/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUcryptoION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "vbdev_crypto.h" #include "spdk/env.h" #include "spdk/conf.h" #include "spdk/endian.h" #include "spdk/io_channel.h" #include "spdk/bdev_module.h" #include #include #include #include #include /* To add support for new device types, follow the examples of the following... * Note that the string names are defined by the DPDK PMD in question so be * sure to use the exact names. */ #define MAX_NUM_DRV_TYPES 2 #define AESNI_MB "crypto_aesni_mb" #define QAT "crypto_qat" const char *g_driver_names[MAX_NUM_DRV_TYPES] = { AESNI_MB, QAT }; /* Global list of available crypto devices. */ struct vbdev_dev { struct rte_cryptodev_info cdev_info; /* includes device friendly name */ uint8_t cdev_id; /* identifier for the device */ TAILQ_ENTRY(vbdev_dev) link; }; static TAILQ_HEAD(, vbdev_dev) g_vbdev_devs = TAILQ_HEAD_INITIALIZER(g_vbdev_devs); /* Global list and lock for unique device/queue pair combos */ struct device_qp { struct vbdev_dev *device; /* ptr to crypto device */ uint8_t qp; /* queue pair for this node */ bool in_use; /* whether this node is in use or not */ TAILQ_ENTRY(device_qp) link; }; static TAILQ_HEAD(, device_qp) g_device_qp = TAILQ_HEAD_INITIALIZER(g_device_qp); static pthread_mutex_t g_device_qp_lock = PTHREAD_MUTEX_INITIALIZER; /* In order to limit the number of resources we need to do one crypto * operation per LBA (we use LBA as IV), we tell the bdev layer that * our max IO size is something reasonable. Units here are in bytes. */ #define CRYPTO_MAX_IO (64 * 1024) /* This controls how many ops will be dequeued from the crypto driver in one run * of the poller. It is mainly a performance knob as it effectively determines how * much work the poller has to do. However even that can vary between crypto drivers * as the AESNI_MB driver for example does all the crypto work on dequeue whereas the * QAT drvier just dequeues what has been completed already. */ #define MAX_DEQUEUE_BURST_SIZE 64 /* When enqueueing, we need to supply the crypto driver with an array of pointers to * operation structs. As each of these can be max 512B, we can adjust the CRYPTO_MAX_IO * value in conjunction with the the other defines to make sure we're not using crazy amounts * of memory. All of these numbers can and probably should be adjusted based on the * workload. By default we'll use the worst case (smallest) block size for the * minimum number of array entries. As an example, a CRYPTO_MAX_IO size of 64K with 512B * blocks would give us an enqueue array size of 128. */ #define MAX_ENQUEUE_ARRAY_SIZE (CRYPTO_MAX_IO / 512) /* The number of MBUFS we need must be a power of two and to support other small IOs * in addition to the limits mentioned above, we go to the next power of two. It is * big number because it is one mempool for source and desitnation mbufs. It may * need to be bigger to support multiple crypto drivers at once. */ #define NUM_MBUFS 32768 #define POOL_CACHE_SIZE 256 #define NUM_SESSIONS NUM_MBUFS #define SESS_MEMPOOL_CACHE_SIZE 256 /* This is the max number of IOs we can supply to any crypto device QP at one time. * It can vary between drivers. */ #define CRYPTO_QP_DESCRIPTORS 2048 /* Specific to AES_CBC. */ #define AES_CBC_IV_LENGTH 16 #define AES_CBC_KEY_LENGTH 16 /* Common for suported devices. */ #define IV_OFFSET (sizeof(struct rte_crypto_op) + \ sizeof(struct rte_crypto_sym_op)) static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg); static void vbdev_crypto_examine(struct spdk_bdev *bdev); static int vbdev_crypto_claim(struct spdk_bdev *bdev); /* list of crypto_bdev names and their base bdevs via configuration file. * Used so we can parse the conf once at init and use this list in examine(). */ struct bdev_names { char *vbdev_name; /* name of the vbdev to create */ char *bdev_name; /* base bdev name */ /* Note, for dev/test we allow use of key in the config file, for production * use, you must use an RPC to specify the key for security reasons. */ uint8_t *key; /* key per bdev */ char *drv_name; /* name of the crypto device driver */ TAILQ_ENTRY(bdev_names) link; }; static TAILQ_HEAD(, bdev_names) g_bdev_names = TAILQ_HEAD_INITIALIZER(g_bdev_names); /* List of virtual bdevs and associated info for each. We keep the device friendly name here even * though its also in the device struct because we use it early on. */ struct vbdev_crypto { struct spdk_bdev *base_bdev; /* the thing we're attaching to */ struct spdk_bdev_desc *base_desc; /* its descriptor we get from open */ struct spdk_bdev crypto_bdev; /* the crypto virtual bdev */ uint8_t *key; /* key per bdev */ char *drv_name; /* name of the crypto device driver */ TAILQ_ENTRY(vbdev_crypto) link; }; static TAILQ_HEAD(, vbdev_crypto) g_vbdev_crypto = TAILQ_HEAD_INITIALIZER(g_vbdev_crypto); /* Shared mempools between all devices on this system */ static struct spdk_mempool *g_session_mp = NULL; /* session mempool */ static struct spdk_mempool *g_mbuf_mp = NULL; /* mbuf mempool */ static struct rte_mempool *g_crypto_op_mp = NULL; /* crypto operations, must be rte* mempool */ /* The crypto vbdev channel struct. It is allocated and freed on my behalf by the io channel code. * We store things in here that are needed on per thread basis like the base_channel for this thread, * and the poller for this thread. */ struct crypto_io_channel { struct spdk_io_channel *base_ch; /* IO channel of base device */ struct spdk_poller *poller; /* completion poller */ struct device_qp *device_qp; /* unique device/qp combination for this channel */ }; /* This is the crypto per IO context that the bdev layer allocates for us opaquely and attaches to * each IO for us. */ struct crypto_bdev_io { int cryop_cnt_remaining; /* counter used when completing crypto ops */ struct crypto_io_channel *crypto_ch; /* need to store for crypto completion handling */ struct vbdev_crypto *crypto_bdev; /* the crypto node struct associated with this IO */ enum rte_crypto_cipher_operation crypto_op; /* the crypto control struct */ struct rte_crypto_sym_xform cipher_xform; /* crypto control struct for this IO */ struct spdk_bdev_io *orig_io; /* the original IO */ struct spdk_bdev_io *read_io; /* the read IO we issued */ /* Used for the single contigous buffer that serves as the crypto destination target for writes */ uint64_t cry_num_blocks; /* num of blocks for the contiguous buffer */ uint64_t cry_offset_blocks; /* block offset on media */ struct iovec cry_iov; /* iov representing contig write buffer */ }; /* This is called from the module's init function. We setup all crypto devices early on as we are unable * to easily dynamically configure queue pairs after the drivers are up and running. So, here, we * configure the max capabilities of each device and assign threads to queue pairs as channels are * requested. */ static int vbdev_crypto_init_crypto_drivers(void) { uint8_t cdev_count; uint8_t cdrv_id, cdev_id, i, j; int rc = 0; struct vbdev_dev *device = NULL; struct device_qp *dev_qp = NULL; unsigned int max_sess_size = 0, sess_size; uint16_t num_lcores = rte_lcore_count(); /* Only the first call, via RPC or module init should init the crypto drivers. */ if (g_session_mp != NULL) { return 0; } /* We always init AESNI_MB */ rc = rte_vdev_init(AESNI_MB, NULL); if (rc == 0) { SPDK_NOTICELOG("created virtual PMD %s\n", AESNI_MB); } else { SPDK_ERRLOG("error creating virtual PMD %s\n", AESNI_MB); return -EINVAL; } /* If we have no crypto devices, there's no reason to continue. */ cdev_count = rte_cryptodev_count(); if (cdev_count == 0) { return 0; } /* * Create global mempools, shared by all devices regardless of type. */ /* First determine max session size, most pools are shared by all the devices, * so we need to find the global max sessions size. */ for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) { sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id); if (sess_size > max_sess_size) { max_sess_size = sess_size; } } g_session_mp = spdk_mempool_create("session_mp", NUM_SESSIONS * 2, max_sess_size, SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (g_session_mp == NULL) { SPDK_ERRLOG("Cannot create session pool max size 0x%x\n", max_sess_size); return -ENOMEM; } g_mbuf_mp = spdk_mempool_create("mbuf_mp", NUM_MBUFS, sizeof(struct rte_mbuf), SPDK_MEMPOOL_DEFAULT_CACHE_SIZE, SPDK_ENV_SOCKET_ID_ANY); if (g_mbuf_mp == NULL) { SPDK_ERRLOG("Cannot create mbuf pool\n"); rc = -ENOMEM; goto error_create_mbuf; } g_crypto_op_mp = rte_crypto_op_pool_create("op_mp", RTE_CRYPTO_OP_TYPE_SYMMETRIC, NUM_MBUFS, POOL_CACHE_SIZE, AES_CBC_IV_LENGTH, rte_socket_id()); if (g_crypto_op_mp == NULL) { SPDK_ERRLOG("Cannot create op pool\n"); rc = -ENOMEM; goto error_create_op; } /* * Now lets configure each device. */ for (i = 0; i < cdev_count; i++) { device = calloc(1, sizeof(struct vbdev_dev)); if (!device) { rc = -ENOMEM; goto error_create_device; } /* Get details about this device. */ rte_cryptodev_info_get(i, &device->cdev_info); cdrv_id = device->cdev_info.driver_id; cdev_id = device->cdev_id = i; /* Before going any further, make sure we have enough resources for this * device type to function. We need a unique queue pair per core accross each * device type to remain lockless.... */ if ((rte_cryptodev_device_count_by_driver(cdrv_id) * device->cdev_info.max_nb_queue_pairs) < num_lcores) { SPDK_ERRLOG("Insufficient unique queue pairs available for %s\n", device->cdev_info.driver_name); SPDK_ERRLOG("Either add more crypto devices or decrease core count\n"); rc = -EINVAL; goto error_qp; } /* Setup queue pairs. */ struct rte_cryptodev_config conf = { .nb_queue_pairs = device->cdev_info.max_nb_queue_pairs, .socket_id = SPDK_ENV_SOCKET_ID_ANY }; rc = rte_cryptodev_configure(cdev_id, &conf); if (rc < 0) { SPDK_ERRLOG("Failed to configure cryptodev %u", cdev_id); rc = -EINVAL; goto error_dev_config; } struct rte_cryptodev_qp_conf qp_conf = { .nb_descriptors = CRYPTO_QP_DESCRIPTORS }; /* Pre-setup all pottential qpairs now and assign them in the channel * callback. If we were to create them there, we'd have to stop the * entire device affecting all other threads that might be using it * even on other queue pairs. */ for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) { rc = rte_cryptodev_queue_pair_setup(cdev_id, j, &qp_conf, SOCKET_ID_ANY, (struct rte_mempool *)g_session_mp); if (rc < 0) { SPDK_ERRLOG("Failed to setup queue pair %u on " "cryptodev %u", j, cdev_id); rc = -EINVAL; goto error_qp_setup; } } rc = rte_cryptodev_start(cdev_id); if (rc < 0) { SPDK_ERRLOG("Failed to start device %u: error %d\n", cdev_id, rc); rc = -EINVAL; goto error_device_start; } /* Add to our list of available crypto devices. */ TAILQ_INSERT_TAIL(&g_vbdev_devs, device, link); /* Build up list of device/qp combinations */ for (j = 0; j < device->cdev_info.max_nb_queue_pairs; j++) { dev_qp = calloc(1, sizeof(struct device_qp)); if (!dev_qp) { rc = -ENOMEM; goto error_create_devqp; } dev_qp->device = device; dev_qp->qp = j; dev_qp->in_use = false; TAILQ_INSERT_TAIL(&g_device_qp, dev_qp, link); } } return 0; /* Error cleanup paths. */ error_create_devqp: while ((dev_qp = TAILQ_FIRST(&g_device_qp))) { TAILQ_REMOVE(&g_device_qp, dev_qp, link); free(dev_qp); } error_device_start: error_qp_setup: error_dev_config: error_qp: free(device); error_create_device: rte_mempool_free(g_crypto_op_mp); error_create_op: spdk_mempool_free(g_mbuf_mp); error_create_mbuf: spdk_mempool_free(g_session_mp); return rc; } /* Following an encrypt or decrypt we need to then either write the encrypted data or finish * the read on decrypted data. Do that here. */ static void _crypto_operation_complete(struct spdk_bdev_io *bdev_io) { struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto, crypto_bdev); struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx; struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch; struct spdk_bdev_io *free_me = io_ctx->read_io; int rc = 0; if (bdev_io->internal.status != SPDK_BDEV_IO_STATUS_FAILED) { if (bdev_io->type == SPDK_BDEV_IO_TYPE_READ) { /* Complete the original IO and then free the one that we created * as a result of issuing an IO via submit_reqeust. */ spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_SUCCESS); spdk_bdev_free_io(free_me); } else if (bdev_io->type == SPDK_BDEV_IO_TYPE_WRITE) { /* Write the encrypted data. */ rc = spdk_bdev_writev_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, &io_ctx->cry_iov, 1, io_ctx->cry_offset_blocks, io_ctx->cry_num_blocks, _complete_internal_write, bdev_io); } else { /* Something really went haywire if this function got called with a type * other than read or write. */ rc = -1; } } else { /* If the poller found that one of the crypto ops had failed as part of this * bdev_io it would have updated the internal status indicate failure. */ rc = -1; } if (rc != 0) { SPDK_ERRLOG("ERROR on crypto operation completion!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } /* This is the poller for the crypto device. It uses a single API to dequeue whatever is ready at * the device. Then we need to decide if what we've got so far (including previous poller * runs) totals up to one or more complete bdev_ios and if so continue with the bdev_io * accordingly. This means either completing a read or issuing a new write. */ static int crypto_dev_poller(void *args) { struct crypto_io_channel *crypto_ch = args; uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id; int i, num_dequeued_ops; struct spdk_bdev_io *bdev_io = NULL; struct crypto_bdev_io *io_ctx = NULL; struct rte_crypto_op *dequeued_ops[MAX_DEQUEUE_BURST_SIZE]; struct rte_crypto_op *mbufs_to_free[2 * MAX_DEQUEUE_BURST_SIZE]; int num_mbufs = 0; /* Each run of the poller will get just what the device has available * at the moment we call it, we don't check again after draining the * first batch. */ num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, crypto_ch->device_qp->qp, dequeued_ops, MAX_DEQUEUE_BURST_SIZE); /* Check if operation was processed successfully */ for (i = 0; i < num_dequeued_ops; i++) { /* We don't know the order or association of the crypto ops wrt any * partiular bdev_io so need to look at each and determine if it's * the last one for it's bdev_io or not. */ bdev_io = (struct spdk_bdev_io *)dequeued_ops[i]->sym->m_src->userdata; assert(bdev_io != NULL); if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS) { SPDK_ERRLOG("error with op %d status %u\n", i, dequeued_ops[i]->status); /* Update the bdev status to error, we'll still process the * rest of the crypto ops for this bdev_io though so they * aren't left hanging. */ bdev_io->internal.status = SPDK_BDEV_IO_STATUS_FAILED; } io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx; assert(io_ctx->cryop_cnt_remaining > 0); /* Return the associated src and dst mbufs by collecting them into * an array that we can use the bulk API to free after the loop. */ dequeued_ops[i]->sym->m_src->userdata = NULL; mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_src; if (dequeued_ops[i]->sym->m_dst) { mbufs_to_free[num_mbufs++] = (void *)dequeued_ops[i]->sym->m_dst; } /* done encrypting, complete the bdev_io */ if (--io_ctx->cryop_cnt_remaining == 0) { /* Complete the IO */ _crypto_operation_complete(bdev_io); /* Return session */ rte_cryptodev_sym_session_clear(cdev_id, dequeued_ops[i]->sym->session); rte_cryptodev_sym_session_free(dequeued_ops[i]->sym->session); } } /* Now bulk free both mbufs and crypto operations. */ if (num_dequeued_ops > 0) { rte_mempool_put_bulk(g_crypto_op_mp, (void **)dequeued_ops, num_dequeued_ops); assert(num_mbufs > 0); spdk_mempool_put_bulk(g_mbuf_mp, (void **)mbufs_to_free, num_mbufs); } return num_dequeued_ops; } /* We're either encrypting on the way down or decrypting on the way back. */ static int _crypto_operation(struct spdk_bdev_io *bdev_io, enum rte_crypto_cipher_operation crypto_op) { struct rte_cryptodev_sym_session *session; uint16_t num_enqueued_ops = 0; uint32_t cryop_cnt = bdev_io->u.bdev.num_blocks; struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx; struct crypto_io_channel *crypto_ch = io_ctx->crypto_ch; uint8_t cdev_id = crypto_ch->device_qp->device->cdev_id; uint32_t crypto_len = io_ctx->crypto_bdev->crypto_bdev.blocklen; uint64_t total_length = bdev_io->u.bdev.num_blocks * crypto_len; int rc; uint32_t enqueued = 0; uint32_t iov_index = 0; uint32_t allocated = 0; uint8_t *current_iov = NULL; uint64_t total_remaining = 0; uint64_t current_iov_remaining = 0; int completed = 0; int crypto_index = 0; uint32_t en_offset = 0; struct rte_crypto_op *crypto_ops[MAX_ENQUEUE_ARRAY_SIZE]; struct rte_mbuf *src_mbufs[MAX_ENQUEUE_ARRAY_SIZE]; struct rte_mbuf *dst_mbufs[MAX_ENQUEUE_ARRAY_SIZE]; int burst; assert((bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen) <= CRYPTO_MAX_IO); /* Get the number of source mbufs that we need. These will always be 1:1 because we * don't support chaining. The reason we don't is because of our decision to use * LBA as IV, there can be no case where we'd need >1 mbuf per crypto op or the * op would be > 1 LBA. */ rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt); if (rc) { SPDK_ERRLOG("ERROR trying to get src_mbufs!\n"); return -ENOMEM; } /* Get the same amount but these buffers to describe the encrypted data location (dst). */ if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { rc = spdk_mempool_get_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt); if (rc) { SPDK_ERRLOG("ERROR trying to get dst_mbufs!\n"); rc = -ENOMEM; goto error_get_dst; } } /* Allocate crypto operations. */ allocated = rte_crypto_op_bulk_alloc(g_crypto_op_mp, RTE_CRYPTO_OP_TYPE_SYMMETRIC, crypto_ops, cryop_cnt); if (allocated < cryop_cnt) { SPDK_ERRLOG("ERROR trying to get crypto ops!\n"); rc = -ENOMEM; goto error_get_ops; } /* Get sessions. */ session = rte_cryptodev_sym_session_create((struct rte_mempool *)g_session_mp); if (NULL == session) { SPDK_ERRLOG("ERROR trying to create crypto session!\n"); rc = -EINVAL; goto error_session_create; } /* Init our session with the desired cipher options. */ io_ctx->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER; io_ctx->cipher_xform.cipher.key.data = io_ctx->crypto_bdev->key; io_ctx->cipher_xform.cipher.op = io_ctx->crypto_op = crypto_op; io_ctx->cipher_xform.cipher.iv.offset = IV_OFFSET; io_ctx->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC; io_ctx->cipher_xform.cipher.key.length = AES_CBC_KEY_LENGTH; io_ctx->cipher_xform.cipher.iv.length = AES_CBC_IV_LENGTH; rc = rte_cryptodev_sym_session_init(cdev_id, session, &io_ctx->cipher_xform, (struct rte_mempool *)g_session_mp); if (rc < 0) { SPDK_ERRLOG("ERROR trying to init crypto session!\n"); rc = -EINVAL; goto error_session_init; } /* For encryption, we need to prepare a single contiguous buffer as the encryption * destination, we'll then pass that along for the write after encryption is done. * This is done to avoiding encrypting the provided write buffer which may be * undesirable in some use cases. */ if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { io_ctx->cry_iov.iov_len = total_length; /* For now just allocate in the I/O path, not optimal but the current bdev API * for getting a buffer from the pool won't work if the bdev_io passed in * has a buffer, which ours always will. So, until we modify that API * or better yet the current ZCOPY work lands, this is the best we can do. */ io_ctx->cry_iov.iov_base = spdk_dma_malloc(total_length, 0x10, NULL); if (!io_ctx->cry_iov.iov_base) { SPDK_ERRLOG("ERROR trying to allocate write buffer for encryption!\n"); rc = -ENOMEM; goto error_get_write_buffer; } io_ctx->cry_offset_blocks = bdev_io->u.bdev.offset_blocks; io_ctx->cry_num_blocks = bdev_io->u.bdev.num_blocks; } /* This value is used in the completion callback to determine when the bdev_io is * complete. */ io_ctx->cryop_cnt_remaining = cryop_cnt; /* As we don't support chaining because of a decision to use LBA as IV, construction * of crypto operaations is straightforward. We build both the op, the mbuf and the * dst_mbuf in our local arrays by looping through the length of the bdev IO and * picking off LBA sized blocks of memory from the IOVs as we walk through them. Each * LBA sized chunck of memory will correspond 1:1 to a crypto operation and a single * mbuf per crypto operation. */ total_remaining = total_length; current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base; current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len; do { uint8_t *iv_ptr; uint64_t op_block_offset; /* Set the mbuf elements address and length. Null out the next pointer. */ src_mbufs[crypto_index]->buf_addr = current_iov; src_mbufs[crypto_index]->buf_iova = spdk_vtophys((void *)current_iov); src_mbufs[crypto_index]->data_len = crypto_len; src_mbufs[crypto_index]->next = NULL; /* Store context in every mbuf as we don't know anything about completion order */ src_mbufs[crypto_index]->userdata = bdev_io; /* Set the IV - we use the LBA of the crypto_op */ iv_ptr = rte_crypto_op_ctod_offset(crypto_ops[crypto_index], uint8_t *, IV_OFFSET); memset(iv_ptr, 0, AES_CBC_IV_LENGTH); op_block_offset = bdev_io->u.bdev.offset_blocks + crypto_index; rte_memcpy(iv_ptr, &op_block_offset, sizeof(uint64_t)); /* Set the data to encrypt/decrypt length */ crypto_ops[crypto_index]->sym->cipher.data.length = crypto_len; crypto_ops[crypto_index]->sym->cipher.data.offset = 0; /* link the mbuf to the crypto op. */ crypto_ops[crypto_index]->sym->m_src = src_mbufs[crypto_index]; if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { crypto_ops[crypto_index]->sym->m_dst = src_mbufs[crypto_index]; } else { crypto_ops[crypto_index]->sym->m_dst = NULL; } /* For encrypt, point the destination to a buffer we allocate and redirect the bdev_io * that will be used to process the write on completion to the same buffer. Setting * up the en_buffer is a little simpler as we know the destination buffer is single IOV. */ if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { /* Set the relevant destination en_mbuf elements. */ dst_mbufs[crypto_index]->buf_addr = io_ctx->cry_iov.iov_base + en_offset; dst_mbufs[crypto_index]->buf_iova = spdk_vtophys(dst_mbufs[crypto_index]->buf_addr); dst_mbufs[crypto_index]->data_len = crypto_len; crypto_ops[crypto_index]->sym->m_dst = dst_mbufs[crypto_index]; en_offset += crypto_len; dst_mbufs[crypto_index]->next = NULL; } /* Attach the crypto session to the operation */ rc = rte_crypto_op_attach_sym_session(crypto_ops[crypto_index], session); if (rc) { rc = -EINVAL; goto error_attach_session; } /* Subtract our running totals for the op in progress and the overall bdev io */ total_remaining -= crypto_len; current_iov_remaining -= crypto_len; /* move our current IOV pointer accordingly. */ current_iov += crypto_len; /* move on to the next crypto operation */ crypto_index++; /* If we're done with this IOV, move to the next one. */ if (current_iov_remaining == 0 && total_remaining > 0) { iov_index++; current_iov = bdev_io->u.bdev.iovs[iov_index].iov_base; current_iov_remaining = bdev_io->u.bdev.iovs[iov_index].iov_len; } } while (total_remaining > 0); /* Enqueue everything we've got but limit by the max number of descriptors we * configured the crypto device for. */ do { burst = spdk_min((cryop_cnt - enqueued), CRYPTO_QP_DESCRIPTORS); num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, crypto_ch->device_qp->qp, &crypto_ops[enqueued], burst); enqueued += num_enqueued_ops; /* Dequeue all inline if the device is full. We don't defer anything simply * because of the complexity involved as we're building 1 or more crypto * ops per IO. Dequeue will free up space for more enqueue. */ if (enqueued < cryop_cnt) { /* Dequeue everything, this may include ops that were already * in the device before this submission.... */ do { completed = crypto_dev_poller(crypto_ch); } while (completed > 0); } } while (enqueued < cryop_cnt); return rc; /* Error cleanup paths. */ error_attach_session: error_get_write_buffer: error_session_init: rte_cryptodev_sym_session_clear(cdev_id, session); rte_cryptodev_sym_session_free(session); error_session_create: rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops, cryop_cnt); allocated = 0; error_get_ops: if (crypto_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) { spdk_mempool_put_bulk(g_mbuf_mp, (void **)&dst_mbufs[0], cryop_cnt); } if (allocated > 0) { rte_mempool_put_bulk(g_crypto_op_mp, (void **)crypto_ops, allocated); } error_get_dst: spdk_mempool_put_bulk(g_mbuf_mp, (void **)&src_mbufs[0], cryop_cnt); return rc; } /* Completion callback for IO that were issued from this bdev other than read/write. * They have their own for readability. */ static void _complete_internal_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *orig_io = cb_arg; int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; spdk_bdev_io_complete(orig_io, status); spdk_bdev_free_io(bdev_io); } /* Completion callback for writes that were issued from this bdev. */ static void _complete_internal_write(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *orig_io = cb_arg; int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED; struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx; spdk_dma_free(orig_ctx->cry_iov.iov_base); spdk_bdev_io_complete(orig_io, status); spdk_bdev_free_io(bdev_io); } /* Completion callback for reads that were issued from this bdev. */ static void _complete_internal_read(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg) { struct spdk_bdev_io *orig_io = cb_arg; struct crypto_bdev_io *orig_ctx = (struct crypto_bdev_io *)orig_io->driver_ctx; if (success) { /* Save off this bdev_io so it can be freed after decryption. */ orig_ctx->read_io = bdev_io; if (_crypto_operation(orig_io, RTE_CRYPTO_CIPHER_OP_DECRYPT)) { SPDK_ERRLOG("ERROR decrypting"); spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED); spdk_bdev_free_io(bdev_io); } } else { SPDK_ERRLOG("ERROR on read prior to decrypting"); spdk_bdev_io_complete(orig_io, SPDK_BDEV_IO_STATUS_FAILED); spdk_bdev_free_io(bdev_io); } } /* Callback for getting a buf from the bdev pool in the event that the caller passed * in NULL, we need to own the buffer so it doesn't get freed by another vbdev module * beneath us before we're done with it. */ static void crypto_read_get_buf_cb(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto, crypto_bdev); struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch); int rc; rc = spdk_bdev_readv_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.iovs, bdev_io->u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _complete_internal_read, bdev_io); if (rc != 0) { SPDK_ERRLOG("ERROR on bdev_io submission!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } /* Called when someone submits IO to this crypto vbdev. For IO's not relevant to crypto, * we're simply passing it on here via SPDK IO calls which in turn allocate another bdev IO * and call our cpl callback provided below along with the original bdev_io so that we can * complete it once this IO completes. For crypto operations, we'll either encrypt it first * (writes) then call back into bdev to submit it or we'll submit a read and then catch it * on the way back for decryption. */ static void vbdev_crypto_submit_request(struct spdk_io_channel *ch, struct spdk_bdev_io *bdev_io) { struct vbdev_crypto *crypto_bdev = SPDK_CONTAINEROF(bdev_io->bdev, struct vbdev_crypto, crypto_bdev); struct crypto_io_channel *crypto_ch = spdk_io_channel_get_ctx(ch); struct crypto_bdev_io *io_ctx = (struct crypto_bdev_io *)bdev_io->driver_ctx; int rc = 0; memset(io_ctx, 0, sizeof(struct crypto_bdev_io)); io_ctx->crypto_bdev = crypto_bdev; io_ctx->crypto_ch = crypto_ch; io_ctx->orig_io = bdev_io; switch (bdev_io->type) { case SPDK_BDEV_IO_TYPE_READ: spdk_bdev_io_get_buf(bdev_io, crypto_read_get_buf_cb, bdev_io->u.bdev.num_blocks * bdev_io->bdev->blocklen); break; case SPDK_BDEV_IO_TYPE_WRITE: rc = _crypto_operation(bdev_io, RTE_CRYPTO_CIPHER_OP_ENCRYPT); break; case SPDK_BDEV_IO_TYPE_UNMAP: rc = spdk_bdev_unmap_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _complete_internal_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_FLUSH: rc = spdk_bdev_flush_blocks(crypto_bdev->base_desc, crypto_ch->base_ch, bdev_io->u.bdev.offset_blocks, bdev_io->u.bdev.num_blocks, _complete_internal_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_RESET: rc = spdk_bdev_reset(crypto_bdev->base_desc, crypto_ch->base_ch, _complete_internal_io, bdev_io); break; case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: default: SPDK_ERRLOG("crypto: unknown I/O type %d\n", bdev_io->type); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); return; } if (rc != 0) { SPDK_ERRLOG("ERROR on bdev_io submission!\n"); spdk_bdev_io_complete(bdev_io, SPDK_BDEV_IO_STATUS_FAILED); } } /* We'll just call the base bdev and let it answer except for WZ command which * we always say we don't support so that the bdev layer will actually send us * real writes that we can encrypt. */ static bool vbdev_crypto_io_type_supported(void *ctx, enum spdk_bdev_io_type io_type) { struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx; switch (io_type) { case SPDK_BDEV_IO_TYPE_WRITE: case SPDK_BDEV_IO_TYPE_UNMAP: case SPDK_BDEV_IO_TYPE_RESET: case SPDK_BDEV_IO_TYPE_READ: case SPDK_BDEV_IO_TYPE_FLUSH: return spdk_bdev_io_type_supported(crypto_bdev->base_bdev, io_type); case SPDK_BDEV_IO_TYPE_WRITE_ZEROES: /* Force the bdev layer to issue actual writes of zeroes so we can * encrypt them as regular writes. */ default: return false; } } /* Called after we've unregistered following a hot remove callback. * Our finish entry point will be called next. */ static int vbdev_crypto_destruct(void *ctx) { struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx; /* Unclaim the underlying bdev. */ spdk_bdev_module_release_bdev(crypto_bdev->base_bdev); /* Close the underlying bdev. */ spdk_bdev_close(crypto_bdev->base_desc); /* Done with this crypto_bdev. */ TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link); free(crypto_bdev->drv_name); free(crypto_bdev->key); free(crypto_bdev->crypto_bdev.name); free(crypto_bdev); return 0; } /* We supplied this as an entry point for upper layers who want to communicate to this * bdev. This is how they get a channel. We are passed the same context we provided when * we created our crypto vbdev in examine() which, for this bdev, is the address of one of * our context nodes. From here we'll ask the SPDK channel code to fill out our channel * struct and we'll keep it in our crypto node. */ static struct spdk_io_channel * vbdev_crypto_get_io_channel(void *ctx) { struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx; /* The IO channel code will allocate a channel for us which consists of * the SPDK cahnnel structure plus the size of our crypto_io_channel struct * that we passed in when we registered our IO device. It will then call * our channel create callback to populate any elements that we need to * update. */ return spdk_get_io_channel(crypto_bdev); } /* This is the output for get_bdevs() for this vbdev */ static int vbdev_crypto_dump_info_json(void *ctx, struct spdk_json_write_ctx *w) { struct vbdev_crypto *crypto_bdev = (struct vbdev_crypto *)ctx; spdk_json_write_name(w, "crypto"); spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev)); spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev)); spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name); spdk_json_write_named_string(w, "key", crypto_bdev->key); spdk_json_write_object_end(w); return 0; } static int vbdev_crypto_config_json(struct spdk_json_write_ctx *w) { struct vbdev_crypto *crypto_bdev, *tmp; TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) { spdk_json_write_object_begin(w); spdk_json_write_named_string(w, "method", "construct_crypto_bdev"); spdk_json_write_named_object_begin(w, "params"); spdk_json_write_named_string(w, "base_bdev_name", spdk_bdev_get_name(crypto_bdev->base_bdev)); spdk_json_write_named_string(w, "name", spdk_bdev_get_name(&crypto_bdev->crypto_bdev)); spdk_json_write_named_string(w, "crypto_pmd", crypto_bdev->drv_name); spdk_json_write_named_string(w, "key", crypto_bdev->key); spdk_json_write_object_end(w); spdk_json_write_object_end(w); } return 0; } /* We provide this callback for the SPDK channel code to create a channel using * the channel struct we provided in our module get_io_channel() entry point. Here * we get and save off an underlying base channel of the device below us so that * we can communicate with the base bdev on a per channel basis. We also register the * poller used to complete crypto operations from the device. */ static int crypto_bdev_ch_create_cb(void *io_device, void *ctx_buf) { struct crypto_io_channel *crypto_ch = ctx_buf; struct vbdev_crypto *crypto_bdev = io_device; struct device_qp *device_qp; crypto_ch->base_ch = spdk_bdev_get_io_channel(crypto_bdev->base_desc); crypto_ch->poller = spdk_poller_register(crypto_dev_poller, crypto_ch, 0); crypto_ch->device_qp = NULL; pthread_mutex_lock(&g_device_qp_lock); TAILQ_FOREACH(device_qp, &g_device_qp, link) { if ((strcmp(device_qp->device->cdev_info.driver_name, crypto_bdev->drv_name) == 0) && (device_qp->in_use == false)) { crypto_ch->device_qp = device_qp; device_qp->in_use = true; SPDK_NOTICELOG("Device queue pair assignment: ch %p device %p qpid %u %s\n", crypto_ch, device_qp->device, crypto_ch->device_qp->qp, crypto_bdev->drv_name); break; } } pthread_mutex_unlock(&g_device_qp_lock); assert(crypto_ch->device_qp); return 0; } /* We provide this callback for the SPDK channel code to destroy a channel * created with our create callback. We just need to undo anything we did * when we created. */ static void crypto_bdev_ch_destroy_cb(void *io_device, void *ctx_buf) { struct crypto_io_channel *crypto_ch = ctx_buf; pthread_mutex_lock(&g_device_qp_lock); crypto_ch->device_qp->in_use = false; pthread_mutex_unlock(&g_device_qp_lock); spdk_poller_unregister(&crypto_ch->poller); spdk_put_io_channel(crypto_ch->base_ch); } /* Create the association from the bdev and vbdev name and insert * on the global list. */ static int vbdev_crypto_insert_name(const char *bdev_name, const char *vbdev_name, const char *crypto_pmd, const char *key) { struct bdev_names *name; int rc, j; bool found = false; name = calloc(1, sizeof(struct bdev_names)); if (!name) { SPDK_ERRLOG("could not allocate bdev_names\n"); return -ENOMEM; } name->bdev_name = strdup(bdev_name); if (!name->bdev_name) { SPDK_ERRLOG("could not allocate name->bdev_name\n"); rc = -ENOMEM; goto error_alloc_bname; } name->vbdev_name = strdup(vbdev_name); if (!name->vbdev_name) { SPDK_ERRLOG("could not allocate name->vbdev_name\n"); rc = -ENOMEM; goto error_alloc_vname; } name->drv_name = strdup(crypto_pmd); if (!name->drv_name) { SPDK_ERRLOG("could not allocate name->drv_name\n"); rc = -ENOMEM; goto error_alloc_dname; } for (j = 0; j < MAX_NUM_DRV_TYPES ; j++) { if (strcmp(crypto_pmd, g_driver_names[j]) == 0) { found = true; break; } } if (!found) { SPDK_ERRLOG("invalid crypto PMD type %s\n", crypto_pmd); rc = -EINVAL; goto error_invalid_pmd; } name->key = strdup(key); if (!name->key) { SPDK_ERRLOG("could not allocate name->key\n"); rc = -ENOMEM; goto error_alloc_key; } if (strlen(name->key) != AES_CBC_KEY_LENGTH) { SPDK_ERRLOG("invalid AES_CCB key length\n"); rc = -EINVAL; goto error_invalid_key; } TAILQ_INSERT_TAIL(&g_bdev_names, name, link); return 0; /* Error cleanup paths. */ error_invalid_key: error_alloc_key: error_invalid_pmd: free(name->drv_name); error_alloc_dname: free(name->vbdev_name); error_alloc_vname: free(name->bdev_name); error_alloc_bname: free(name); return rc; } /* RPC entry point for crypto creation. */ int create_crypto_disk(const char *bdev_name, const char *vbdev_name, const char *crypto_pmd, const char *key) { struct spdk_bdev *bdev = NULL; struct vbdev_crypto *crypto_bdev, *tmp; int rc = 0; bdev = spdk_bdev_get_by_name(bdev_name); rc = vbdev_crypto_insert_name(bdev_name, vbdev_name, crypto_pmd, key); if (rc) { return rc; } if (!bdev) { return 0; } rc = vbdev_crypto_claim(bdev); if (rc) { return rc; } rc = vbdev_crypto_init_crypto_drivers(); if (rc) { return rc; } TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) { if (strcmp(crypto_bdev->base_bdev->name, bdev->name) == 0) { rc = spdk_vbdev_register(&crypto_bdev->crypto_bdev, &crypto_bdev->base_bdev, 1); if (rc) { SPDK_ERRLOG("could not register crypto_bdev\n"); spdk_bdev_close(crypto_bdev->base_desc); TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link); free(crypto_bdev->crypto_bdev.name); free(crypto_bdev->key); free(crypto_bdev); } break; } } return rc; } /* Called at driver init time, parses config file to preapre for examine calls, * also fully initializes the crypto drivers. */ static int vbdev_crypto_init(void) { struct spdk_conf_section *sp = NULL; const char *conf_bdev_name = NULL; const char *conf_vbdev_name = NULL; const char *crypto_pmd = NULL; int i; int rc = 0; const char *key = NULL; /* Fully configure both SW and HW drivers. */ rc = vbdev_crypto_init_crypto_drivers(); if (rc) { SPDK_ERRLOG("Error setting up crypto devices\n"); return rc; } sp = spdk_conf_find_section(NULL, "crypto"); if (sp == NULL) { return 0; } for (i = 0; ; i++) { if (!spdk_conf_section_get_nval(sp, "CRY", i)) { break; } conf_bdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 0); if (!conf_bdev_name) { SPDK_ERRLOG("crypto configuration missing bdev name\n"); return -EINVAL; } conf_vbdev_name = spdk_conf_section_get_nmval(sp, "CRY", i, 1); if (!conf_vbdev_name) { SPDK_ERRLOG("crypto configuration missing crypto_bdev name\n"); return -EINVAL; } key = spdk_conf_section_get_nmval(sp, "CRY", i, 2); if (!key) { SPDK_ERRLOG("crypto configuration missing crypto_bdev key\n"); return -EINVAL; } SPDK_NOTICELOG("WARNING: You are storing your key in a plain text file!!\n"); crypto_pmd = spdk_conf_section_get_nmval(sp, "CRY", i, 3); if (!crypto_pmd) { SPDK_ERRLOG("crypto configuration missing driver type\n"); return -EINVAL; } rc = vbdev_crypto_insert_name(conf_bdev_name, conf_vbdev_name, crypto_pmd, key); if (rc != 0) { return rc; } } return rc; } /* Called when the entire module is being torn down. */ static void vbdev_crypto_finish(void) { struct bdev_names *name; struct vbdev_dev *device; struct device_qp *dev_qp; while ((name = TAILQ_FIRST(&g_bdev_names))) { TAILQ_REMOVE(&g_bdev_names, name, link); free(name->drv_name); free(name->key); free(name->bdev_name); free(name->vbdev_name); free(name); } while ((device = TAILQ_FIRST(&g_vbdev_devs))) { TAILQ_REMOVE(&g_vbdev_devs, device, link); rte_cryptodev_stop(device->cdev_id); free(device); } while ((dev_qp = TAILQ_FIRST(&g_device_qp))) { TAILQ_REMOVE(&g_device_qp, dev_qp, link); free(dev_qp); } rte_mempool_free(g_crypto_op_mp); spdk_mempool_free(g_mbuf_mp); spdk_mempool_free(g_session_mp); } /* During init we'll be asked how much memory we'd like passed to us * in bev_io structures as context. Here's where we specify how * much context we want per IO. */ static int vbdev_crypto_get_ctx_size(void) { return sizeof(struct crypto_bdev_io); } /* Called when SPDK wants to save the current config of this vbdev module to * a file. */ static void vbdev_crypto_get_spdk_running_config(FILE *fp) { struct bdev_names *names = NULL; fprintf(fp, "\n[crypto]\n"); TAILQ_FOREACH(names, &g_bdev_names, link) { fprintf(fp, " crypto %s %s ", names->bdev_name, names->vbdev_name); fprintf(fp, "\n"); } fprintf(fp, "\n"); } /* Called when the underlying base bdev goes away. */ static void vbdev_crypto_examine_hotremove_cb(void *ctx) { struct vbdev_crypto *crypto_bdev, *tmp; struct spdk_bdev *bdev_find = ctx; TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) { if (bdev_find == crypto_bdev->base_bdev) { spdk_bdev_unregister(&crypto_bdev->crypto_bdev, NULL, NULL); } } } static void vbdev_crypto_write_config_json(struct spdk_bdev *bdev, struct spdk_json_write_ctx *w) { /* No config per bdev needed */ } /* When we register our bdev this is how we specify our entry points. */ static const struct spdk_bdev_fn_table vbdev_crypto_fn_table = { .destruct = vbdev_crypto_destruct, .submit_request = vbdev_crypto_submit_request, .io_type_supported = vbdev_crypto_io_type_supported, .get_io_channel = vbdev_crypto_get_io_channel, .dump_info_json = vbdev_crypto_dump_info_json, .write_config_json = vbdev_crypto_write_config_json }; static struct spdk_bdev_module crypto_if = { .name = "crypto", .module_init = vbdev_crypto_init, .config_text = vbdev_crypto_get_spdk_running_config, .get_ctx_size = vbdev_crypto_get_ctx_size, .examine_config = vbdev_crypto_examine, .module_fini = vbdev_crypto_finish, .config_json = vbdev_crypto_config_json }; SPDK_BDEV_MODULE_REGISTER(&crypto_if) static int vbdev_crypto_claim(struct spdk_bdev *bdev) { struct bdev_names *name; struct vbdev_crypto *vbdev; int rc = 0; /* Check our list of names from config versus this bdev and if * there's a match, create the crypto_bdev & bdev accordingly. */ TAILQ_FOREACH(name, &g_bdev_names, link) { if (strcmp(name->bdev_name, bdev->name) != 0) { continue; } SPDK_NOTICELOG("Match on %s\n", bdev->name); vbdev = calloc(1, sizeof(struct vbdev_crypto)); if (!vbdev) { SPDK_ERRLOG("could not allocate crypto_bdev\n"); rc = -ENOMEM; goto error_vbdev_alloc; } /* The base bdev that we're attaching to. */ vbdev->base_bdev = bdev; vbdev->crypto_bdev.name = strdup(name->vbdev_name); if (!vbdev->crypto_bdev.name) { SPDK_ERRLOG("could not allocate crypto_bdev name\n"); rc = -ENOMEM; goto error_bdev_name; } vbdev->key = strdup(name->key); if (!vbdev->key) { SPDK_ERRLOG("could not allocate crypto_bdev key\n"); rc = -ENOMEM; goto error_alloc_key; } vbdev->drv_name = strdup(name->drv_name); if (!vbdev->drv_name) { SPDK_ERRLOG("could not allocate crypto_bdev drv_name\n"); rc = -ENOMEM; goto error_drv_name; } vbdev->crypto_bdev.product_name = "crypto"; vbdev->crypto_bdev.write_cache = bdev->write_cache; vbdev->crypto_bdev.need_aligned_buffer = bdev->need_aligned_buffer; /* Note: CRYPTO_MAX_IO is in units of bytes, optimal_io_boundary is * in units of blocks. */ if (bdev->optimal_io_boundary > 0) { vbdev->crypto_bdev.optimal_io_boundary = spdk_min((CRYPTO_MAX_IO / bdev->blocklen), bdev->optimal_io_boundary); } else { vbdev->crypto_bdev.optimal_io_boundary = (CRYPTO_MAX_IO / bdev->blocklen); } vbdev->crypto_bdev.split_on_optimal_io_boundary = true; vbdev->crypto_bdev.blocklen = bdev->blocklen; vbdev->crypto_bdev.blockcnt = bdev->blockcnt; /* This is the context that is passed to us when the bdev * layer calls in so we'll save our crypto_bdev node here. */ vbdev->crypto_bdev.ctxt = vbdev; vbdev->crypto_bdev.fn_table = &vbdev_crypto_fn_table; vbdev->crypto_bdev.module = &crypto_if; TAILQ_INSERT_TAIL(&g_vbdev_crypto, vbdev, link); spdk_io_device_register(vbdev, crypto_bdev_ch_create_cb, crypto_bdev_ch_destroy_cb, sizeof(struct crypto_io_channel), vbdev->crypto_bdev.name); rc = spdk_bdev_open(bdev, true, vbdev_crypto_examine_hotremove_cb, bdev, &vbdev->base_desc); if (rc) { SPDK_ERRLOG("could not open bdev %s\n", spdk_bdev_get_name(bdev)); goto error_open; } rc = spdk_bdev_module_claim_bdev(bdev, vbdev->base_desc, vbdev->crypto_bdev.module); if (rc) { SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get_name(bdev)); goto error_claim; } SPDK_NOTICELOG("registered crypto_bdev for: %s\n", name->vbdev_name); } return rc; /* Error cleanup paths. */ error_claim: spdk_bdev_close(vbdev->base_desc); error_open: TAILQ_REMOVE(&g_vbdev_crypto, vbdev, link); spdk_io_device_unregister(vbdev, NULL); free(vbdev->drv_name); error_drv_name: free(vbdev->key); error_alloc_key: free(vbdev->crypto_bdev.name); error_bdev_name: free(vbdev); error_vbdev_alloc: return rc; } /* RPC entry for deleting a crypto vbdev. */ void delete_crypto_disk(struct spdk_bdev *bdev, spdk_delete_crypto_complete cb_fn, void *cb_arg) { struct bdev_names *name; if (!bdev || bdev->module != &crypto_if) { cb_fn(cb_arg, -ENODEV); return; } /* Remove the association (vbdev, bdev) from g_bdev_names. This is required so that the * vbdev does not get re-created if the same bdev is constructed at some other time, * unless the underlying bdev was hot-removed. */ TAILQ_FOREACH(name, &g_bdev_names, link) { if (strcmp(name->vbdev_name, bdev->name) == 0) { TAILQ_REMOVE(&g_bdev_names, name, link); free(name->bdev_name); free(name->vbdev_name); free(name->drv_name); free(name->key); free(name); break; } } spdk_bdev_unregister(bdev, cb_fn, cb_arg); } /* Because we specified this function in our crypto bdev function table when we * registered our crypto bdev, we'll get this call anytime a new bdev shows up. * Here we need to decide if we care about it and if so what to do. We * parsed the config file at init so we check the new bdev against the list * we built up at that time and if the user configured us to attach to this * bdev, here's where we do it. */ static void vbdev_crypto_examine(struct spdk_bdev *bdev) { struct vbdev_crypto *crypto_bdev, *tmp; int rc; vbdev_crypto_claim(bdev); TAILQ_FOREACH_SAFE(crypto_bdev, &g_vbdev_crypto, link, tmp) { if (strcmp(crypto_bdev->base_bdev->name, bdev->name) == 0) { rc = spdk_vbdev_register(&crypto_bdev->crypto_bdev, &crypto_bdev->base_bdev, 1); if (rc) { SPDK_ERRLOG("could not register crypto_bdev\n"); spdk_bdev_close(crypto_bdev->base_desc); TAILQ_REMOVE(&g_vbdev_crypto, crypto_bdev, link); free(crypto_bdev->crypto_bdev.name); free(crypto_bdev->key); free(crypto_bdev); } break; } } spdk_bdev_module_examine_done(&crypto_if); } SPDK_LOG_REGISTER_COMPONENT("vbdev_crypto", SPDK_LOG_VBDEV_crypto)