/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/stdinc.h" #include "env_internal.h" #include #include #include "spdk_internal/assert.h" #include "spdk/assert.h" #include "spdk/likely.h" #include "spdk/queue.h" #include "spdk/util.h" #if DEBUG #define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) #else #define DEBUG_PRINT(...) #endif #define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) #define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) #define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) #define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) /* Page is registered */ #define REG_MAP_REGISTERED (1ULL << 62) /* A notification region barrier. The 2MB translation entry that's marked * with this flag must be unregistered separately. This allows contiguous * regions to be unregistered in the same chunks they were registered. */ #define REG_MAP_NOTIFY_START (1ULL << 63) /* Translation of a single 2MB page. */ struct map_2mb { uint64_t translation_2mb; }; /* Second-level map table indexed by bits [21..29] of the virtual address. * Each entry contains the address translation or error for entries that haven't * been retrieved yet. */ struct map_1gb { struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; }; /* Top-level map table indexed by bits [30..47] of the virtual address. * Each entry points to a second-level map table or NULL. */ struct map_256tb { struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; }; /* Page-granularity memory address translation */ struct spdk_mem_map { struct map_256tb map_256tb; pthread_mutex_t mutex; uint64_t default_translation; struct spdk_mem_map_ops ops; void *cb_ctx; TAILQ_ENTRY(spdk_mem_map) tailq; }; /* Registrations map. The 64 bit translations are bit fields with the * following layout (starting with the low bits): * 0 - 61 : reserved * 62 - 63 : flags */ static struct spdk_mem_map *g_mem_reg_map; static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; /* * Walk the currently registered memory via the main memory registration map * and call the new map's notify callback for each virtually contiguous region. */ static int spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) { size_t idx_256tb; uint64_t idx_1gb; uint64_t contig_start = UINT64_MAX; uint64_t contig_end = UINT64_MAX; struct map_1gb *map_1gb; int rc; if (!g_mem_reg_map) { return -EINVAL; } /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ pthread_mutex_lock(&g_mem_reg_map->mutex); for (idx_256tb = 0; idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); idx_256tb++) { map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; if (!map_1gb) { if (contig_start != UINT64_MAX) { /* End of of a virtually contiguous range */ rc = map->ops.notify_cb(map->cb_ctx, map, action, (void *)contig_start, contig_end - contig_start + VALUE_2MB); /* Don't bother handling unregister failures. It can't be any worse */ if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { goto err_unregister; } } contig_start = UINT64_MAX; continue; } for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && (contig_start == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { /* Rebuild the virtual address from the indexes */ uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); if (contig_start == UINT64_MAX) { contig_start = vaddr; } contig_end = vaddr; } else { if (contig_start != UINT64_MAX) { /* End of of a virtually contiguous range */ rc = map->ops.notify_cb(map->cb_ctx, map, action, (void *)contig_start, contig_end - contig_start + VALUE_2MB); /* Don't bother handling unregister failures. It can't be any worse */ if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { goto err_unregister; } /* This page might be a part of a neighbour region, so process * it again. The idx_1gb will be incremented immediately. */ idx_1gb--; } contig_start = UINT64_MAX; } } } pthread_mutex_unlock(&g_mem_reg_map->mutex); return 0; err_unregister: /* Unwind to the first empty translation so we don't unregister * a region that just failed to register. */ idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); contig_start = UINT64_MAX; contig_end = UINT64_MAX; /* Unregister any memory we managed to register before the failure */ for (; idx_256tb < SIZE_MAX; idx_256tb--) { map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; if (!map_1gb) { if (contig_end != UINT64_MAX) { /* End of of a virtually contiguous range */ map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, (void *)contig_start, contig_end - contig_start + VALUE_2MB); } contig_end = UINT64_MAX; continue; } for (; idx_1gb < UINT64_MAX; idx_1gb--) { if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { /* Rebuild the virtual address from the indexes */ uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); if (contig_end == UINT64_MAX) { contig_end = vaddr; } contig_start = vaddr; } else { if (contig_end != UINT64_MAX) { /* End of of a virtually contiguous range */ map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, (void *)contig_start, contig_end - contig_start + VALUE_2MB); idx_1gb++; } contig_end = UINT64_MAX; } } idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; } pthread_mutex_unlock(&g_mem_reg_map->mutex); return rc; } struct spdk_mem_map * spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) { struct spdk_mem_map *map; int rc; map = calloc(1, sizeof(*map)); if (map == NULL) { return NULL; } if (pthread_mutex_init(&map->mutex, NULL)) { free(map); return NULL; } map->default_translation = default_translation; map->cb_ctx = cb_ctx; if (ops) { map->ops = *ops; } if (ops && ops->notify_cb) { pthread_mutex_lock(&g_spdk_mem_map_mutex); rc = spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); DEBUG_PRINT("Initial mem_map notify failed\n"); pthread_mutex_destroy(&map->mutex); free(map); return NULL; } TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); pthread_mutex_unlock(&g_spdk_mem_map_mutex); } return map; } void spdk_mem_map_free(struct spdk_mem_map **pmap) { struct spdk_mem_map *map; size_t i; if (!pmap) { return; } map = *pmap; if (!map) { return; } if (map->ops.notify_cb) { pthread_mutex_lock(&g_spdk_mem_map_mutex); spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); pthread_mutex_unlock(&g_spdk_mem_map_mutex); } for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { free(map->map_256tb.map[i]); } pthread_mutex_destroy(&map->mutex); free(map); *pmap = NULL; } int spdk_mem_register(void *vaddr, size_t len) { struct spdk_mem_map *map; int rc; void *seg_vaddr; size_t seg_len; uint64_t reg; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", __func__, vaddr, len); return -EINVAL; } if (len == 0) { return 0; } pthread_mutex_lock(&g_spdk_mem_map_mutex); seg_vaddr = vaddr; seg_len = len; while (seg_len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); if (reg & REG_MAP_REGISTERED) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -EBUSY; } seg_vaddr += VALUE_2MB; seg_len -= VALUE_2MB; } seg_vaddr = vaddr; seg_len = 0; while (len > 0) { spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); seg_len += VALUE_2MB; vaddr += VALUE_2MB; len -= VALUE_2MB; } TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } pthread_mutex_unlock(&g_spdk_mem_map_mutex); return 0; } int spdk_mem_unregister(void *vaddr, size_t len) { struct spdk_mem_map *map; int rc; void *seg_vaddr; size_t seg_len; uint64_t reg, newreg; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); return -EINVAL; } if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", __func__, vaddr, len); return -EINVAL; } pthread_mutex_lock(&g_spdk_mem_map_mutex); /* The first page must be a start of a region. Also check if it's * registered to make sure we don't return -ERANGE for non-registered * regions. */ reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -ERANGE; } seg_vaddr = vaddr; seg_len = len; while (seg_len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); if ((reg & REG_MAP_REGISTERED) == 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -EINVAL; } seg_vaddr += VALUE_2MB; seg_len -= VALUE_2MB; } newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); /* If the next page is registered, it must be a start of a region as well, * otherwise we'd be unregistering only a part of a region. */ if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return -ERANGE; } seg_vaddr = vaddr; seg_len = 0; while (len > 0) { reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } seg_vaddr = vaddr; seg_len = VALUE_2MB; } else { seg_len += VALUE_2MB; } vaddr += VALUE_2MB; len -= VALUE_2MB; } if (seg_len > 0) { TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); if (rc != 0) { pthread_mutex_unlock(&g_spdk_mem_map_mutex); return rc; } } } pthread_mutex_unlock(&g_spdk_mem_map_mutex); return 0; } static struct map_1gb * spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) { struct map_1gb *map_1gb; uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); size_t i; if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { return NULL; } map_1gb = map->map_256tb.map[idx_256tb]; if (!map_1gb) { pthread_mutex_lock(&map->mutex); /* Recheck to make sure nobody else got the mutex first. */ map_1gb = map->map_256tb.map[idx_256tb]; if (!map_1gb) { map_1gb = malloc(sizeof(struct map_1gb)); if (map_1gb) { /* initialize all entries to default translation */ for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { map_1gb->map[i].translation_2mb = map->default_translation; } map->map_256tb.map[idx_256tb] = map_1gb; } } pthread_mutex_unlock(&map->mutex); if (!map_1gb) { DEBUG_PRINT("allocation failed\n"); return NULL; } } return map_1gb; } int spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, uint64_t translation) { uint64_t vfn_2mb; struct map_1gb *map_1gb; uint64_t idx_1gb; struct map_2mb *map_2mb; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); return -EINVAL; } /* For now, only 2 MB-aligned registrations are supported */ if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", __func__, vaddr, size); return -EINVAL; } vfn_2mb = vaddr >> SHIFT_2MB; while (size) { map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb); if (!map_1gb) { DEBUG_PRINT("could not get %p map\n", (void *)vaddr); return -ENOMEM; } idx_1gb = MAP_1GB_IDX(vfn_2mb); map_2mb = &map_1gb->map[idx_1gb]; map_2mb->translation_2mb = translation; size -= VALUE_2MB; vfn_2mb++; } return 0; } int spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) { uint64_t vfn_2mb; struct map_1gb *map_1gb; uint64_t idx_1gb; struct map_2mb *map_2mb; if ((uintptr_t)vaddr & ~MASK_256TB) { DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); return -EINVAL; } /* For now, only 2 MB-aligned registrations are supported */ if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", __func__, vaddr, size); return -EINVAL; } vfn_2mb = vaddr >> SHIFT_2MB; while (size) { map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb); if (!map_1gb) { DEBUG_PRINT("could not get %p map\n", (void *)vaddr); return -ENOMEM; } idx_1gb = MAP_1GB_IDX(vfn_2mb); map_2mb = &map_1gb->map[idx_1gb]; map_2mb->translation_2mb = map->default_translation; size -= VALUE_2MB; vfn_2mb++; } return 0; } uint64_t spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) { const struct map_1gb *map_1gb; const struct map_2mb *map_2mb; uint64_t idx_256tb; uint64_t idx_1gb; uint64_t vfn_2mb; uint64_t total_size = 0; uint64_t cur_size; uint64_t prev_translation; if (size != NULL) { total_size = *size; *size = 0; } if (spdk_unlikely(vaddr & ~MASK_256TB)) { DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); return map->default_translation; } vfn_2mb = vaddr >> SHIFT_2MB; idx_256tb = MAP_256TB_IDX(vfn_2mb); idx_1gb = MAP_1GB_IDX(vfn_2mb); map_1gb = map->map_256tb.map[idx_256tb]; if (spdk_unlikely(!map_1gb)) { return map->default_translation; } cur_size = VALUE_2MB; if (size != NULL) { *size = VALUE_2MB; } map_2mb = &map_1gb->map[idx_1gb]; if (size == NULL || map->ops.are_contiguous == NULL || map_2mb->translation_2mb == map->default_translation) { return map_2mb->translation_2mb; } prev_translation = map_2mb->translation_2mb;; while (cur_size < total_size) { vfn_2mb++; idx_256tb = MAP_256TB_IDX(vfn_2mb); idx_1gb = MAP_1GB_IDX(vfn_2mb); map_1gb = map->map_256tb.map[idx_256tb]; if (spdk_unlikely(!map_1gb)) { break; } map_2mb = &map_1gb->map[idx_1gb]; if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { break; } cur_size += VALUE_2MB; prev_translation = map_2mb->translation_2mb; } *size = cur_size; return prev_translation; } #if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0) static void memory_hotplug_cb(enum rte_mem_event event_type, const void *addr, size_t len, void *arg) { if (event_type == RTE_MEM_EVENT_ALLOC) { while (len > 0) { struct rte_memseg *seg; seg = rte_mem_virt2memseg(addr, NULL); assert(seg != NULL); assert(len >= seg->hugepage_sz); spdk_mem_register((void *)seg->addr, seg->hugepage_sz); addr = (void *)((uintptr_t)addr + seg->hugepage_sz); len -= seg->hugepage_sz; } } else if (event_type == RTE_MEM_EVENT_FREE) { spdk_mem_unregister((void *)addr, len); } } static int memory_iter_cb(const struct rte_memseg_list *msl, const struct rte_memseg *ms, size_t len, void *arg) { return spdk_mem_register(ms->addr, len); } #endif int spdk_mem_map_init(void) { g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); if (g_mem_reg_map == NULL) { DEBUG_PRINT("memory registration map allocation failed\n"); return -1; } /* * Walk all DPDK memory segments and register them * with the master memory map */ #if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0) rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); rte_memseg_contig_walk(memory_iter_cb, NULL); #else struct rte_mem_config *mcfg; size_t seg_idx; mcfg = rte_eal_get_configuration()->mem_config; for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) { struct rte_memseg *seg = &mcfg->memseg[seg_idx]; if (seg->addr == NULL) { break; } spdk_mem_register(seg->addr, seg->len); } #endif return 0; }