/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "spdk/nvmf_spec.h" #include "nvme_internal.h" #define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver" struct nvme_driver *g_spdk_nvme_driver; pid_t g_spdk_nvme_pid; int32_t spdk_nvme_retry_count; /* gross timeout of 180 seconds in milliseconds */ static int g_nvme_driver_timeout_ms = 3 * 60 * 1000; static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_init_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_init_ctrlrs); /* Per-process attached controller list */ static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs = TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs); /* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */ static bool nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr) { return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE; } /* Caller must hold g_spdk_nvme_driver->lock */ void nvme_ctrlr_connected(struct spdk_nvme_ctrlr *ctrlr) { TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq); } int spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr) { nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); nvme_ctrlr_proc_put_ref(ctrlr); if (nvme_ctrlr_get_ref_count(ctrlr) == 0) { if (nvme_ctrlr_shared(ctrlr)) { TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq); } else { TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq); } nvme_ctrlr_destruct(ctrlr); } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return 0; } void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_completion_poll_status *status = arg; /* * Copy status into the argument passed by the caller, so that * the caller can check the status to determine if the * the request passed or failed. */ memcpy(&status->cpl, cpl, sizeof(*cpl)); status->done = true; } /** * Poll qpair for completions until a command completes. * * \param qpair queue to poll * \param status completion status * \param robust_mutex optional robust mutex to lock while polling qpair * * \return 0 if command completed without error, negative errno on failure * * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback * and status as the callback argument. */ int spdk_nvme_wait_for_completion_robust_lock( struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, pthread_mutex_t *robust_mutex) { memset(&status->cpl, 0, sizeof(status->cpl)); status->done = false; while (status->done == false) { if (robust_mutex) { nvme_robust_mutex_lock(robust_mutex); } spdk_nvme_qpair_process_completions(qpair, 0); if (robust_mutex) { nvme_robust_mutex_unlock(robust_mutex); } } return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0; } int spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status) { return spdk_nvme_wait_for_completion_robust_lock(qpair, status, NULL); } static void nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl) { struct nvme_request *req = arg; enum spdk_nvme_data_transfer xfer; if (req->user_buffer && req->payload_size) { /* Copy back to the user buffer and free the contig buffer */ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc); if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST || xfer == SPDK_NVME_DATA_BIDIRECTIONAL) { assert(req->pid == getpid()); memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size); } spdk_dma_free(req->payload.contig_or_cb_arg); } /* Call the user's original callback now that the buffer has been copied */ req->user_cb_fn(req->user_cb_arg, cpl); } /** * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer. * * This is intended for use in non-fast-path functions (admin commands, reservations, etc.) * where the overhead of a copy is not a problem. */ struct nvme_request * nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair, void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller) { struct nvme_request *req; void *dma_buffer = NULL; uint64_t phys_addr; if (buffer && payload_size) { dma_buffer = spdk_zmalloc(payload_size, 4096, &phys_addr, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); if (!dma_buffer) { return NULL; } if (host_to_controller) { memcpy(dma_buffer, buffer, payload_size); } } req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete, NULL); if (!req) { spdk_free(dma_buffer); return NULL; } req->user_cb_fn = cb_fn; req->user_cb_arg = cb_arg; req->user_buffer = buffer; req->cb_arg = req; return req; } /** * Check if a request has exceeded the controller timeout. * * \param req request to check for timeout. * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn) * \param active_proc per-process data for the controller associated with req * \param now_tick current time from spdk_get_ticks() * \return 0 if requests submitted more recently than req should still be checked for timeouts, or * 1 if requests newer than req need not be checked. * * The request's timeout callback will be called if needed; the caller is only responsible for * calling this function on each outstanding request. */ int nvme_request_check_timeout(struct nvme_request *req, uint16_t cid, struct spdk_nvme_ctrlr_process *active_proc, uint64_t now_tick) { struct spdk_nvme_qpair *qpair = req->qpair; struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; assert(active_proc->timeout_cb_fn != NULL); if (req->timed_out || req->submit_tick == 0) { return 0; } if (req->pid != g_spdk_nvme_pid) { return 0; } if (nvme_qpair_is_admin_queue(qpair) && req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { return 0; } if (req->submit_tick + active_proc->timeout_ticks > now_tick) { return 1; } req->timed_out = true; /* * We don't want to expose the admin queue to the user, * so when we're timing out admin commands set the * qpair to NULL. */ active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr, nvme_qpair_is_admin_queue(qpair) ? NULL : qpair, cid); return 0; } int nvme_robust_mutex_init_shared(pthread_mutex_t *mtx) { int rc = 0; #ifdef __FreeBSD__ pthread_mutex_init(mtx, NULL); #else pthread_mutexattr_t attr; if (pthread_mutexattr_init(&attr)) { return -1; } if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) || pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) || pthread_mutex_init(mtx, &attr)) { rc = -1; } pthread_mutexattr_destroy(&attr); #endif return rc; } int nvme_driver_init(void) { int ret = 0; /* Any socket ID */ int socket_id = -1; /* Each process needs its own pid. */ g_spdk_nvme_pid = getpid(); /* * Only one thread from one process will do this driver init work. * The primary process will reserve the shared memory and do the * initialization. * The secondary process will lookup the existing reserved memory. */ if (spdk_process_is_primary()) { /* The unique named memzone already reserved. */ if (g_spdk_nvme_driver != NULL) { return 0; } else { g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME, sizeof(struct nvme_driver), socket_id, SPDK_MEMZONE_NO_IOVA_CONTIG); } if (g_spdk_nvme_driver == NULL) { SPDK_ERRLOG("primary process failed to reserve memory\n"); return -1; } } else { g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME); /* The unique named memzone already reserved by the primary process. */ if (g_spdk_nvme_driver != NULL) { int ms_waited = 0; /* Wait the nvme driver to get initialized. */ while ((g_spdk_nvme_driver->initialized == false) && (ms_waited < g_nvme_driver_timeout_ms)) { ms_waited++; nvme_delay(1000); /* delay 1ms */ } if (g_spdk_nvme_driver->initialized == false) { SPDK_ERRLOG("timeout waiting for primary process to init\n"); return -1; } } else { SPDK_ERRLOG("primary process is not started yet\n"); return -1; } return 0; } /* * At this moment, only one thread from the primary process will do * the g_spdk_nvme_driver initialization */ assert(spdk_process_is_primary()); ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock); if (ret != 0) { SPDK_ERRLOG("failed to initialize mutex\n"); spdk_memzone_free(SPDK_NVME_DRIVER_NAME); return ret; } nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); g_spdk_nvme_driver->initialized = false; TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs); spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id); nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return ret; } int nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle, spdk_nvme_probe_cb probe_cb, void *cb_ctx) { struct spdk_nvme_ctrlr *ctrlr; struct spdk_nvme_ctrlr_opts opts; assert(trid != NULL); spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts)); if (!probe_cb || probe_cb(cb_ctx, trid, &opts)) { ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle); if (ctrlr == NULL) { SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr); return -1; } TAILQ_INSERT_TAIL(&g_nvme_init_ctrlrs, ctrlr, tailq); return 0; } return 1; } static int nvme_init_controllers(void *cb_ctx, spdk_nvme_attach_cb attach_cb) { int rc = 0; int start_rc; struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp; nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); /* Initialize all new controllers in the g_nvme_init_ctrlrs list in parallel. */ while (!TAILQ_EMPTY(&g_nvme_init_ctrlrs)) { TAILQ_FOREACH_SAFE(ctrlr, &g_nvme_init_ctrlrs, tailq, ctrlr_tmp) { /* Drop the driver lock while calling nvme_ctrlr_process_init() * since it needs to acquire the driver lock internally when initializing * controller. * * TODO: Rethink the locking - maybe reset should take the lock so that start() and * the functions it calls (in particular nvme_ctrlr_set_num_qpairs()) * can assume it is held. */ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); start_rc = nvme_ctrlr_process_init(ctrlr); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); if (start_rc) { /* Controller failed to initialize. */ TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq); SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr); nvme_ctrlr_destruct(ctrlr); rc = -1; break; } if (ctrlr->state == NVME_CTRLR_STATE_READY) { /* * Controller has been initialized. * Move it to the attached_ctrlrs list. */ TAILQ_REMOVE(&g_nvme_init_ctrlrs, ctrlr, tailq); if (nvme_ctrlr_shared(ctrlr)) { TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq); } else { TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq); } /* * Increase the ref count before calling attach_cb() as the user may * call nvme_detach() immediately. */ nvme_ctrlr_proc_get_ref(ctrlr); /* * Unlock while calling attach_cb() so the user can call other functions * that may take the driver lock, like nvme_detach(). */ if (attach_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } break; } } } g_spdk_nvme_driver->initialized = true; nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return rc; } /* This function must not be called while holding g_spdk_nvme_driver->lock */ static struct spdk_nvme_ctrlr * spdk_nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid) { struct spdk_nvme_ctrlr *ctrlr; nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); ctrlr = spdk_nvme_get_ctrlr_by_trid_unsafe(trid); nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); return ctrlr; } /* This function must be called while holding g_spdk_nvme_driver->lock */ struct spdk_nvme_ctrlr * spdk_nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid) { struct spdk_nvme_ctrlr *ctrlr; /* Search per-process list */ TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) { return ctrlr; } } /* Search multi-process shared list */ TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) { if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) { return ctrlr; } } return NULL; } /* This function must only be called while holding g_spdk_nvme_driver->lock */ static int spdk_nvme_probe_internal(const struct spdk_nvme_transport_id *trid, void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb, spdk_nvme_remove_cb remove_cb, struct spdk_nvme_ctrlr **connected_ctrlr) { int rc; struct spdk_nvme_ctrlr *ctrlr; bool direct_connect = (connected_ctrlr != NULL); if (!spdk_nvme_transport_available(trid->trtype)) { SPDK_ERRLOG("NVMe trtype %u not available\n", trid->trtype); return -1; } nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); nvme_transport_ctrlr_scan(trid, cb_ctx, probe_cb, remove_cb, direct_connect); /* * Probe controllers on the shared_attached_ctrlrs list */ if (!spdk_process_is_primary() && (trid->trtype == SPDK_NVME_TRANSPORT_PCIE)) { TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) { /* Do not attach other ctrlrs if user specify a valid trid */ if ((strlen(trid->traddr) != 0) && (spdk_nvme_transport_id_compare(trid, &ctrlr->trid))) { continue; } nvme_ctrlr_proc_get_ref(ctrlr); /* * Unlock while calling attach_cb() so the user can call other functions * that may take the driver lock, like nvme_detach(). */ if (attach_cb) { nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); attach_cb(cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts); nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock); } } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); rc = 0; goto exit; } nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock); /* * Keep going even if one or more nvme_attach() calls failed, * but maintain the value of rc to signal errors when we return. */ rc = nvme_init_controllers(cb_ctx, attach_cb); exit: if (connected_ctrlr) { *connected_ctrlr = spdk_nvme_get_ctrlr_by_trid(trid); } return rc; } int spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb, spdk_nvme_remove_cb remove_cb) { int rc; struct spdk_nvme_transport_id trid_pcie; rc = nvme_driver_init(); if (rc != 0) { return rc; } if (trid == NULL) { memset(&trid_pcie, 0, sizeof(trid_pcie)); trid_pcie.trtype = SPDK_NVME_TRANSPORT_PCIE; trid = &trid_pcie; } return spdk_nvme_probe_internal(trid, cb_ctx, probe_cb, attach_cb, remove_cb, NULL); } static bool spdk_nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid, struct spdk_nvme_ctrlr_opts *opts) { struct spdk_nvme_ctrlr_connect_opts *requested_opts = cb_ctx; assert(requested_opts->opts); assert(requested_opts->opts_size != 0); memcpy(opts, requested_opts->opts, spdk_min(sizeof(*opts), requested_opts->opts_size)); return true; } struct spdk_nvme_ctrlr * spdk_nvme_connect(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size) { int rc; struct spdk_nvme_ctrlr_connect_opts connect_opts = {}; struct spdk_nvme_ctrlr_connect_opts *user_connect_opts = NULL; struct spdk_nvme_ctrlr *ctrlr = NULL; spdk_nvme_probe_cb probe_cb = NULL; if (trid == NULL) { SPDK_ERRLOG("No transport ID specified\n"); return NULL; } rc = nvme_driver_init(); if (rc != 0) { return NULL; } if (opts && opts_size > 0) { connect_opts.opts = opts; connect_opts.opts_size = opts_size; user_connect_opts = &connect_opts; probe_cb = spdk_nvme_connect_probe_cb; } spdk_nvme_probe_internal(trid, user_connect_opts, probe_cb, NULL, NULL, &ctrlr); return ctrlr; } int spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str) { if (trtype == NULL || str == NULL) { return -EINVAL; } if (strcasecmp(str, "PCIe") == 0) { *trtype = SPDK_NVME_TRANSPORT_PCIE; } else if (strcasecmp(str, "RDMA") == 0) { *trtype = SPDK_NVME_TRANSPORT_RDMA; } else if (strcasecmp(str, "FC") == 0) { *trtype = SPDK_NVME_TRANSPORT_FC; } else { return -ENOENT; } return 0; } const char * spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype) { switch (trtype) { case SPDK_NVME_TRANSPORT_PCIE: return "PCIe"; case SPDK_NVME_TRANSPORT_RDMA: return "RDMA"; case SPDK_NVME_TRANSPORT_FC: return "FC"; default: return NULL; } } int spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str) { if (adrfam == NULL || str == NULL) { return -EINVAL; } if (strcasecmp(str, "IPv4") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IPV4; } else if (strcasecmp(str, "IPv6") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IPV6; } else if (strcasecmp(str, "IB") == 0) { *adrfam = SPDK_NVMF_ADRFAM_IB; } else if (strcasecmp(str, "FC") == 0) { *adrfam = SPDK_NVMF_ADRFAM_FC; } else { return -ENOENT; } return 0; } const char * spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam) { switch (adrfam) { case SPDK_NVMF_ADRFAM_IPV4: return "IPv4"; case SPDK_NVMF_ADRFAM_IPV6: return "IPv6"; case SPDK_NVMF_ADRFAM_IB: return "IB"; case SPDK_NVMF_ADRFAM_FC: return "FC"; default: return NULL; } } int spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str) { const char *sep, *sep1; const char *whitespace = " \t\n"; size_t key_len, val_len; char key[32]; char val[1024]; if (trid == NULL || str == NULL) { return -EINVAL; } while (*str != '\0') { str += strspn(str, whitespace); sep = strchr(str, ':'); if (!sep) { sep = strchr(str, '='); if (!sep) { SPDK_ERRLOG("Key without ':' or '=' separator\n"); return -EINVAL; } } else { sep1 = strchr(str, '='); if ((sep1 != NULL) && (sep1 < sep)) { sep = sep1; } } key_len = sep - str; if (key_len >= sizeof(key)) { SPDK_ERRLOG("Transport key length %zu greater than maximum allowed %zu\n", key_len, sizeof(key) - 1); return -EINVAL; } memcpy(key, str, key_len); key[key_len] = '\0'; str += key_len + 1; /* Skip key: */ val_len = strcspn(str, whitespace); if (val_len == 0) { SPDK_ERRLOG("Key without value\n"); return -EINVAL; } if (val_len >= sizeof(val)) { SPDK_ERRLOG("Transport value length %zu greater than maximum allowed %zu\n", val_len, sizeof(val) - 1); return -EINVAL; } memcpy(val, str, val_len); val[val_len] = '\0'; str += val_len; if (strcasecmp(key, "trtype") == 0) { if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) { SPDK_ERRLOG("Unknown trtype '%s'\n", val); return -EINVAL; } } else if (strcasecmp(key, "adrfam") == 0) { if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) { SPDK_ERRLOG("Unknown adrfam '%s'\n", val); return -EINVAL; } } else if (strcasecmp(key, "traddr") == 0) { if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) { SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_TRADDR_MAX_LEN); return -EINVAL; } memcpy(trid->traddr, val, val_len + 1); } else if (strcasecmp(key, "trsvcid") == 0) { if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) { SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_TRSVCID_MAX_LEN); return -EINVAL; } memcpy(trid->trsvcid, val, val_len + 1); } else if (strcasecmp(key, "subnqn") == 0) { if (val_len > SPDK_NVMF_NQN_MAX_LEN) { SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n", val_len, SPDK_NVMF_NQN_MAX_LEN); return -EINVAL; } memcpy(trid->subnqn, val, val_len + 1); } else { SPDK_ERRLOG("Unknown transport ID key '%s'\n", key); } } return 0; } static int cmp_int(int a, int b) { return a - b; } int spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1, const struct spdk_nvme_transport_id *trid2) { int cmp; cmp = cmp_int(trid1->trtype, trid2->trtype); if (cmp) { return cmp; } if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) { struct spdk_pci_addr pci_addr1; struct spdk_pci_addr pci_addr2; /* Normalize PCI addresses before comparing */ if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 || spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) { return -1; } /* PCIe transport ID only uses trtype and traddr */ return spdk_pci_addr_compare(&pci_addr1, &pci_addr2); } cmp = strcasecmp(trid1->traddr, trid2->traddr); if (cmp) { return cmp; } cmp = cmp_int(trid1->adrfam, trid2->adrfam); if (cmp) { return cmp; } cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid); if (cmp) { return cmp; } cmp = strcmp(trid1->subnqn, trid2->subnqn); if (cmp) { return cmp; } return 0; } SPDK_LOG_REGISTER_COMPONENT("nvme", SPDK_LOG_NVME)