page, sizeof(firmware_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_cmd_effects_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_COMMAND_EFFECTS_LOG, SPDK_NVME_GLOBAL_NS_TAG, &cmd_effects_log_page, sizeof(cmd_effects_log_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_intel_smart_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_SMART, SPDK_NVME_GLOBAL_NS_TAG, &intel_smart_page, sizeof(intel_smart_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_intel_temperature_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE, SPDK_NVME_GLOBAL_NS_TAG, &intel_temperature_page, sizeof(intel_temperature_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static int get_intel_md_log_page(struct spdk_nvme_ctrlr *ctrlr) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION, SPDK_NVME_GLOBAL_NS_TAG, &intel_md_page, sizeof(intel_md_page), 0, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static void get_discovery_log_page_header_completion(void *cb_arg, const struct spdk_nvme_cpl *cpl) { struct spdk_nvmf_discovery_log_page *new_discovery_page; struct spdk_nvme_ctrlr *ctrlr = cb_arg; uint16_t recfmt; uint64_t remaining; uint64_t offset; outstanding_commands--; if (spdk_nvme_cpl_is_error(cpl)) { /* Return without printing anything - this may not be a discovery controller */ free(g_discovery_page); g_discovery_page = NULL; return; } /* Got the first 4K of the discovery log page */ recfmt = from_le16(&g_discovery_page->recfmt); if (recfmt != 0) { printf("Unrecognized discovery log record format %" PRIu16 "\n", recfmt); return; } g_discovery_page_numrec = from_le64(&g_discovery_page->numrec); /* Pick an arbitrary limit to avoid ridiculously large buffer size. */ if (g_discovery_page_numrec > MAX_DISCOVERY_LOG_ENTRIES) { printf("Discovery log has %" PRIu64 " entries - limiting to %" PRIu64 ".\n", g_discovery_page_numrec, MAX_DISCOVERY_LOG_ENTRIES); g_discovery_page_numrec = MAX_DISCOVERY_LOG_ENTRIES; } /* * Now that we now how many entries should be in the log page, we can allocate * the full log page buffer. */ g_discovery_page_size += g_discovery_page_numrec * sizeof(struct spdk_nvmf_discovery_log_page_entry); new_discovery_page = realloc(g_discovery_page, g_discovery_page_size); if (new_discovery_page == NULL) { free(g_discovery_page); printf("Discovery page allocation failed!\n"); return; } g_discovery_page = new_discovery_page; /* Retrieve the rest of the discovery log page */ offset = offsetof(struct spdk_nvmf_discovery_log_page, entries); remaining = g_discovery_page_size - offset; while (remaining) { uint32_t size; /* Retrieve up to 4 KB at a time */ size = spdk_min(remaining, 4096); if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY, 0, (char *)g_discovery_page + offset, size, offset, get_log_page_completion, NULL)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } offset += size; remaining -= size; outstanding_commands++; } } static int get_discovery_log_page(struct spdk_nvme_ctrlr *ctrlr) { /* Allocate the initial discovery log page buffer - this will be resized later. */ g_discovery_page_size = sizeof(*g_discovery_page); g_discovery_page = calloc(1, g_discovery_page_size); if (g_discovery_page == NULL) { printf("Discovery log page allocation failed!\n"); exit(1); } if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_LOG_DISCOVERY, 0, g_discovery_page, g_discovery_page_size, 0, get_discovery_log_page_header_completion, ctrlr)) { printf("spdk_nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } return 0; } static void get_log_pages(struct spdk_nvme_ctrlr *ctrlr) { const struct spdk_nvme_ctrlr_data *cdata; outstanding_commands = 0; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (get_error_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Error Log Page failed\n"); } if (get_health_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (SMART/health) failed\n"); } if (get_firmware_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (Firmware Slot Information) failed\n"); } if (cdata->lpa.celp) { if (get_cmd_effects_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (Commands Supported and Effects) failed\n"); } } if (cdata->vid == SPDK_PCI_VID_INTEL) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) { if (get_intel_smart_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (Intel SMART/health) failed\n"); } } if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) { if (get_intel_temperature_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (Intel temperature) failed\n"); } } if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) { if (get_intel_md_log_page(ctrlr) == 0) { outstanding_commands++; } else { printf("Get Log Page (Intel Marketing Description) failed\n"); } } } if (get_discovery_log_page(ctrlr) == 0) { outstanding_commands++; } while (outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static int get_ocssd_chunk_info_log_page(struct spdk_nvme_ns *ns) { struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); int nsid = spdk_nvme_ns_get_id(ns); outstanding_commands = 0; if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_OCSSD_LOG_CHUNK_INFO, nsid, &g_ocssd_chunk_info_page, sizeof(g_ocssd_chunk_info_page), 0, get_log_page_completion, NULL) == 0) { outstanding_commands++; } else { printf("get_ocssd_chunk_info_log_page() failed\n"); return -1; } while (outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } return 0; } static void get_ocssd_geometry(struct spdk_nvme_ns *ns, struct spdk_ocssd_geometry_data *geometry_data) { struct spdk_nvme_ctrlr *ctrlr = spdk_nvme_ns_get_ctrlr(ns); int nsid = spdk_nvme_ns_get_id(ns); outstanding_commands = 0; if (spdk_nvme_ocssd_ctrlr_cmd_geometry(ctrlr, nsid, geometry_data, sizeof(*geometry_data), get_ocssd_geometry_completion, NULL)) { printf("Get OpenChannel SSD geometry failed\n"); exit(1); } else { outstanding_commands++; } while (outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static void print_hex_be(const void *v, size_t size) { const uint8_t *buf = v; while (size--) { printf("%02X", *buf++); } } static void print_uint128_hex(uint64_t *v) { unsigned long long lo = v[0], hi = v[1]; if (hi) { printf("0x%llX%016llX", hi, lo); } else { printf("0x%llX", lo); } } static void print_uint128_dec(uint64_t *v) { unsigned long long lo = v[0], hi = v[1]; if (hi) { /* can't handle large (>64-bit) decimal values for now, so fall back to hex */ print_uint128_hex(v); } else { printf("%llu", (unsigned long long)lo); } } /* The len should be <= 8. */ static void print_uint_var_dec(uint8_t *array, unsigned int len) { uint64_t result = 0; int i = len; while (i > 0) { result += (uint64_t)array[i - 1] << (8 * (i - 1)); i--; } printf("%lu", result); } /* Print ASCII string as defined by the NVMe spec */ static void print_ascii_string(const void *buf, size_t size) { const uint8_t *str = buf; /* Trim trailing spaces */ while (size > 0 && str[size - 1] == ' ') { size--; } while (size--) { if (*str >= 0x20 && *str <= 0x7E) { printf("%c", *str); } else { printf("."); } str++; } } static void print_ocssd_chunk_info(struct spdk_ocssd_chunk_information_entry *chk_info, int chk_num) { int i; char *cs_str, *ct_str; printf("OCSSD Chunk Info Glance\n"); printf("======================\n"); for (i = 0; i < chk_num; i++) { cs_str = chk_info[i].cs.free ? "Free" : chk_info[i].cs.closed ? "Closed" : chk_info[i].cs.open ? "Open" : chk_info[i].cs.offline ? "Offline" : "Unknown"; ct_str = chk_info[i].ct.seq_write ? "Sequential Write" : chk_info[i].ct.rnd_write ? "Random Write" : "Unknown"; printf("------------\n"); printf("Chunk index: %d\n", i); printf("Chunk state: %s(0x%x)\n", cs_str, *(uint8_t *) & (chk_info[i].cs)); printf("Chunk type (write mode): %s\n", ct_str); printf("Chunk type (size_deviate): %s\n", chk_info[i].ct.size_deviate ? "Yes" : "No"); printf("Wear-level Index: %d\n", chk_info[i].wli); printf("Starting LBA: %ld\n", chk_info[i].slba); printf("Number of blocks in chunk: %ld\n", chk_info[i].cnlb); printf("Write Pointer: %ld\n", chk_info[i].wp); } } static void print_ocssd_geometry(struct spdk_ocssd_geometry_data *geometry_data) { printf("Namespace OCSSD Geometry\n"); printf("=======================\n"); if (geometry_data->mjr < 2) { printf("Open-Channel Spec version is less than 2.0\n"); printf("OC version: maj:%d\n", geometry_data->mjr); return; } printf("OC version: maj:%d min:%d\n", geometry_data->mjr, geometry_data->mnr); printf("LBA format:\n"); printf(" Group bits: %d\n", geometry_data->lbaf.grp_len); printf(" PU bits: %d\n", geometry_data->lbaf.pu_len); printf(" Chunk bits: %d\n", geometry_data->lbaf.chk_len); printf(" Logical block bits: %d\n", geometry_data->lbaf.lbk_len); printf("Media and Controller Capabilities:\n"); printf(" Namespace supports Vector Chunk Copy: %s\n", geometry_data->mccap.vec_chk_cpy ? "Supported" : "Not Supported"); printf(" Namespace supports multiple resets a free chunk: %s\n", geometry_data->mccap.multi_reset ? "Supported" : "Not Supported"); printf("Wear-level Index Delta Threshold: %d\n", geometry_data->wit); printf("Groups (channels): %d\n", geometry_data->num_grp); printf("PUs (LUNs) per group: %d\n", geometry_data->num_pu); printf("Chunks per LUN: %d\n", geometry_data->num_chk); printf("Logical blks per chunk: %d\n", geometry_data->clba); printf("MIN write size: %d\n", geometry_data->ws_min); printf("OPT write size: %d\n", geometry_data->ws_opt); printf("Cache min write size: %d\n", geometry_data->mw_cunits); printf("Max open chunks: %d\n", geometry_data->maxoc); printf("Max open chunks per PU: %d\n", geometry_data->maxocpu); printf("\n"); } static void print_namespace(struct spdk_nvme_ns *ns) { const struct spdk_nvme_ns_data *nsdata; const struct spdk_uuid *uuid; uint32_t i; uint32_t flags; char uuid_str[SPDK_UUID_STRING_LEN]; nsdata = spdk_nvme_ns_get_data(ns); flags = spdk_nvme_ns_get_flags(ns); printf("Namespace ID:%d\n", spdk_nvme_ns_get_id(ns)); if (g_hex_dump) { hex_dump(nsdata, sizeof(*nsdata)); printf("\n"); } if (!spdk_nvme_ns_is_active(ns)) { printf("Inactive namespace ID\n\n"); return; } printf("Deallocate: %s\n", (flags & SPDK_NVME_NS_DEALLOCATE_SUPPORTED) ? "Supported" : "Not Supported"); printf("Deallocated/Unwritten Error: %s\n", nsdata->nsfeat.dealloc_or_unwritten_error ? "Supported" : "Not Supported"); printf("Deallocated Read Value: %s\n", nsdata->dlfeat.bits.read_value == SPDK_NVME_DEALLOC_READ_00 ? "All 0x00" : nsdata->dlfeat.bits.read_value == SPDK_NVME_DEALLOC_READ_FF ? "All 0xFF" : "Unknown"); printf("Deallocate in Write Zeroes: %s\n", nsdata->dlfeat.bits.write_zero_deallocate ? "Supported" : "Not Supported"); printf("Deallocated Guard Field: %s\n", nsdata->dlfeat.bits.guard_value ? "CRC for Read Value" : "0xFFFF"); printf("Flush: %s\n", (flags & SPDK_NVME_NS_FLUSH_SUPPORTED) ? "Supported" : "Not Supported"); printf("Reservation: %s\n", (flags & SPDK_NVME_NS_RESERVATION_SUPPORTED) ? "Supported" : "Not Supported"); if (flags & SPDK_NVME_NS_DPS_PI_SUPPORTED) { printf("End-to-End Data Protection: Supported\n"); printf("Protection Type: Type%d\n", nsdata->dps.pit); printf("Metadata Transfered as: %s\n", nsdata->flbas.extended ? "Extended Data LBA" : "Separate Metadata Buffer"); printf("Metadata Location: %s\n", nsdata->dps.md_start ? "First 8 Bytes" : "Last 8 Bytes"); } printf("Namespace Sharing Capabilities: %s\n", nsdata->nmic.can_share ? "Multiple Controllers" : "Private"); printf("Size (in LBAs): %lld (%lldM)\n", (long long)nsdata->nsze, (long long)nsdata->nsze / 1024 / 1024); printf("Capacity (in LBAs): %lld (%lldM)\n", (long long)nsdata->ncap, (long long)nsdata->ncap / 1024 / 1024); printf("Utilization (in LBAs): %lld (%lldM)\n", (long long)nsdata->nuse, (long long)nsdata->nuse / 1024 / 1024); if (nsdata->noiob) { printf("Optimal I/O Boundary: %u blocks\n", nsdata->noiob); } if (!spdk_mem_all_zero(nsdata->nguid, sizeof(nsdata->nguid))) { printf("NGUID: "); print_hex_be(nsdata->nguid, sizeof(nsdata->nguid)); printf("\n"); } if (!spdk_mem_all_zero(&nsdata->eui64, sizeof(nsdata->eui64))) { printf("EUI64: "); print_hex_be(&nsdata->eui64, sizeof(nsdata->eui64)); printf("\n"); } uuid = spdk_nvme_ns_get_uuid(ns); if (uuid) { spdk_uuid_fmt_lower(uuid_str, sizeof(uuid_str), uuid); printf("UUID: %s\n", uuid_str); } printf("Thin Provisioning: %s\n", nsdata->nsfeat.thin_prov ? "Supported" : "Not Supported"); printf("Per-NS Atomic Units: %s\n", nsdata->nsfeat.ns_atomic_write_unit ? "Yes" : "No"); if (nsdata->nawun) { printf("Atomic Write Unit (Normal): %d\n", nsdata->nawun + 1); } if (nsdata->nawupf) { printf("Atomic Write Unit (PFail): %d\n", nsdata->nawupf + 1); } printf("NGUID/EUI64 Never Reused: %s\n", nsdata->nsfeat.guid_never_reused ? "Yes" : "No"); printf("Number of LBA Formats: %d\n", nsdata->nlbaf + 1); printf("Current LBA Format: LBA Format #%02d\n", nsdata->flbas.format); for (i = 0; i <= nsdata->nlbaf; i++) printf("LBA Format #%02d: Data Size: %5d Metadata Size: %5d\n", i, 1 << nsdata->lbaf[i].lbads, nsdata->lbaf[i].ms); printf("\n"); if (spdk_nvme_ctrlr_is_ocssd_supported(spdk_nvme_ns_get_ctrlr(ns))) { get_ocssd_geometry(ns, &geometry_data); print_ocssd_geometry(&geometry_data); get_ocssd_chunk_info_log_page(ns); print_ocssd_chunk_info(g_ocssd_chunk_info_page, NUM_CHUNK_INFO_ENTRIES); } } static const char * admin_opc_name(uint8_t opc) { switch (opc) { case SPDK_NVME_OPC_DELETE_IO_SQ: return "Delete I/O Submission Queue"; case SPDK_NVME_OPC_CREATE_IO_SQ: return "Create I/O Submission Queue"; case SPDK_NVME_OPC_GET_LOG_PAGE: return "Get Log Page"; case SPDK_NVME_OPC_DELETE_IO_CQ: return "Delete I/O Completion Queue"; case SPDK_NVME_OPC_CREATE_IO_CQ: return "Create I/O Completion Queue"; case SPDK_NVME_OPC_IDENTIFY: return "Identify"; case SPDK_NVME_OPC_ABORT: return "Abort"; case SPDK_NVME_OPC_SET_FEATURES: return "Set Features"; case SPDK_NVME_OPC_GET_FEATURES: return "Get Features"; case SPDK_NVME_OPC_ASYNC_EVENT_REQUEST: return "Asynchronous Event Request"; case SPDK_NVME_OPC_NS_MANAGEMENT: return "Namespace Management"; case SPDK_NVME_OPC_FIRMWARE_COMMIT: return "Firmware Commit"; case SPDK_NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD: return "Firmware Image Download"; case SPDK_NVME_OPC_DEVICE_SELF_TEST: return "Device Self-test"; case SPDK_NVME_OPC_NS_ATTACHMENT: return "Namespace Attachment"; case SPDK_NVME_OPC_KEEP_ALIVE: return "Keep Alive"; case SPDK_NVME_OPC_DIRECTIVE_SEND: return "Directive Send"; case SPDK_NVME_OPC_DIRECTIVE_RECEIVE: return "Directive Receive"; case SPDK_NVME_OPC_VIRTUALIZATION_MANAGEMENT: return "Virtualization Management"; case SPDK_NVME_OPC_NVME_MI_SEND: return "NVMe-MI Send"; case SPDK_NVME_OPC_NVME_MI_RECEIVE: return "NVMe-MI Receive"; case SPDK_NVME_OPC_DOORBELL_BUFFER_CONFIG: return "Doorbell Buffer Config"; case SPDK_NVME_OPC_FORMAT_NVM: return "Format NVM"; case SPDK_NVME_OPC_SECURITY_SEND: return "Security Send"; case SPDK_NVME_OPC_SECURITY_RECEIVE: return "Security Receive"; case SPDK_NVME_OPC_SANITIZE: return "Sanitize"; default: if (opc >= 0xC0) { return "Vendor specific"; } return "Unknown"; } } static const char * io_opc_name(uint8_t opc) { switch (opc) { case SPDK_NVME_OPC_FLUSH: return "Flush"; case SPDK_NVME_OPC_WRITE: return "Write"; case SPDK_NVME_OPC_READ: return "Read"; case SPDK_NVME_OPC_WRITE_UNCORRECTABLE: return "Write Uncorrectable"; case SPDK_NVME_OPC_COMPARE: return "Compare"; case SPDK_NVME_OPC_WRITE_ZEROES: return "Write Zeroes"; case SPDK_NVME_OPC_DATASET_MANAGEMENT: return "Dataset Management"; case SPDK_NVME_OPC_RESERVATION_REGISTER: return "Reservation Register"; case SPDK_NVME_OPC_RESERVATION_REPORT: return "Reservation Report"; case SPDK_NVME_OPC_RESERVATION_ACQUIRE: return "Reservation Acquire"; case SPDK_NVME_OPC_RESERVATION_RELEASE: return "Reservation Release"; default: if (opc >= 0x80) { return "Vendor specific"; } return "Unknown"; } } static void print_controller(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_transport_id *trid) { const struct spdk_nvme_ctrlr_data *cdata; union spdk_nvme_cap_register cap; union spdk_nvme_vs_register vs; uint8_t str[512]; uint32_t i; struct spdk_nvme_error_information_entry *error_entry; struct spdk_pci_addr pci_addr; struct spdk_pci_device *pci_dev; struct spdk_pci_id pci_id; uint32_t nsid; cap = spdk_nvme_ctrlr_get_regs_cap(ctrlr); vs = spdk_nvme_ctrlr_get_regs_vs(ctrlr); get_features(ctrlr); get_log_pages(ctrlr); cdata = spdk_nvme_ctrlr_get_data(ctrlr); printf("=====================================================\n"); if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { printf("NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); } else { if (spdk_pci_addr_parse(&pci_addr, trid->traddr) != 0) { return; } pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); if (!pci_dev) { return; } pci_id = spdk_pci_device_get_id(pci_dev); printf("NVMe Controller at %04x:%02x:%02x.%x [%04x:%04x]\n", pci_addr.domain, pci_addr.bus, pci_addr.dev, pci_addr.func, pci_id.vendor_id, pci_id.device_id); } printf("=====================================================\n"); if (g_hex_dump) { hex_dump(cdata, sizeof(*cdata)); printf("\n"); } printf("Controller Capabilities/Features\n"); printf("================================\n"); printf("Vendor ID: %04x\n", cdata->vid); printf("Subsystem Vendor ID: %04x\n", cdata->ssvid); printf("Serial Number: "); print_ascii_string(cdata->sn, sizeof(cdata->sn)); printf("\n"); printf("Model Number: "); print_ascii_string(cdata->mn, sizeof(cdata->mn)); printf("\n"); printf("Firmware Version: "); print_ascii_string(cdata->fr, sizeof(cdata->fr)); printf("\n"); printf("Recommended Arb Burst: %d\n", cdata->rab); printf("IEEE OUI Identifier: %02x %02x %02x\n", cdata->ieee[0], cdata->ieee[1], cdata->ieee[2]); printf("Multi-path I/O\n"); printf(" May have multiple subsystem ports: %s\n", cdata->cmic.multi_port ? "Yes" : "No"); printf(" May be connected to multiple hosts: %s\n", cdata->cmic.multi_host ? "Yes" : "No"); printf(" Associated with SR-IOV VF: %s\n", cdata->cmic.sr_iov ? "Yes" : "No"); printf("Max Data Transfer Size: "); if (cdata->mdts == 0) { printf("Unlimited\n"); } else { printf("%" PRIu64 "\n", (uint64_t)1 << (12 + cap.bits.mpsmin + cdata->mdts)); } if (features[SPDK_NVME_FEAT_ERROR_RECOVERY].valid) { unsigned tler = features[SPDK_NVME_FEAT_ERROR_RECOVERY].result & 0xFFFF; printf("Error Recovery Timeout: "); if (tler == 0) { printf("Unlimited\n"); } else { printf("%u milliseconds\n", tler * 100); } } printf("NVMe Specification Version (VS): %u.%u", vs.bits.mjr, vs.bits.mnr); if (vs.bits.ter) { printf(".%u", vs.bits.ter); } printf("\n"); if (cdata->ver.raw != 0) { printf("NVMe Specification Version (Identify): %u.%u", cdata->ver.bits.mjr, cdata->ver.bits.mnr); if (cdata->ver.bits.ter) { printf(".%u", cdata->ver.bits.ter); } printf("\n"); } printf("Maximum Queue Entries: %u\n", cap.bits.mqes + 1); printf("Contiguous Queues Required: %s\n", cap.bits.cqr ? "Yes" : "No"); printf("Arbitration Mechanisms Supported\n"); printf(" Weighted Round Robin: %s\n", cap.bits.ams & SPDK_NVME_CAP_AMS_WRR ? "Supported" : "Not Supported"); printf(" Vendor Specific: %s\n", cap.bits.ams & SPDK_NVME_CAP_AMS_VS ? "Supported" : "Not Supported"); printf("Reset Timeout: %" PRIu64 " ms\n", (uint64_t)500 * cap.bits.to); printf("Doorbell Stride: %" PRIu64 " bytes\n", (uint64_t)1 << (2 + cap.bits.dstrd)); printf("NVM Subsystem Reset: %s\n", cap.bits.nssrs ? "Supported" : "Not Supported"); printf("Command Sets Supported\n"); printf(" NVM Command Set: %s\n", cap.bits.css & SPDK_NVME_CAP_CSS_NVM ? "Supported" : "Not Supported"); printf("Boot Partition: %s\n", cap.bits.bps ? "Supported" : "Not Supported"); printf("Memory Page Size Minimum: %" PRIu64 " bytes\n", (uint64_t)1 << (12 + cap.bits.mpsmin)); printf("Memory Page Size Maximum: %" PRIu64 " bytes\n", (uint64_t)1 << (12 + cap.bits.mpsmax)); printf("Optional Asynchronous Events Supported\n"); printf(" Namespace Attribute Notices: %s\n", cdata->oaes.ns_attribute_notices ? "Supported" : "Not Supported"); printf(" Firmware Activation Notices: %s\n", cdata->oaes.fw_activation_notices ? "Supported" : "Not Supported"); printf("128-bit Host Identifier: %s\n", cdata->ctratt.host_id_exhid_supported ? "Supported" : "Not Supported"); printf("\n"); printf("Admin Command Set Attributes\n"); printf("============================\n"); printf("Security Send/Receive: %s\n", cdata->oacs.security ? "Supported" : "Not Supported"); printf("Format NVM: %s\n", cdata->oacs.format ? "Supported" : "Not Supported"); printf("Firmware Activate/Download: %s\n", cdata->oacs.firmware ? "Supported" : "Not Supported"); printf("Namespace Management: %s\n", cdata->oacs.ns_manage ? "Supported" : "Not Supported"); printf("Device Self-Test: %s\n", cdata->oacs.device_self_test ? "Supported" : "Not Supported"); printf("Directives: %s\n", cdata->oacs.directives ? "Supported" : "Not Supported"); printf("NVMe-MI: %s\n", cdata->oacs.nvme_mi ? "Supported" : "Not Supported"); printf("Virtualization Management: %s\n", cdata->oacs.virtualization_management ? "Supported" : "Not Supported"); printf("Doorbell Buffer Config: %s\n", cdata->oacs.doorbell_buffer_config ? "Supported" : "Not Supported"); printf("Abort Command Limit: %d\n", cdata->acl + 1); printf("Async Event Request Limit: %d\n", cdata->aerl + 1); printf("Number of Firmware Slots: "); if (cdata->oacs.firmware != 0) { printf("%d\n", cdata->frmw.num_slots); } else { printf("N/A\n"); } printf("Firmware Slot 1 Read-Only: "); if (cdata->oacs.firmware != 0) { printf("%s\n", cdata->frmw.slot1_ro ? "Yes" : "No"); } else { printf("N/A\n"); } if (cdata->fwug == 0x00) { printf("Firmware Update Granularity: No Information Provided\n"); } else if (cdata->fwug == 0xFF) { printf("Firmware Update Granularity: No Restriction\n"); } else { printf("Firmware Update Granularity: %u KiB\n", cdata->fwug * 4); } printf("Per-Namespace SMART Log: %s\n", cdata->lpa.ns_smart ? "Yes" : "No"); printf("Command Effects Log Page: %s\n", cdata->lpa.celp ? "Supported" : "Not Supported"); printf("Get Log Page Extended Data: %s\n", cdata->lpa.edlp ? "Supported" : "Not Supported"); printf("Telemetry Log Pages: %s\n", cdata->lpa.telemetry ? "Supported" : "Not Supported"); printf("Error Log Page Entries Supported: %d\n", cdata->elpe + 1); if (cdata->kas == 0) { printf("Keep Alive: Not Supported\n"); } else { printf("Keep Alive: Supported\n"); printf("Keep Alive Granularity: %u ms\n", cdata->kas * 100); } printf("\n"); printf("NVM Command Set Attributes\n"); printf("==========================\n"); printf("Submission Queue Entry Size\n"); printf(" Max: %d\n", 1 << cdata->sqes.max); printf(" Min: %d\n", 1 << cdata->sqes.min); printf("Completion Queue Entry Size\n"); printf(" Max: %d\n", 1 << cdata->cqes.max); printf(" Min: %d\n", 1 << cdata->cqes.min); printf("Number of Namespaces: %d\n", cdata->nn); printf("Compare Command: %s\n", cdata->oncs.compare ? "Supported" : "Not Supported"); printf("Write Uncorrectable Command: %s\n", cdata->oncs.write_unc ? "Supported" : "Not Supported"); printf("Dataset Management Command: %s\n", cdata->oncs.dsm ? "Supported" : "Not Supported"); printf("Write Zeroes Command: %s\n", cdata->oncs.write_zeroes ? "Supported" : "Not Supported"); printf("Set Features Save Field: %s\n", cdata->oncs.set_features_save ? "Supported" : "Not Supported"); printf("Reservations: %s\n", cdata->oncs.reservations ? "Supported" : "Not Supported"); printf("Timestamp: %s\n", cdata->oncs.timestamp ? "Supported" : "Not Supported"); printf("Volatile Write Cache: %s\n", cdata->vwc.present ? "Present" : "Not Present"); printf("Atomic Write Unit (Normal): %d\n", cdata->awun + 1); printf("Atomic Write Unit (PFail): %d\n", cdata->awupf + 1); printf("Scatter-Gather List\n"); printf(" SGL Command Set: %s\n", cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED ? "Supported" : cdata->sgls.supported == SPDK_NVME_SGLS_SUPPORTED_DWORD_ALIGNED ? "Supported (Dword aligned)" : "Not Supported"); printf(" SGL Keyed: %s\n", cdata->sgls.keyed_sgl ? "Supported" : "Not Supported"); printf(" SGL Bit Bucket Descriptor: %s\n", cdata->sgls.bit_bucket_descriptor ? "Supported" : "Not Supported"); printf(" SGL Metadata Pointer: %s\n", cdata->sgls.metadata_pointer ? "Supported" : "Not Supported"); printf(" Oversized SGL: %s\n", cdata->sgls.oversized_sgl ? "Supported" : "Not Supported"); printf(" SGL Metadata Address: %s\n", cdata->sgls.metadata_address ? "Supported" : "Not Supported"); printf(" SGL Offset: %s\n", cdata->sgls.sgl_offset ? "Supported" : "Not Supported"); printf(" Transport SGL Data Block: %s\n", cdata->sgls.transport_sgl ? "Supported" : "Not Supported"); printf("\n"); printf("Firmware Slot Information\n"); printf("=========================\n"); if (g_hex_dump) { hex_dump(&firmware_page, sizeof(firmware_page)); printf("\n"); } printf("Active slot: %u\n", firmware_page.afi.active_slot); if (firmware_page.afi.next_reset_slot) { printf("Next controller reset slot: %u\n", firmware_page.afi.next_reset_slot); } for (i = 0; i < 7; i++) { if (!spdk_mem_all_zero(firmware_page.revision[i], sizeof(firmware_page.revision[i]))) { printf("Slot %u Firmware Revision: ", i + 1); print_ascii_string(firmware_page.revision[i], sizeof(firmware_page.revision[i])); printf("\n"); } } printf("\n"); if (cdata->lpa.celp) { printf("Commands Supported and Effects\n"); printf("==============================\n"); if (g_hex_dump) { hex_dump(&cmd_effects_log_page, sizeof(cmd_effects_log_page)); printf("\n"); } printf("Admin Commands\n"); printf("--------------\n"); for (i = 0; i < SPDK_COUNTOF(cmd_effects_log_page.admin_cmds_supported); i++) { struct spdk_nvme_cmds_and_effect_entry *cmd = &cmd_effects_log_page.admin_cmds_supported[i]; if (cmd->csupp) { printf("%30s (%02Xh): Supported %s%s%s%s%s\n", admin_opc_name(i), i, cmd->lbcc ? "LBA-Change " : "", cmd->ncc ? "NS-Cap-Change " : "", cmd->nic ? "NS-Inventory-Change " : "", cmd->ccc ? "Ctrlr-Cap-Change " : "", cmd->cse == 0 ? "" : cmd->cse == 1 ? "Per-NS-Exclusive" : cmd->cse == 2 ? "All-NS-Exclusive" : ""); } } printf("I/O Commands\n"); printf("------------\n"); for (i = 0; i < SPDK_COUNTOF(cmd_effects_log_page.io_cmds_supported); i++) { struct spdk_nvme_cmds_and_effect_entry *cmd = &cmd_effects_log_page.io_cmds_supported[i]; if (cmd->csupp) { printf("%30s (%02Xh): Supported %s%s%s%s%s\n", io_opc_name(i), i, cmd->lbcc ? "LBA-Change " : "", cmd->ncc ? "NS-Cap-Change " : "", cmd->nic ? "NS-Inventory-Change " : "", cmd->ccc ? "Ctrlr-Cap-Change " : "", cmd->cse == 0 ? "" : cmd->cse == 1 ? "Per-NS-Exclusive" : cmd->cse == 2 ? "All-NS-Exclusive" : ""); } } printf("\n"); } printf("Error Log\n"); printf("=========\n"); for (i = 0; i <= cdata->elpe; i++) { error_entry = &error_page[i]; if (error_entry->error_count == 0) { continue; } if (i != 0) { printf("-----------\n"); } printf("Entry: %u\n", i); printf("Error Count: 0x%"PRIx64"\n", error_entry->error_count); printf("Submission Queue Id: 0x%x\n", error_entry->sqid); printf("Command Id: 0x%x\n", error_entry->cid); printf("Phase Bit: %x\n", error_entry->status.p); printf("Status Code: 0x%x\n", error_entry->status.sc); printf("Status Code Type: 0x%x\n", error_entry->status.sct); printf("Do Not Retry: %x\n", error_entry->status.dnr); printf("Error Location: 0x%x\n", error_entry->error_location); printf("LBA: 0x%"PRIx64"\n", error_entry->lba); printf("Namespace: 0x%x\n", error_entry->nsid); printf("Vendor Log Page: 0x%x\n", error_entry->vendor_specific); } printf("\n"); if (features[SPDK_NVME_FEAT_ARBITRATION].valid) { uint32_t arb = features[SPDK_NVME_FEAT_ARBITRATION].result; unsigned ab, lpw, mpw, hpw; ab = arb & 0x7; lpw = ((arb >> 8) & 0xFF) + 1; mpw = ((arb >> 16) & 0xFF) + 1; hpw = ((arb >> 24) & 0xFF) + 1; printf("Arbitration\n"); printf("===========\n"); printf("Arbitration Burst: "); if (ab == 0x7) { printf("no limit\n"); } else { printf("%u\n", 1u << ab); } printf("Low Priority Weight: %u\n", lpw); printf("Medium Priority Weight: %u\n", mpw); printf("High Priority Weight: %u\n", hpw); printf("\n"); } if (features[SPDK_NVME_FEAT_POWER_MANAGEMENT].valid) { unsigned ps = features[SPDK_NVME_FEAT_POWER_MANAGEMENT].result & 0x1F; printf("Power Management\n"); printf("================\n"); printf("Number of Power States: %u\n", cdata->npss + 1); printf("Current Power State: Power State #%u\n", ps); for (i = 0; i <= cdata->npss; i++) { const struct spdk_nvme_power_state *psd = &cdata->psd[i]; printf("Power State #%u: ", i); if (psd->mps) { /* MP scale is 0.0001 W */ printf("Max Power: %u.%04u W\n", psd->mp / 10000, psd->mp % 10000); } else { /* MP scale is 0.01 W */ printf("Max Power: %3u.%02u W\n", psd->mp / 100, psd->mp % 100); } /* TODO: print other power state descriptor fields */ } printf("Non-Operational Permissive Mode: %s\n", cdata->ctratt.non_operational_power_state_permissive_mode ? "Supported" : "Not Supported"); printf("\n"); } if (features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].valid) { printf("Health Information\n"); printf("==================\n"); if (g_hex_dump) { hex_dump(&health_page, sizeof(health_page)); printf("\n"); } printf("Critical Warnings:\n"); printf(" Available Spare Space: %s\n", health_page.critical_warning.bits.available_spare ? "WARNING" : "OK"); printf(" Temperature: %s\n", health_page.critical_warning.bits.temperature ? "WARNING" : "OK"); printf(" Device Reliability: %s\n", health_page.critical_warning.bits.device_reliability ? "WARNING" : "OK"); printf(" Read Only: %s\n", health_page.critical_warning.bits.read_only ? "Yes" : "No"); printf(" Volatile Memory Backup: %s\n", health_page.critical_warning.bits.volatile_memory_backup ? "WARNING" : "OK"); printf("Current Temperature: %u Kelvin (%d Celsius)\n", health_page.temperature, (int)health_page.temperature - 273); printf("Temperature Threshold: %u Kelvin (%d Celsius)\n", features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result, (int)features[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD].result - 273); printf("Available Spare: %u%%\n", health_page.available_spare); printf("Available Spare Threshold: %u%%\n", health_page.available_spare_threshold); printf("Life Percentage Used: %u%%\n", health_page.percentage_used); printf("Data Units Read: "); print_uint128_dec(health_page.data_units_read); printf("\n"); printf("Data Units Written: "); print_uint128_dec(health_page.data_units_written); printf("\n"); printf("Host Read Commands: "); print_uint128_dec(health_page.host_read_commands); printf("\n"); printf("Host Write Commands: "); print_uint128_dec(health_page.host_write_commands); printf("\n"); printf("Controller Busy Time: "); print_uint128_dec(health_page.controller_busy_time); printf(" minutes\n"); printf("Power Cycles: "); print_uint128_dec(health_page.power_cycles); printf("\n"); printf("Power On Hours: "); print_uint128_dec(health_page.power_on_hours); printf(" hours\n"); printf("Unsafe Shutdowns: "); print_uint128_dec(health_page.unsafe_shutdowns); printf("\n"); printf("Unrecoverable Media Errors: "); print_uint128_dec(health_page.media_errors); printf("\n"); printf("Lifetime Error Log Entries: "); print_uint128_dec(health_page.num_error_info_log_entries); printf("\n"); printf("Warning Temperature Time: %u minutes\n", health_page.warning_temp_time); printf("Critical Temperature Time: %u minutes\n", health_page.critical_temp_time); for (i = 0; i < 8; i++) { if (health_page.temp_sensor[i] != 0) { printf("Temperature Sensor %d: %u Kelvin (%d Celsius)\n", i + 1, health_page.temp_sensor[i], (int)health_page.temp_sensor[i] - 273); } } printf("\n"); } if (features[SPDK_NVME_FEAT_NUMBER_OF_QUEUES].valid) { uint32_t result = features[SPDK_NVME_FEAT_NUMBER_OF_QUEUES].result; printf("Number of Queues\n"); printf("================\n"); printf("Number of I/O Submission Queues: %u\n", (result & 0xFFFF) + 1); printf("Number of I/O Completion Queues: %u\n", (result & 0xFFFF0000 >> 16) + 1); printf("\n"); } if (features[SPDK_OCSSD_FEAT_MEDIA_FEEDBACK].valid) { uint32_t result = features[SPDK_OCSSD_FEAT_MEDIA_FEEDBACK].result; printf("OCSSD Media Feedback\n"); printf("=======================\n"); printf("High ECC status: %u\n", (result & 0x1)); printf("Vector High ECC status: %u\n", (result & 0x2 >> 1)); printf("\n"); } if (cdata->hctma.bits.supported) { printf("Host Controlled Thermal Management\n"); printf("==================================\n"); printf("Minimum Thermal Management Temperature: "); if (cdata->mntmt) { printf("%u Kelvin (%d Celsius)\n", cdata->mntmt, (int)cdata->mntmt - 273); } else { printf("Not Reported\n"); } printf("Maximum Thermal Managment Temperature: "); if (cdata->mxtmt) { printf("%u Kelvin (%d Celsius)\n", cdata->mxtmt, (int)cdata->mxtmt - 273); } else { printf("Not Reported\n"); } printf("\n"); } if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_SMART)) { size_t i = 0; printf("Intel Health Information\n"); printf("==================\n"); for (i = 0; i < SPDK_COUNTOF(intel_smart_page.attributes); i++) { if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PROGRAM_FAIL_COUNT) { printf("Program Fail Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_ERASE_FAIL_COUNT) { printf("Erase Fail Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_WEAR_LEVELING_COUNT) { printf("Wear Leveling Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value:\n"); printf(" Min: "); print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[0], 2); printf("\n"); printf(" Max: "); print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[2], 2); printf("\n"); printf(" Avg: "); print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[4], 2); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_E2E_ERROR_COUNT) { printf("End to End Error Detection Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_CRC_ERROR_COUNT) { printf("CRC Error Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_MEDIA_WEAR) { printf("Timed Workload, Media Wear:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_READ_PERCENTAGE) { printf("Timed Workload, Host Read/Write Ratio:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("%%"); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_TIMER) { printf("Timed Workload, Timer:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_THERMAL_THROTTLE_STATUS) { printf("Thermal Throttle Status:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value:\n"); printf(" Percentage: %d%%\n", intel_smart_page.attributes[i].raw_value[0]); printf(" Throttling Event Count: "); print_uint_var_dec(&intel_smart_page.attributes[i].raw_value[1], 4); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_RETRY_BUFFER_OVERFLOW_COUNTER) { printf("Retry Buffer Overflow Counter:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_PLL_LOCK_LOSS_COUNT) { printf("PLL Lock Loss Count:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_NAND_BYTES_WRITTEN) { printf("NAND Bytes Written:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } if (intel_smart_page.attributes[i].code == SPDK_NVME_INTEL_SMART_HOST_BYTES_WRITTEN) { printf("Host Bytes Written:\n"); printf(" Normalized Value : %d\n", intel_smart_page.attributes[i].normalized_value); printf(" Current Raw Value: "); print_uint_var_dec(intel_smart_page.attributes[i].raw_value, 6); printf("\n"); } } printf("\n"); } if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_LOG_TEMPERATURE)) { printf("Intel Temperature Information\n"); printf("==================\n"); printf("Current Temperature: %lu\n", intel_temperature_page.current_temperature); printf("Overtemp shutdown Flag for last critical component temperature: %lu\n", intel_temperature_page.shutdown_flag_last); printf("Overtemp shutdown Flag for life critical component temperature: %lu\n", intel_temperature_page.shutdown_flag_life); printf("Highest temperature: %lu\n", intel_temperature_page.highest_temperature); printf("Lowest temperature: %lu\n", intel_temperature_page.lowest_temperature); printf("Specified Maximum Operating Temperature: %lu\n", intel_temperature_page.specified_max_op_temperature); printf("Specified Minimum Operating Temperature: %lu\n", intel_temperature_page.specified_min_op_temperature); printf("Estimated offset: %ld\n", intel_temperature_page.estimated_offset); printf("\n"); printf("\n"); } if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr, SPDK_NVME_INTEL_MARKETING_DESCRIPTION)) { printf("Intel Marketing Information\n"); printf("==================\n"); snprintf(str, sizeof(intel_md_page.marketing_product), "%s", intel_md_page.marketing_product); printf("Marketing Product Information: %s\n", str); printf("\n"); printf("\n"); } for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { print_namespace(spdk_nvme_ctrlr_get_ns(ctrlr, nsid)); } if (g_discovery_page) { printf("Discovery Log Page\n"); printf("==================\n"); if (g_hex_dump) { hex_dump(g_discovery_page, g_discovery_page_size); printf("\n"); } printf("Generation Counter: %" PRIu64 "\n", from_le64(&g_discovery_page->genctr)); printf("Number of Records: %" PRIu64 "\n", from_le64(&g_discovery_page->numrec)); printf("Record Format: %" PRIu16 "\n", from_le16(&g_discovery_page->recfmt)); printf("\n"); for (i = 0; i < g_discovery_page_numrec; i++) { struct spdk_nvmf_discovery_log_page_entry *entry = &g_discovery_page->entries[i]; printf("Discovery Log Entry %u\n", i); printf("----------------------\n"); printf("Transport Type: %u (%s)\n", entry->trtype, spdk_nvme_transport_id_trtype_str(entry->trtype)); printf("Address Family: %u (%s)\n", entry->adrfam, spdk_nvme_transport_id_adrfam_str(entry->adrfam)); printf("Subsystem Type: %u (%s)\n", entry->subtype, entry->subtype == SPDK_NVMF_SUBTYPE_DISCOVERY ? "Discovery Service" : entry->subtype == SPDK_NVMF_SUBTYPE_NVME ? "NVM Subsystem" : "Unknown"); printf("Transport Requirements:\n"); printf(" Secure Channel: %s\n", entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_SPECIFIED ? "Not Specified" : entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_REQUIRED ? "Required" : entry->treq.secure_channel == SPDK_NVMF_TREQ_SECURE_CHANNEL_NOT_REQUIRED ? "Not Required" : "Reserved"); printf("Port ID: %" PRIu16 " (0x%04" PRIx16 ")\n", from_le16(&entry->portid), from_le16(&entry->portid)); printf("Controller ID: %" PRIu16 " (0x%04" PRIx16 ")\n", from_le16(&entry->cntlid), from_le16(&entry->cntlid)); printf("Admin Max SQ Size: %" PRIu16 "\n", from_le16(&entry->asqsz)); snprintf(str, sizeof(entry->trsvcid) + 1, "%s", entry->trsvcid); printf("Transport Service Identifier: %s\n", str); snprintf(str, sizeof(entry->subnqn) + 1, "%s", entry->subnqn); printf("NVM Subsystem Qualified Name: %s\n", str); snprintf(str, sizeof(entry->traddr) + 1, "%s", entry->traddr); printf("Transport Address: %s\n", str); if (entry->trtype == SPDK_NVMF_TRTYPE_RDMA) { printf("Transport Specific Address Subtype - RDMA\n"); printf(" RDMA QP Service Type: %u (%s)\n", entry->tsas.rdma.rdma_qptype, entry->tsas.rdma.rdma_qptype == SPDK_NVMF_RDMA_QPTYPE_RELIABLE_CONNECTED ? "Reliable Connected" : entry->tsas.rdma.rdma_qptype == SPDK_NVMF_RDMA_QPTYPE_RELIABLE_DATAGRAM ? "Reliable Datagram" : "Unknown"); printf(" RDMA Provider Type: %u (%s)\n", entry->tsas.rdma.rdma_prtype, entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_NONE ? "No provider specified" : entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_IB ? "InfiniBand" : entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_ROCE ? "InfiniBand RoCE" : entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_ROCE2 ? "InfiniBand RoCE v2" : entry->tsas.rdma.rdma_prtype == SPDK_NVMF_RDMA_PRTYPE_IWARP ? "iWARP" : "Unknown"); printf(" RDMA CM Service: %u (%s)\n", entry->tsas.rdma.rdma_cms, entry->tsas.rdma.rdma_cms == SPDK_NVMF_RDMA_CMS_RDMA_CM ? "RDMA_CM" : "Unknown"); if (entry->adrfam == SPDK_NVMF_ADRFAM_IB) { printf(" RDMA Partition Key: %" PRIu32 "\n", from_le32(&entry->tsas.rdma.rdma_pkey)); } } } free(g_discovery_page); g_discovery_page = NULL; } } static void usage(const char *program_name) { printf("%s [options]", program_name); printf("\n"); printf("options:\n"); printf(" -r trid remote NVMe over Fabrics target address\n"); printf(" Format: 'key:value [key:value] ...'\n"); printf(" Keys:\n"); printf(" trtype Transport type (e.g. RDMA)\n"); printf(" adrfam Address family (e.g. IPv4, IPv6)\n"); printf(" traddr Transport address (e.g. 192.168.100.8)\n"); printf(" trsvcid Transport service identifier (e.g. 4420)\n"); printf(" subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); printf(" Example: -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420'\n"); spdk_tracelog_usage(stdout, "-L"); printf(" -i shared memory group ID\n"); printf(" -p core number in decimal to run this application which started from 0\n"); printf(" -d DPDK huge memory size in MB\n"); printf(" -x print hex dump of raw data\n"); printf(" -v verbose (enable warnings)\n"); printf(" -H show this usage\n"); } static int parse_args(int argc, char **argv) { int op, rc; g_trid.trtype = SPDK_NVME_TRANSPORT_PCIE; snprintf(g_trid.subnqn, sizeof(g_trid.subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); while ((op = getopt(argc, argv, "d:i:p:r:xHL:")) != -1) { switch (op) { case 'd': g_dpdk_mem = atoi(optarg); break; case 'i': g_shm_id = atoi(optarg); break; case 'p': g_master_core = atoi(optarg); if (g_master_core < 0) { fprintf(stderr, "Invalid core number\n"); return 1; } snprintf(g_core_mask, sizeof(g_core_mask), "0x%llx", 1ULL << g_master_core); break; case 'r': if (spdk_nvme_transport_id_parse(&g_trid, optarg) != 0) { fprintf(stderr, "Error parsing transport address\n"); return 1; } break; case 'x': g_hex_dump = true; break; case 'L': rc = spdk_log_set_trace_flag(optarg); if (rc < 0) { fprintf(stderr, "unknown flag\n"); usage(argv[0]); exit(EXIT_FAILURE); } spdk_log_set_print_level(SPDK_LOG_DEBUG); #ifndef DEBUG fprintf(stderr, "%s must be rebuilt with CONFIG_DEBUG=y for -L flag.\n", argv[0]); usage(argv[0]); return 0; #endif break; case 'H': default: usage(argv[0]); return 1; } } return 0; } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { g_controllers_found++; print_controller(ctrlr, trid); spdk_nvme_detach(ctrlr); } int main(int argc, char **argv) { int rc; struct spdk_env_opts opts; struct spdk_nvme_ctrlr *ctrlr; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "identify"; opts.shm_id = g_shm_id; opts.mem_size = g_dpdk_mem; opts.mem_channel = 1; opts.master_core = g_master_core; opts.core_mask = g_core_mask; if (g_trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { opts.no_pci = true; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); return 1; } /* A specific trid is required. */ if (strlen(g_trid.traddr) != 0) { ctrlr = spdk_nvme_connect(&g_trid, NULL, 0); if (!ctrlr) { fprintf(stderr, "spdk_nvme_connect() failed\n"); return 1; } g_controllers_found++; print_controller(ctrlr, &g_trid); spdk_nvme_detach(ctrlr); } else if (spdk_nvme_probe(&g_trid, NULL, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed\n"); return 1; } if (g_controllers_found == 0) { fprintf(stderr, "No NVMe controllers found.\n"); } return 0; }