/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "spdk/env.h" #include "spdk/fd.h" #include "spdk/nvme.h" #include "spdk/env.h" #include "spdk/queue.h" #include "spdk/string.h" #include "spdk/nvme_intel.h" #include "spdk/histogram_data.h" #include "spdk/endian.h" #include "spdk/crc16.h" #if HAVE_LIBAIO #include #endif struct ctrlr_entry { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_intel_rw_latency_page *latency_page; struct ctrlr_entry *next; char name[1024]; }; enum entry_type { ENTRY_TYPE_NVME_NS, ENTRY_TYPE_AIO_FILE, }; struct ns_entry { enum entry_type type; union { struct { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ns *ns; } nvme; #if HAVE_LIBAIO struct { int fd; } aio; #endif } u; struct ns_entry *next; uint32_t io_size_blocks; uint32_t num_io_requests; uint64_t size_in_ios; uint32_t io_flags; uint16_t apptag_mask; uint16_t apptag; char name[1024]; const struct spdk_nvme_ns_data *nsdata; }; static const double g_latency_cutoffs[] = { 0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.98, 0.99, 0.995, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999, -1, }; struct ns_worker_ctx { struct ns_entry *entry; uint64_t io_completed; uint64_t total_tsc; uint64_t min_tsc; uint64_t max_tsc; uint64_t current_queue_depth; uint64_t offset_in_ios; bool is_draining; union { struct { struct spdk_nvme_qpair *qpair; } nvme; #if HAVE_LIBAIO struct { struct io_event *events; io_context_t ctx; } aio; #endif } u; struct ns_worker_ctx *next; struct spdk_histogram_data *histogram; }; struct perf_task { struct ns_worker_ctx *ns_ctx; void *buf; uint64_t submit_tsc; uint16_t appmask; uint16_t apptag; uint64_t lba; bool is_read; #if HAVE_LIBAIO struct iocb iocb; #endif }; struct worker_thread { struct ns_worker_ctx *ns_ctx; struct worker_thread *next; unsigned lcore; }; static int g_outstanding_commands; static bool g_latency_ssd_tracking_enable = false; static int g_latency_sw_tracking_level = 0; static struct ctrlr_entry *g_controllers = NULL; static int g_controllers_found = 0; static struct ns_entry *g_namespaces = NULL; static int g_num_namespaces = 0; static struct worker_thread *g_workers = NULL; static int g_num_workers = 0; static uint64_t g_tsc_rate; static uint32_t g_io_align = 0x200; static uint32_t g_io_size_bytes; static uint32_t g_max_io_md_size; static uint32_t g_max_io_size_blocks; static uint32_t g_metacfg_pract_flag; static uint32_t g_metacfg_prchk_flags; static int g_rw_percentage; static int g_is_random; static int g_queue_depth; static int g_time_in_sec; static uint32_t g_max_completions; static int g_dpdk_mem; static int g_shm_id = -1; static uint32_t g_disable_sq_cmb; static bool g_no_pci; static bool g_warn; static const char *g_core_mask; struct trid_entry { struct spdk_nvme_transport_id trid; uint16_t nsid; TAILQ_ENTRY(trid_entry) tailq; }; static TAILQ_HEAD(, trid_entry) g_trid_list = TAILQ_HEAD_INITIALIZER(g_trid_list); static int g_aio_optind; /* Index of first AIO filename in argv */ static void task_complete(struct perf_task *task); static void register_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns *ns) { struct ns_entry *entry; const struct spdk_nvme_ctrlr_data *cdata; uint32_t max_xfer_size, entries; struct spdk_nvme_io_qpair_opts opts; cdata = spdk_nvme_ctrlr_get_data(ctrlr); if (!spdk_nvme_ns_is_active(ns)) { printf("Controller %-20.20s (%-20.20s): Skipping inactive NS %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns)); g_warn = true; return; } if (spdk_nvme_ns_get_size(ns) < g_io_size_bytes || spdk_nvme_ns_get_sector_size(ns) > g_io_size_bytes) { printf("WARNING: controller %-20.20s (%-20.20s) ns %u has invalid " "ns size %" PRIu64 " / block size %u for I/O size %u\n", cdata->mn, cdata->sn, spdk_nvme_ns_get_id(ns), spdk_nvme_ns_get_size(ns), spdk_nvme_ns_get_sector_size(ns), g_io_size_bytes); g_warn = true; return; } max_xfer_size = spdk_nvme_ns_get_max_io_xfer_size(ns); spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); /* NVMe driver may add additional entries based on * stripe size and maximum transfer size, we assume * 1 more entry be used for stripe. */ entries = (g_io_size_bytes - 1) / max_xfer_size + 2; if ((g_queue_depth * entries) > opts.io_queue_size) { printf("controller IO queue size %u less than required\n", opts.io_queue_size); printf("Consider using lower queue depth or small IO size because " "IO requests may be queued at the NVMe driver.\n"); g_warn = true; } entry = calloc(1, sizeof(struct ns_entry)); if (entry == NULL) { perror("ns_entry malloc"); exit(1); } entry->type = ENTRY_TYPE_NVME_NS; entry->u.nvme.ctrlr = ctrlr; entry->u.nvme.ns = ns; entry->num_io_requests = entries; entry->size_in_ios = spdk_nvme_ns_get_size(ns) / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / spdk_nvme_ns_get_sector_size(ns); if (spdk_nvme_ns_get_flags(ns) & SPDK_NVME_NS_DPS_PI_SUPPORTED) { entry->io_flags = g_metacfg_pract_flag | g_metacfg_prchk_flags; } if (g_max_io_md_size < spdk_nvme_ns_get_md_size(ns)) { g_max_io_md_size = spdk_nvme_ns_get_md_size(ns); } if (g_max_io_size_blocks < entry->io_size_blocks) { g_max_io_size_blocks = entry->io_size_blocks; } entry->nsdata = spdk_nvme_ns_get_data(ns); snprintf(entry->name, 44, "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); g_num_namespaces++; entry->next = g_namespaces; g_namespaces = entry; } static void unregister_namespaces(void) { struct ns_entry *entry = g_namespaces; while (entry) { struct ns_entry *next = entry->next; free(entry); entry = next; } } static void enable_latency_tracking_complete(void *cb_arg, const struct spdk_nvme_cpl *cpl) { if (spdk_nvme_cpl_is_error(cpl)) { printf("enable_latency_tracking_complete failed\n"); } g_outstanding_commands--; } static void set_latency_tracking_feature(struct spdk_nvme_ctrlr *ctrlr, bool enable) { int res; union spdk_nvme_intel_feat_latency_tracking latency_tracking; if (enable) { latency_tracking.bits.enable = 0x01; } else { latency_tracking.bits.enable = 0x00; } res = spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING, latency_tracking.raw, 0, NULL, 0, enable_latency_tracking_complete, NULL); if (res) { printf("fail to allocate nvme request.\n"); return; } g_outstanding_commands++; while (g_outstanding_commands) { spdk_nvme_ctrlr_process_admin_completions(ctrlr); } } static void register_ctrlr(struct spdk_nvme_ctrlr *ctrlr, struct trid_entry *trid_entry) { struct spdk_nvme_ns *ns; struct ctrlr_entry *entry = malloc(sizeof(struct ctrlr_entry)); const struct spdk_nvme_ctrlr_data *cdata = spdk_nvme_ctrlr_get_data(ctrlr); uint32_t nsid; if (entry == NULL) { perror("ctrlr_entry malloc"); exit(1); } entry->latency_page = spdk_dma_zmalloc(sizeof(struct spdk_nvme_intel_rw_latency_page), 4096, NULL); if (entry->latency_page == NULL) { printf("Allocation error (latency page)\n"); exit(1); } snprintf(entry->name, sizeof(entry->name), "%-20.20s (%-20.20s)", cdata->mn, cdata->sn); entry->ctrlr = ctrlr; entry->next = g_controllers; g_controllers = entry; if (g_latency_ssd_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(ctrlr, true); } if (trid_entry->nsid == 0) { for (nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); nsid != 0; nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, nsid)) { ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); if (ns == NULL) { continue; } register_ns(ctrlr, ns); } } else { ns = spdk_nvme_ctrlr_get_ns(ctrlr, trid_entry->nsid); if (!ns) { perror("Namespace does not exist."); exit(1); } register_ns(ctrlr, ns); } } #if HAVE_LIBAIO static int register_aio_file(const char *path) { struct ns_entry *entry; int flags, fd; uint64_t size; uint32_t blklen; if (g_rw_percentage == 100) { flags = O_RDONLY; } else if (g_rw_percentage == 0) { flags = O_WRONLY; } else { flags = O_RDWR; } flags |= O_DIRECT; fd = open(path, flags); if (fd < 0) { fprintf(stderr, "Could not open AIO device %s: %s\n", path, strerror(errno)); return -1; } size = spdk_fd_get_size(fd); if (size == 0) { fprintf(stderr, "Could not determine size of AIO device %s\n", path); close(fd); return -1; } blklen = spdk_fd_get_blocklen(fd); if (blklen == 0) { fprintf(stderr, "Could not determine block size of AIO device %s\n", path); close(fd); return -1; } /* * TODO: This should really calculate the LCM of the current g_io_align and blklen. * For now, it's fairly safe to just assume all block sizes are powers of 2. */ if (g_io_align < blklen) { g_io_align = blklen; } entry = malloc(sizeof(struct ns_entry)); if (entry == NULL) { close(fd); perror("aio ns_entry malloc"); return -1; } entry->type = ENTRY_TYPE_AIO_FILE; entry->u.aio.fd = fd; entry->size_in_ios = size / g_io_size_bytes; entry->io_size_blocks = g_io_size_bytes / blklen; snprintf(entry->name, sizeof(entry->name), "%s", path); g_num_namespaces++; entry->next = g_namespaces; g_namespaces = entry; return 0; } static int aio_submit(io_context_t aio_ctx, struct iocb *iocb, int fd, enum io_iocb_cmd cmd, void *buf, unsigned long nbytes, uint64_t offset, void *cb_ctx) { iocb->aio_fildes = fd; iocb->aio_reqprio = 0; iocb->aio_lio_opcode = cmd; iocb->u.c.buf = buf; iocb->u.c.nbytes = nbytes; iocb->u.c.offset = offset; iocb->data = cb_ctx; if (io_submit(aio_ctx, 1, &iocb) < 0) { printf("io_submit"); return -1; } return 0; } static void aio_check_io(struct ns_worker_ctx *ns_ctx) { int count, i; struct timespec timeout; timeout.tv_sec = 0; timeout.tv_nsec = 0; count = io_getevents(ns_ctx->u.aio.ctx, 1, g_queue_depth, ns_ctx->u.aio.events, &timeout); if (count < 0) { fprintf(stderr, "io_getevents error\n"); exit(1); } for (i = 0; i < count; i++) { task_complete(ns_ctx->u.aio.events[i].data); } } #endif /* HAVE_LIBAIO */ static void task_extended_lba_setup_pi(struct ns_entry *entry, struct perf_task *task, uint64_t lba, uint32_t lba_count, bool is_write) { struct spdk_nvme_protection_info *pi; uint32_t i, md_size, sector_size, pi_offset; uint16_t crc16; task->appmask = 0; task->apptag = 0; if (!spdk_nvme_ns_supports_extended_lba(entry->u.nvme.ns)) { return; } if (spdk_nvme_ns_get_pi_type(entry->u.nvme.ns) == SPDK_NVME_FMT_NVM_PROTECTION_DISABLE) { return; } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRACT) { return; } /* Type3 don't support REFTAG */ if (spdk_nvme_ns_get_pi_type(entry->u.nvme.ns) == SPDK_NVME_FMT_NVM_PROTECTION_TYPE3) { return; } sector_size = spdk_nvme_ns_get_sector_size(entry->u.nvme.ns); md_size = spdk_nvme_ns_get_md_size(entry->u.nvme.ns); /* PI locates at the first 8 bytes of metadata, * doesn't support now */ if (entry->nsdata->dps.md_start) { return; } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_APPTAG) { /* Let's use number of lbas for application tag */ task->appmask = 0xffff; task->apptag = lba_count; } for (i = 0; i < lba_count; i++) { pi_offset = ((sector_size + md_size) * (i + 1)) - 8; pi = (struct spdk_nvme_protection_info *)(task->buf + pi_offset); memset(pi, 0, sizeof(*pi)); if (is_write) { if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) { /* CRC buffer should not include PI */ crc16 = spdk_crc16_t10dif(task->buf + (sector_size + md_size) * i, sector_size + md_size - 8); to_be16(&pi->guard, crc16); } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_APPTAG) { /* Let's use number of lbas for application tag */ to_be16(&pi->app_tag, lba_count); } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) { to_be32(&pi->ref_tag, (uint32_t)lba + i); } } } } static void task_extended_lba_pi_verify(struct ns_entry *entry, struct perf_task *task, uint64_t lba, uint32_t lba_count) { struct spdk_nvme_protection_info *pi; uint32_t i, md_size, sector_size, pi_offset, ref_tag; uint16_t crc16, guard, app_tag; if (spdk_nvme_ns_get_pi_type(entry->u.nvme.ns) == SPDK_NVME_FMT_NVM_PROTECTION_DISABLE) { return; } sector_size = spdk_nvme_ns_get_sector_size(entry->u.nvme.ns); md_size = spdk_nvme_ns_get_md_size(entry->u.nvme.ns); /* PI locates at the first 8 bytes of metadata, * doesn't support now */ if (entry->nsdata->dps.md_start) { return; } for (i = 0; i < lba_count; i++) { pi_offset = ((sector_size + md_size) * (i + 1)) - 8; pi = (struct spdk_nvme_protection_info *)(task->buf + pi_offset); if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) { /* CRC buffer should not include last 8 bytes of PI */ crc16 = spdk_crc16_t10dif(task->buf + (sector_size + md_size) * i, sector_size + md_size - 8); to_be16(&guard, crc16); if (pi->guard != guard) { fprintf(stdout, "Get Guard Error LBA 0x%16.16"PRIx64"," " Preferred 0x%04x but returned with 0x%04x," " may read the LBA without write it first\n", lba + i, guard, pi->guard); } } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_APPTAG) { /* Previously we used the number of lbas as * application tag for writes */ to_be16(&app_tag, lba_count); if (pi->app_tag != app_tag) { fprintf(stdout, "Get Application Tag Error LBA 0x%16.16"PRIx64"," " Preferred 0x%04x but returned with 0x%04x," " may read the LBA without write it first\n", lba + i, app_tag, pi->app_tag); } } if (entry->io_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) { to_be32(&ref_tag, (uint32_t)lba + i); if (pi->ref_tag != ref_tag) { fprintf(stdout, "Get Reference Tag Error LBA 0x%16.16"PRIx64"," " Preferred 0x%08x but returned with 0x%08x," " may read the LBA without write it first\n", lba + i, ref_tag, pi->ref_tag); } } } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion); static __thread unsigned int seed = 0; static void submit_single_io(struct perf_task *task) { uint64_t offset_in_ios; int rc; struct ns_worker_ctx *ns_ctx = task->ns_ctx; struct ns_entry *entry = ns_ctx->entry; if (g_is_random) { offset_in_ios = rand_r(&seed) % entry->size_in_ios; } else { offset_in_ios = ns_ctx->offset_in_ios++; if (ns_ctx->offset_in_ios == entry->size_in_ios) { ns_ctx->offset_in_ios = 0; } } task->is_read = false; task->submit_tsc = spdk_get_ticks(); task->lba = offset_in_ios * entry->io_size_blocks; if ((g_rw_percentage == 100) || (g_rw_percentage != 0 && ((rand_r(&seed) % 100) < g_rw_percentage))) { #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { rc = aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PREAD, task->buf, g_io_size_bytes, offset_in_ios * g_io_size_bytes, task); } else #endif { task_extended_lba_setup_pi(entry, task, task->lba, entry->io_size_blocks, false); task->is_read = true; rc = spdk_nvme_ns_cmd_read_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair, task->buf, NULL, task->lba, entry->io_size_blocks, io_complete, task, entry->io_flags, task->appmask, task->apptag); } } else { #if HAVE_LIBAIO if (entry->type == ENTRY_TYPE_AIO_FILE) { rc = aio_submit(ns_ctx->u.aio.ctx, &task->iocb, entry->u.aio.fd, IO_CMD_PWRITE, task->buf, g_io_size_bytes, offset_in_ios * g_io_size_bytes, task); } else #endif { task_extended_lba_setup_pi(entry, task, task->lba, entry->io_size_blocks, true); rc = spdk_nvme_ns_cmd_write_with_md(entry->u.nvme.ns, ns_ctx->u.nvme.qpair, task->buf, NULL, task->lba, entry->io_size_blocks, io_complete, task, entry->io_flags, task->appmask, task->apptag); } } if (rc != 0) { fprintf(stderr, "starting I/O failed\n"); } else { ns_ctx->current_queue_depth++; } } static void task_complete(struct perf_task *task) { struct ns_worker_ctx *ns_ctx; uint64_t tsc_diff; struct ns_entry *entry; ns_ctx = task->ns_ctx; entry = ns_ctx->entry; ns_ctx->current_queue_depth--; ns_ctx->io_completed++; tsc_diff = spdk_get_ticks() - task->submit_tsc; ns_ctx->total_tsc += tsc_diff; if (ns_ctx->min_tsc > tsc_diff) { ns_ctx->min_tsc = tsc_diff; } if (ns_ctx->max_tsc < tsc_diff) { ns_ctx->max_tsc = tsc_diff; } if (g_latency_sw_tracking_level > 0) { spdk_histogram_data_tally(ns_ctx->histogram, tsc_diff); } /* add application level verification for end-to-end data protection */ if (entry->type == ENTRY_TYPE_NVME_NS) { if (spdk_nvme_ns_supports_extended_lba(entry->u.nvme.ns) && task->is_read && !g_metacfg_pract_flag) { task_extended_lba_pi_verify(entry, task, task->lba, entry->io_size_blocks); } } /* * is_draining indicates when time has expired for the test run * and we are just waiting for the previously submitted I/O * to complete. In this case, do not submit a new I/O to replace * the one just completed. */ if (ns_ctx->is_draining) { spdk_dma_free(task->buf); free(task); } else { submit_single_io(task); } } static void io_complete(void *ctx, const struct spdk_nvme_cpl *completion) { task_complete((struct perf_task *)ctx); } static void check_io(struct ns_worker_ctx *ns_ctx) { #if HAVE_LIBAIO if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) { aio_check_io(ns_ctx); } else #endif { spdk_nvme_qpair_process_completions(ns_ctx->u.nvme.qpair, g_max_completions); } } static void submit_io(struct ns_worker_ctx *ns_ctx, int queue_depth) { struct perf_task *task; uint32_t max_io_size_bytes; while (queue_depth-- > 0) { task = calloc(1, sizeof(*task)); if (task == NULL) { fprintf(stderr, "Out of memory allocating tasks\n"); exit(1); } /* maximum extended lba format size from all active * namespace, it's same with g_io_size_bytes for * namespace without metadata */ max_io_size_bytes = g_io_size_bytes + g_max_io_md_size * g_max_io_size_blocks; task->buf = spdk_dma_zmalloc(max_io_size_bytes, g_io_align, NULL); if (task->buf == NULL) { fprintf(stderr, "task->buf spdk_dma_zmalloc failed\n"); exit(1); } memset(task->buf, queue_depth % 8 + 1, max_io_size_bytes); task->ns_ctx = ns_ctx; submit_single_io(task); } } static void drain_io(struct ns_worker_ctx *ns_ctx) { ns_ctx->is_draining = true; while (ns_ctx->current_queue_depth > 0) { check_io(ns_ctx); } } static int init_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) { #ifdef HAVE_LIBAIO ns_ctx->u.aio.events = calloc(g_queue_depth, sizeof(struct io_event)); if (!ns_ctx->u.aio.events) { return -1; } ns_ctx->u.aio.ctx = 0; if (io_setup(g_queue_depth, &ns_ctx->u.aio.ctx) < 0) { free(ns_ctx->u.aio.events); perror("io_setup"); return -1; } #endif } else { /* * TODO: If a controller has multiple namespaces, they could all use the same queue. * For now, give each namespace/thread combination its own queue. */ struct spdk_nvme_io_qpair_opts opts; spdk_nvme_ctrlr_get_default_io_qpair_opts(ns_ctx->entry->u.nvme.ctrlr, &opts, sizeof(opts)); if (opts.io_queue_requests < ns_ctx->entry->num_io_requests) { opts.io_queue_requests = ns_ctx->entry->num_io_requests; } ns_ctx->u.nvme.qpair = spdk_nvme_ctrlr_alloc_io_qpair(ns_ctx->entry->u.nvme.ctrlr, &opts, sizeof(opts)); if (!ns_ctx->u.nvme.qpair) { printf("ERROR: spdk_nvme_ctrlr_alloc_io_qpair failed\n"); return -1; } } return 0; } static void cleanup_ns_worker_ctx(struct ns_worker_ctx *ns_ctx) { if (ns_ctx->entry->type == ENTRY_TYPE_AIO_FILE) { #ifdef HAVE_LIBAIO io_destroy(ns_ctx->u.aio.ctx); free(ns_ctx->u.aio.events); #endif } else { spdk_nvme_ctrlr_free_io_qpair(ns_ctx->u.nvme.qpair); } } static int work_fn(void *arg) { uint64_t tsc_end; struct worker_thread *worker = (struct worker_thread *)arg; struct ns_worker_ctx *ns_ctx = NULL; printf("Starting thread on core %u\n", worker->lcore); /* Allocate a queue pair for each namespace. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { if (init_ns_worker_ctx(ns_ctx) != 0) { printf("ERROR: init_ns_worker_ctx() failed\n"); return 1; } ns_ctx = ns_ctx->next; } tsc_end = spdk_get_ticks() + g_time_in_sec * g_tsc_rate; /* Submit initial I/O for each namespace. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { submit_io(ns_ctx, g_queue_depth); ns_ctx = ns_ctx->next; } while (1) { /* * Check for completed I/O for each controller. A new * I/O will be submitted in the io_complete callback * to replace each I/O that is completed. */ ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { check_io(ns_ctx); ns_ctx = ns_ctx->next; } if (spdk_get_ticks() > tsc_end) { break; } } ns_ctx = worker->ns_ctx; while (ns_ctx != NULL) { drain_io(ns_ctx); cleanup_ns_worker_ctx(ns_ctx); ns_ctx = ns_ctx->next; } return 0; } static void usage(char *program_name) { printf("%s options", program_name); #if HAVE_LIBAIO printf(" [AIO device(s)]..."); #endif printf("\n"); printf("\t[-q io depth]\n"); printf("\t[-o io size in bytes]\n"); printf("\t[-w io pattern type, must be one of\n"); printf("\t\t(read, write, randread, randwrite, rw, randrw)]\n"); printf("\t[-M rwmixread (100 for reads, 0 for writes)]\n"); printf("\t[-L enable latency tracking via sw, default: disabled]\n"); printf("\t\t-L for latency summary, -LL for detailed histogram\n"); printf("\t[-l enable latency tracking via ssd (if supported), default: disabled]\n"); printf("\t[-t time in seconds]\n"); printf("\t[-c core mask for I/O submission/completion.]\n"); printf("\t\t(default: 1)]\n"); printf("\t[-D disable submission queue in controller memory buffer, default: enabled]\n"); printf("\t[-r Transport ID for local PCIe NVMe or NVMeoF]\n"); printf("\t Format: 'key:value [key:value] ...'\n"); printf("\t Keys:\n"); printf("\t trtype Transport type (e.g. PCIe, RDMA)\n"); printf("\t adrfam Address family (e.g. IPv4, IPv6)\n"); printf("\t traddr Transport address (e.g. 0000:04:00.0 for PCIe or 192.168.100.8 for RDMA)\n"); printf("\t trsvcid Transport service identifier (e.g. 4420)\n"); printf("\t subnqn Subsystem NQN (default: %s)\n", SPDK_NVMF_DISCOVERY_NQN); printf("\t Example: -r 'trtype:PCIe traddr:0000:04:00.0' for PCIe or\n"); printf("\t -r 'trtype:RDMA adrfam:IPv4 traddr:192.168.100.8 trsvcid:4420' for NVMeoF\n"); printf("\t[-e metadata configuration]\n"); printf("\t Keys:\n"); printf("\t PRACT Protection Information Action bit (PRACT=1 or PRACT=0)\n"); printf("\t PRCHK Control of Protection Information Checking (PRCHK=GUARD|REFTAG|APPTAG)\n"); printf("\t Example: -e 'PRACT=0,PRCHK=GUARD|REFTAG|APPTAG'\n"); printf("\t -e 'PRACT=1,PRCHK=GUARD'\n"); printf("\t[-s DPDK huge memory size in MB.]\n"); printf("\t[-m max completions per poll]\n"); printf("\t\t(default: 0 - unlimited)\n"); printf("\t[-i shared memory group ID]\n"); } static void check_cutoff(void *ctx, uint64_t start, uint64_t end, uint64_t count, uint64_t total, uint64_t so_far) { double so_far_pct; double **cutoff = ctx; if (count == 0) { return; } so_far_pct = (double)so_far / total; while (so_far_pct >= **cutoff && **cutoff > 0) { printf("%9.5f%% : %9.3fus\n", **cutoff * 100, (double)end * 1000 * 1000 / g_tsc_rate); (*cutoff)++; } } static void print_bucket(void *ctx, uint64_t start, uint64_t end, uint64_t count, uint64_t total, uint64_t so_far) { double so_far_pct; if (count == 0) { return; } so_far_pct = (double)so_far * 100 / total; printf("%9.3f - %9.3f: %9.4f%% (%9ju)\n", (double)start * 1000 * 1000 / g_tsc_rate, (double)end * 1000 * 1000 / g_tsc_rate, so_far_pct, count); } static void print_performance(void) { uint64_t total_io_completed, total_io_tsc; double io_per_second, mb_per_second, average_latency, min_latency, max_latency; double sum_ave_latency, min_latency_so_far, max_latency_so_far; double total_io_per_second, total_mb_per_second; int ns_count; struct worker_thread *worker; struct ns_worker_ctx *ns_ctx; total_io_per_second = 0; total_mb_per_second = 0; total_io_completed = 0; total_io_tsc = 0; min_latency_so_far = (double)UINT64_MAX; max_latency_so_far = 0; ns_count = 0; printf("========================================================\n"); printf("%103s\n", "Latency(us)"); printf("%-55s: %10s %10s %10s %10s %10s\n", "Device Information", "IOPS", "MB/s", "Average", "min", "max"); worker = g_workers; while (worker) { ns_ctx = worker->ns_ctx; while (ns_ctx) { if (ns_ctx->io_completed != 0) { io_per_second = (double)ns_ctx->io_completed / g_time_in_sec; mb_per_second = io_per_second * g_io_size_bytes / (1024 * 1024); average_latency = ((double)ns_ctx->total_tsc / ns_ctx->io_completed) * 1000 * 1000 / g_tsc_rate; min_latency = (double)ns_ctx->min_tsc * 1000 * 1000 / g_tsc_rate; if (min_latency < min_latency_so_far) { min_latency_so_far = min_latency; } max_latency = (double)ns_ctx->max_tsc * 1000 * 1000 / g_tsc_rate; if (max_latency > max_latency_so_far) { max_latency_so_far = max_latency; } printf("%-43.43s from core %u: %10.2f %10.2f %10.2f %10.2f %10.2f\n", ns_ctx->entry->name, worker->lcore, io_per_second, mb_per_second, average_latency, min_latency, max_latency); total_io_per_second += io_per_second; total_mb_per_second += mb_per_second; total_io_completed += ns_ctx->io_completed; total_io_tsc += ns_ctx->total_tsc; ns_count++; } ns_ctx = ns_ctx->next; } worker = worker->next; } if (ns_count != 0 && total_io_completed) { sum_ave_latency = ((double)total_io_tsc / total_io_completed) * 1000 * 1000 / g_tsc_rate; printf("========================================================\n"); printf("%-55s: %10.2f %10.2f %10.2f %10.2f %10.2f\n", "Total", total_io_per_second, total_mb_per_second, sum_ave_latency, min_latency_so_far, max_latency_so_far); printf("\n"); } if (g_latency_sw_tracking_level == 0 || total_io_completed == 0) { return; } worker = g_workers; while (worker) { ns_ctx = worker->ns_ctx; while (ns_ctx) { const double *cutoff = g_latency_cutoffs; printf("Summary latency data for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore); printf("=================================================================================\n"); spdk_histogram_data_iterate(ns_ctx->histogram, check_cutoff, &cutoff); printf("\n"); ns_ctx = ns_ctx->next; } worker = worker->next; } if (g_latency_sw_tracking_level == 1) { return; } worker = g_workers; while (worker) { ns_ctx = worker->ns_ctx; while (ns_ctx) { printf("Latency histogram for %-43.43s from core %u:\n", ns_ctx->entry->name, worker->lcore); printf("==============================================================================\n"); printf(" Range in us Cumulative IO count\n"); spdk_histogram_data_iterate(ns_ctx->histogram, print_bucket, NULL); printf("\n"); ns_ctx = ns_ctx->next; } worker = worker->next; } } static void print_latency_page(struct ctrlr_entry *entry) { int i; printf("\n"); printf("%s\n", entry->name); printf("--------------------------------------------------------\n"); for (i = 0; i < 32; i++) { if (entry->latency_page->buckets_32us[i]) { printf("Bucket %dus - %dus: %d\n", i * 32, (i + 1) * 32, entry->latency_page->buckets_32us[i]); } } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_1ms[i]) { printf("Bucket %dms - %dms: %d\n", i + 1, i + 2, entry->latency_page->buckets_1ms[i]); } } for (i = 0; i < 31; i++) { if (entry->latency_page->buckets_32ms[i]) printf("Bucket %dms - %dms: %d\n", (i + 1) * 32, (i + 2) * 32, entry->latency_page->buckets_32ms[i]); } } static void print_latency_statistics(const char *op_name, enum spdk_nvme_intel_log_page log_page) { struct ctrlr_entry *ctrlr; printf("%s Latency Statistics:\n", op_name); printf("========================================================\n"); ctrlr = g_controllers; while (ctrlr) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { if (spdk_nvme_ctrlr_cmd_get_log_page(ctrlr->ctrlr, log_page, SPDK_NVME_GLOBAL_NS_TAG, ctrlr->latency_page, sizeof(struct spdk_nvme_intel_rw_latency_page), 0, enable_latency_tracking_complete, NULL)) { printf("nvme_ctrlr_cmd_get_log_page() failed\n"); exit(1); } g_outstanding_commands++; } else { printf("Controller %s: %s latency statistics not supported\n", ctrlr->name, op_name); } ctrlr = ctrlr->next; } while (g_outstanding_commands) { ctrlr = g_controllers; while (ctrlr) { spdk_nvme_ctrlr_process_admin_completions(ctrlr->ctrlr); ctrlr = ctrlr->next; } } ctrlr = g_controllers; while (ctrlr) { if (spdk_nvme_ctrlr_is_log_page_supported(ctrlr->ctrlr, log_page)) { print_latency_page(ctrlr); } ctrlr = ctrlr->next; } printf("\n"); } static void print_stats(void) { print_performance(); if (g_latency_ssd_tracking_enable) { if (g_rw_percentage != 0) { print_latency_statistics("Read", SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY); } if (g_rw_percentage != 100) { print_latency_statistics("Write", SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY); } } } static void unregister_trids(void) { struct trid_entry *trid_entry, *tmp; TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, tmp) { free(trid_entry); } } static int add_trid(const char *trid_str) { struct trid_entry *trid_entry; struct spdk_nvme_transport_id *trid; char *ns; trid_entry = calloc(1, sizeof(*trid_entry)); if (trid_entry == NULL) { return -1; } trid = &trid_entry->trid; memset(trid, 0, sizeof(*trid)); trid->trtype = SPDK_NVME_TRANSPORT_PCIE; snprintf(trid->subnqn, sizeof(trid->subnqn), "%s", SPDK_NVMF_DISCOVERY_NQN); if (spdk_nvme_transport_id_parse(trid, trid_str) != 0) { fprintf(stderr, "Invalid transport ID format '%s'\n", trid_str); free(trid_entry); return 1; } ns = strcasestr(trid_str, "ns:"); if (ns) { char nsid_str[6]; /* 5 digits maximum in an nsid */ int len; int nsid; ns += 3; len = strcspn(ns, " \t\n"); if (len > 5) { fprintf(stderr, "NVMe namespace IDs must be 5 digits or less\n"); free(trid_entry); return 1; } memcpy(nsid_str, ns, len); nsid_str[len] = '\0'; nsid = atoi(nsid_str); if (nsid <= 0 || nsid > 65535) { fprintf(stderr, "NVMe namespace IDs must be less than 65536 and greater than 0\n"); free(trid_entry); return 1; } trid_entry->nsid = (uint16_t)nsid; } TAILQ_INSERT_TAIL(&g_trid_list, trid_entry, tailq); return 0; } static int parse_metadata(const char *metacfg_str) { const char *sep; if (strstr(metacfg_str, "PRACT=1") != NULL) { g_metacfg_pract_flag = SPDK_NVME_IO_FLAGS_PRACT; } sep = strchr(metacfg_str, ','); if (!sep) { return 0; } if (strstr(sep, "PRCHK=") != NULL) { if (strstr(sep, "GUARD") != NULL) { g_metacfg_prchk_flags = SPDK_NVME_IO_FLAGS_PRCHK_GUARD; } if (strstr(sep, "REFTAG") != NULL) { g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG; } if (strstr(sep, "APPTAG") != NULL) { g_metacfg_prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_APPTAG; } } return 0; } static int parse_args(int argc, char **argv) { const char *workload_type; int op; bool mix_specified = false; /* default value */ g_queue_depth = 0; g_io_size_bytes = 0; workload_type = NULL; g_time_in_sec = 0; g_rw_percentage = -1; g_core_mask = NULL; g_max_completions = 0; while ((op = getopt(argc, argv, "c:e:i:lm:o:q:r:s:t:w:DLM:")) != -1) { switch (op) { case 'c': g_core_mask = optarg; break; case 'e': if (parse_metadata(optarg)) { usage(argv[0]); return 1; } break; case 'i': g_shm_id = atoi(optarg); break; case 'l': g_latency_ssd_tracking_enable = true; break; case 'm': g_max_completions = atoi(optarg); break; case 'o': g_io_size_bytes = atoi(optarg); break; case 'q': g_queue_depth = atoi(optarg); break; case 'r': if (add_trid(optarg)) { usage(argv[0]); return 1; } break; case 's': g_dpdk_mem = atoi(optarg); break; case 't': g_time_in_sec = atoi(optarg); break; case 'w': workload_type = optarg; break; case 'D': g_disable_sq_cmb = 1; break; case 'L': g_latency_sw_tracking_level++; break; case 'M': g_rw_percentage = atoi(optarg); mix_specified = true; break; default: usage(argv[0]); return 1; } } if (!g_queue_depth) { usage(argv[0]); return 1; } if (!g_io_size_bytes) { usage(argv[0]); return 1; } if (!workload_type) { usage(argv[0]); return 1; } if (!g_time_in_sec) { usage(argv[0]); return 1; } if (strcmp(workload_type, "read") && strcmp(workload_type, "write") && strcmp(workload_type, "randread") && strcmp(workload_type, "randwrite") && strcmp(workload_type, "rw") && strcmp(workload_type, "randrw")) { fprintf(stderr, "io pattern type must be one of\n" "(read, write, randread, randwrite, rw, randrw)\n"); return 1; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread")) { g_rw_percentage = 100; } if (!strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { g_rw_percentage = 0; } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "randread") || !strcmp(workload_type, "write") || !strcmp(workload_type, "randwrite")) { if (mix_specified) { fprintf(stderr, "Ignoring -M option... Please use -M option" " only when using rw or randrw.\n"); } } if (!strcmp(workload_type, "rw") || !strcmp(workload_type, "randrw")) { if (g_rw_percentage < 0 || g_rw_percentage > 100) { fprintf(stderr, "-M must be specified to value from 0 to 100 " "for rw or randrw.\n"); return 1; } } if (!strcmp(workload_type, "read") || !strcmp(workload_type, "write") || !strcmp(workload_type, "rw")) { g_is_random = 0; } else { g_is_random = 1; } if (TAILQ_EMPTY(&g_trid_list)) { /* If no transport IDs specified, default to enumerating all local PCIe devices */ add_trid("trtype:PCIe"); } else { struct trid_entry *trid_entry, *trid_entry_tmp; g_no_pci = true; /* check whether there is local PCIe type */ TAILQ_FOREACH_SAFE(trid_entry, &g_trid_list, tailq, trid_entry_tmp) { if (trid_entry->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { g_no_pci = false; break; } } } g_aio_optind = optind; return 0; } static int register_workers(void) { uint32_t i; struct worker_thread *worker; g_workers = NULL; g_num_workers = 0; SPDK_ENV_FOREACH_CORE(i) { worker = calloc(1, sizeof(*worker)); if (worker == NULL) { fprintf(stderr, "Unable to allocate worker\n"); return -1; } worker->lcore = i; worker->next = g_workers; g_workers = worker; g_num_workers++; } return 0; } static void unregister_workers(void) { struct worker_thread *worker = g_workers; /* Free namespace context and worker thread */ while (worker) { struct worker_thread *next_worker = worker->next; struct ns_worker_ctx *ns_ctx = worker->ns_ctx; while (ns_ctx) { struct ns_worker_ctx *next_ns_ctx = ns_ctx->next; spdk_histogram_data_free(ns_ctx->histogram); free(ns_ctx); ns_ctx = next_ns_ctx; } free(worker); worker = next_worker; } } static bool probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { printf("Attaching to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); } else { if (g_disable_sq_cmb) { opts->use_cmb_sqs = false; } printf("Attaching to NVMe Controller at %s\n", trid->traddr); } /* Set io_queue_size to UINT16_MAX, NVMe driver * will then reduce this to MQES to maximize * the io_queue_size as much as possible. */ opts->io_queue_size = UINT16_MAX; return true; } static void attach_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_ctrlr_opts *opts) { struct trid_entry *trid_entry = cb_ctx; struct spdk_pci_addr pci_addr; struct spdk_pci_device *pci_dev; struct spdk_pci_id pci_id; g_controllers_found++; if (trid->trtype != SPDK_NVME_TRANSPORT_PCIE) { printf("Attached to NVMe over Fabrics controller at %s:%s: %s\n", trid->traddr, trid->trsvcid, trid->subnqn); } else { if (spdk_pci_addr_parse(&pci_addr, trid->traddr)) { return; } pci_dev = spdk_nvme_ctrlr_get_pci_device(ctrlr); if (!pci_dev) { return; } pci_id = spdk_pci_device_get_id(pci_dev); printf("Attached to NVMe Controller at %s [%04x:%04x]\n", trid->traddr, pci_id.vendor_id, pci_id.device_id); } register_ctrlr(ctrlr, trid_entry); } static int register_controllers(void) { struct trid_entry *trid_entry; printf("Initializing NVMe Controllers\n"); TAILQ_FOREACH(trid_entry, &g_trid_list, tailq) { if (spdk_nvme_probe(&trid_entry->trid, trid_entry, probe_cb, attach_cb, NULL) != 0) { fprintf(stderr, "spdk_nvme_probe() failed for transport address '%s'\n", trid_entry->trid.traddr); return -1; } } return 0; } static void unregister_controllers(void) { struct ctrlr_entry *entry = g_controllers; while (entry) { struct ctrlr_entry *next = entry->next; spdk_dma_free(entry->latency_page); if (g_latency_ssd_tracking_enable && spdk_nvme_ctrlr_is_feature_supported(entry->ctrlr, SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING)) { set_latency_tracking_feature(entry->ctrlr, false); } spdk_nvme_detach(entry->ctrlr); free(entry); entry = next; } } static int register_aio_files(int argc, char **argv) { #if HAVE_LIBAIO int i; /* Treat everything after the options as files for AIO */ for (i = g_aio_optind; i < argc; i++) { if (register_aio_file(argv[i]) != 0) { return 1; } } #endif /* HAVE_LIBAIO */ return 0; } static int associate_workers_with_ns(void) { struct ns_entry *entry = g_namespaces; struct worker_thread *worker = g_workers; struct ns_worker_ctx *ns_ctx; int i, count; count = g_num_namespaces > g_num_workers ? g_num_namespaces : g_num_workers; for (i = 0; i < count; i++) { if (entry == NULL) { break; } ns_ctx = malloc(sizeof(struct ns_worker_ctx)); if (!ns_ctx) { return -1; } memset(ns_ctx, 0, sizeof(*ns_ctx)); printf("Associating %s with lcore %d\n", entry->name, worker->lcore); ns_ctx->min_tsc = UINT64_MAX; ns_ctx->entry = entry; ns_ctx->next = worker->ns_ctx; ns_ctx->histogram = spdk_histogram_data_alloc(); worker->ns_ctx = ns_ctx; worker = worker->next; if (worker == NULL) { worker = g_workers; } entry = entry->next; if (entry == NULL) { entry = g_namespaces; } } return 0; } int main(int argc, char **argv) { int rc; struct worker_thread *worker, *master_worker; unsigned master_core; struct spdk_env_opts opts; rc = parse_args(argc, argv); if (rc != 0) { return rc; } spdk_env_opts_init(&opts); opts.name = "perf"; opts.shm_id = g_shm_id; if (g_core_mask) { opts.core_mask = g_core_mask; } if (g_dpdk_mem) { opts.mem_size = g_dpdk_mem; } if (g_no_pci) { opts.no_pci = g_no_pci; } if (spdk_env_init(&opts) < 0) { fprintf(stderr, "Unable to initialize SPDK env\n"); rc = -1; goto cleanup; } g_tsc_rate = spdk_get_ticks_hz(); if (register_workers() != 0) { rc = -1; goto cleanup; } if (register_aio_files(argc, argv) != 0) { rc = -1; goto cleanup; } if (register_controllers() != 0) { rc = -1; goto cleanup; } if (g_warn) { printf("WARNING: Some requested NVMe devices were skipped\n"); } if (g_num_namespaces == 0) { fprintf(stderr, "No valid NVMe controllers or AIO devices found\n"); return 0; } if (associate_workers_with_ns() != 0) { rc = -1; goto cleanup; } printf("Initialization complete. Launching workers.\n"); /* Launch all of the slave workers */ master_core = spdk_env_get_current_core(); master_worker = NULL; worker = g_workers; while (worker != NULL) { if (worker->lcore != master_core) { spdk_env_thread_launch_pinned(worker->lcore, work_fn, worker); } else { assert(master_worker == NULL); master_worker = worker; } worker = worker->next; } assert(master_worker != NULL); rc = work_fn(master_worker); spdk_env_thread_wait_all(); print_stats(); cleanup: unregister_trids(); unregister_namespaces(); unregister_controllers(); unregister_workers(); if (rc != 0) { fprintf(stderr, "%s: errors occured\n", argv[0]); } return rc; }