/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __NVME_INTERNAL_H__ #define __NVME_INTERNAL_H__ #include "spdk/config.h" #include "spdk/likely.h" #include "spdk/stdinc.h" #include "spdk/nvme.h" #if defined(__i386__) || defined(__x86_64__) #include #endif #include "spdk/queue.h" #include "spdk/barrier.h" #include "spdk/bit_array.h" #include "spdk/mmio.h" #include "spdk/pci_ids.h" #include "spdk/util.h" #include "spdk/nvme_intel.h" #include "spdk/nvmf_spec.h" #include "spdk/uuid.h" #include "spdk_internal/assert.h" #include "spdk_internal/log.h" extern pid_t g_spdk_nvme_pid; /* * Some Intel devices support vendor-unique read latency log page even * though the log page directory says otherwise. */ #define NVME_INTEL_QUIRK_READ_LATENCY 0x1 /* * Some Intel devices support vendor-unique write latency log page even * though the log page directory says otherwise. */ #define NVME_INTEL_QUIRK_WRITE_LATENCY 0x2 /* * The controller needs a delay before starts checking the device * readiness, which is done by reading the NVME_CSTS_RDY bit. */ #define NVME_QUIRK_DELAY_BEFORE_CHK_RDY 0x4 /* * The controller performs best when I/O is split on particular * LBA boundaries. */ #define NVME_INTEL_QUIRK_STRIPING 0x8 /* * The controller needs a delay after allocating an I/O queue pair * before it is ready to accept I/O commands. */ #define NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC 0x10 /* * Earlier NVMe devices do not indicate whether unmapped blocks * will read all zeroes or not. This define indicates that the * device does in fact read all zeroes after an unmap event */ #define NVME_QUIRK_READ_ZERO_AFTER_DEALLOCATE 0x20 /* * The controller doesn't handle Identify value others than 0 or 1 correctly. */ #define NVME_QUIRK_IDENTIFY_CNS 0x40 /* * The controller supports Open Channel command set if matching additional * condition, like the first byte (value 0x1) in the vendor specific * bits of the namespace identify structure is set. */ #define NVME_QUIRK_OCSSD 0x80 /* * The controller has an Intel vendor ID but does not support Intel vendor-specific * log pages. This is primarily for QEMU emulated SSDs which report an Intel vendor * ID but do not support these log pages. */ #define NVME_INTEL_QUIRK_NO_LOG_PAGES 0x100 #define NVME_MAX_ASYNC_EVENTS (8) #define NVME_MIN_TIMEOUT_PERIOD (5) #define NVME_MAX_TIMEOUT_PERIOD (120) /* Maximum log page size to fetch for AERs. */ #define NVME_MAX_AER_LOG_SIZE (4096) /* * NVME_MAX_IO_QUEUES in nvme_spec.h defines the 64K spec-limit, but this * define specifies the maximum number of queues this driver will actually * try to configure, if available. */ #define DEFAULT_MAX_IO_QUEUES (1024) #define DEFAULT_IO_QUEUE_SIZE (256) #define DEFAULT_ADMIN_QUEUE_REQUESTS (32) #define DEFAULT_IO_QUEUE_REQUESTS (512) /* We want to fit submission and completion rings each in a single 2MB * hugepage to ensure physical address contiguity. */ #define MAX_IO_QUEUE_ENTRIES (0x200000 / spdk_max( \ sizeof(struct spdk_nvme_cmd), \ sizeof(struct spdk_nvme_cpl))) enum nvme_payload_type { NVME_PAYLOAD_TYPE_INVALID = 0, /** nvme_request::u.payload.contig_buffer is valid for this request */ NVME_PAYLOAD_TYPE_CONTIG, /** nvme_request::u.sgl is valid for this request */ NVME_PAYLOAD_TYPE_SGL, }; /* * Controller support flags. */ enum spdk_nvme_ctrlr_flags { SPDK_NVME_CTRLR_SGL_SUPPORTED = 0x1, /**< The SGL is supported */ }; /** * Descriptor for a request data payload. */ struct nvme_payload { /** * Functions for retrieving physical addresses for scattered payloads. */ spdk_nvme_req_reset_sgl_cb reset_sgl_fn; spdk_nvme_req_next_sge_cb next_sge_fn; /** * If reset_sgl_fn == NULL, this is a contig payload, and contig_or_cb_arg contains the * virtual memory address of a single virtually contiguous buffer. * * If reset_sgl_fn != NULL, this is a SGL payload, and contig_or_cb_arg contains the * cb_arg that will be passed to the SGL callback functions. */ void *contig_or_cb_arg; /** Virtual memory address of a single virtually contiguous metadata buffer */ void *md; }; #define NVME_PAYLOAD_CONTIG(contig_, md_) \ (struct nvme_payload) { \ .reset_sgl_fn = NULL, \ .next_sge_fn = NULL, \ .contig_or_cb_arg = (contig_), \ .md = (md_), \ } #define NVME_PAYLOAD_SGL(reset_sgl_fn_, next_sge_fn_, cb_arg_, md_) \ (struct nvme_payload) { \ .reset_sgl_fn = (reset_sgl_fn_), \ .next_sge_fn = (next_sge_fn_), \ .contig_or_cb_arg = (cb_arg_), \ .md = (md_), \ } static inline enum nvme_payload_type nvme_payload_type(const struct nvme_payload *payload) { return payload->reset_sgl_fn ? NVME_PAYLOAD_TYPE_SGL : NVME_PAYLOAD_TYPE_CONTIG; } struct nvme_error_cmd { bool do_not_submit; uint64_t timeout_tsc; uint32_t err_count; uint8_t opc; struct spdk_nvme_status status; TAILQ_ENTRY(nvme_error_cmd) link; }; struct nvme_request { struct spdk_nvme_cmd cmd; uint8_t retries; bool timed_out; /** * Number of children requests still outstanding for this * request which was split into multiple child requests. */ uint16_t num_children; /** * Offset in bytes from the beginning of payload for this request. * This is used for I/O commands that are split into multiple requests. */ uint32_t payload_offset; uint32_t md_offset; uint32_t payload_size; /** * Timeout ticks for error injection requests, can be extended in future * to support per-request timeout feature. */ uint64_t timeout_tsc; /** * Data payload for this request's command. */ struct nvme_payload payload; spdk_nvme_cmd_cb cb_fn; void *cb_arg; STAILQ_ENTRY(nvme_request) stailq; struct spdk_nvme_qpair *qpair; /* * The value of spdk_get_ticks() when the request was submitted to the hardware. * Only set if ctrlr->timeout_enabled is true. */ uint64_t submit_tick; /** * The active admin request can be moved to a per process pending * list based on the saved pid to tell which process it belongs * to. The cpl saves the original completion information which * is used in the completion callback. * NOTE: these below two fields are only used for admin request. */ pid_t pid; struct spdk_nvme_cpl cpl; /** * The following members should not be reordered with members * above. These members are only needed when splitting * requests which is done rarely, and the driver is careful * to not touch the following fields until a split operation is * needed, to avoid touching an extra cacheline. */ /** * Points to the outstanding child requests for a parent request. * Only valid if a request was split into multiple children * requests, and is not initialized for non-split requests. */ TAILQ_HEAD(, nvme_request) children; /** * Linked-list pointers for a child request in its parent's list. */ TAILQ_ENTRY(nvme_request) child_tailq; /** * Points to a parent request if part of a split request, * NULL otherwise. */ struct nvme_request *parent; /** * Completion status for a parent request. Initialized to all 0's * (SUCCESS) before child requests are submitted. If a child * request completes with error, the error status is copied here, * to ensure that the parent request is also completed with error * status once all child requests are completed. */ struct spdk_nvme_cpl parent_status; /** * The user_cb_fn and user_cb_arg fields are used for holding the original * callback data when using nvme_allocate_request_user_copy. */ spdk_nvme_cmd_cb user_cb_fn; void *user_cb_arg; void *user_buffer; }; struct nvme_completion_poll_status { struct spdk_nvme_cpl cpl; bool done; }; struct nvme_async_event_request { struct spdk_nvme_ctrlr *ctrlr; struct nvme_request *req; struct spdk_nvme_cpl cpl; }; struct spdk_nvme_qpair { STAILQ_HEAD(, nvme_request) free_req; STAILQ_HEAD(, nvme_request) queued_req; /** Commands opcode in this list will return error */ TAILQ_HEAD(, nvme_error_cmd) err_cmd_head; /** Requests in this list will return error */ STAILQ_HEAD(, nvme_request) err_req_head; enum spdk_nvme_transport_type trtype; uint16_t id; uint8_t qprio; /* * Members for handling IO qpair deletion inside of a completion context. * These are specifically defined as single bits, so that they do not * push this data structure out to another cacheline. */ uint8_t in_completion_context : 1; uint8_t delete_after_completion_context: 1; /* * Set when no deletion notification is needed. For example, the process * which allocated this qpair exited unexpectedly. */ uint8_t no_deletion_notification_needed: 1; struct spdk_nvme_ctrlr *ctrlr; /* List entry for spdk_nvme_ctrlr::active_io_qpairs */ TAILQ_ENTRY(spdk_nvme_qpair) tailq; /* List entry for spdk_nvme_ctrlr_process::allocated_io_qpairs */ TAILQ_ENTRY(spdk_nvme_qpair) per_process_tailq; struct spdk_nvme_ctrlr_process *active_proc; void *req_buf; }; struct spdk_nvme_ns { struct spdk_nvme_ctrlr *ctrlr; uint32_t sector_size; /* * Size of data transferred as part of each block, * including metadata if FLBAS indicates the metadata is transferred * as part of the data buffer at the end of each LBA. */ uint32_t extended_lba_size; uint32_t md_size; uint32_t pi_type; uint32_t sectors_per_max_io; uint32_t sectors_per_stripe; uint32_t id; uint16_t flags; /* Namespace Identification Descriptor List (CNS = 03h) */ uint8_t id_desc_list[4096]; }; /** * State of struct spdk_nvme_ctrlr (in particular, during initialization). */ enum nvme_ctrlr_state { /** * Wait before initializing the controller. */ NVME_CTRLR_STATE_INIT_DELAY, /** * Controller has not been initialized yet. */ NVME_CTRLR_STATE_INIT, /** * Waiting for CSTS.RDY to transition from 0 to 1 so that CC.EN may be set to 0. */ NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, /** * Waiting for CSTS.RDY to transition from 1 to 0 so that CC.EN may be set to 1. */ NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, /** * Enable the controller by writing CC.EN to 1 */ NVME_CTRLR_STATE_ENABLE, /** * Waiting for CSTS.RDY to transition from 0 to 1 after enabling the controller. */ NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, /** * Enable the Admin queue of the controller. */ NVME_CTRLR_STATE_ENABLE_ADMIN_QUEUE, /** * Identify Controller command will be sent to then controller. */ NVME_CTRLR_STATE_IDENTIFY, /** * Waiting for Identify Controller command be completed. */ NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY, /** * Set Number of Queues of the controller. */ NVME_CTRLR_STATE_SET_NUM_QUEUES, /** * Waiting for Set Num of Queues command to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES, /** * Get Number of Queues of the controller. */ NVME_CTRLR_STATE_GET_NUM_QUEUES, /** * Waiting for Get Num of Queues command to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_GET_NUM_QUEUES, /** * Construct Namespace data structures of the controller. */ NVME_CTRLR_STATE_CONSTRUCT_NS, /** * Get active Namespace list of the controller. */ NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS, /** * Get Identify Namespace Data structure for each NS. */ NVME_CTRLR_STATE_IDENTIFY_NS, /** * Waiting for the Identify Namespace commands to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS, /** * Get Identify Namespace Identification Descriptors. */ NVME_CTRLR_STATE_IDENTIFY_ID_DESCS, /** * Waiting for the Identify Namespace Identification * Descriptors to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS, /** * Configure AER of the controller. */ NVME_CTRLR_STATE_CONFIGURE_AER, /** * Waiting for the Configure AER to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER, /** * Set supported log pages of the controller. */ NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, /** * Set supported features of the controller. */ NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, /** * Set Doorbell Buffer Config of the controller. */ NVME_CTRLR_STATE_SET_DB_BUF_CFG, /** * Waiting for Doorbell Buffer Config to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG, /** * Set Keep Alive Timeout of the controller. */ NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, /** * Waiting for Set Keep Alive Timeout to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT, /** * Set Host ID of the controller. */ NVME_CTRLR_STATE_SET_HOST_ID, /** * Waiting for Set Host ID to be completed. */ NVME_CTRLR_STATE_WAIT_FOR_HOST_ID, /** * Controller initialization has completed and the controller is ready. */ NVME_CTRLR_STATE_READY, /** * Controller inilialization has an error. */ NVME_CTRLR_STATE_ERROR }; #define NVME_TIMEOUT_INFINITE UINT64_MAX /* * Used to track properties for all processes accessing the controller. */ struct spdk_nvme_ctrlr_process { /** Whether it is the primary process */ bool is_primary; /** Process ID */ pid_t pid; /** Active admin requests to be completed */ STAILQ_HEAD(, nvme_request) active_reqs; TAILQ_ENTRY(spdk_nvme_ctrlr_process) tailq; /** Per process PCI device handle */ struct spdk_pci_device *devhandle; /** Reference to track the number of attachment to this controller. */ int ref; /** Allocated IO qpairs */ TAILQ_HEAD(, spdk_nvme_qpair) allocated_io_qpairs; spdk_nvme_aer_cb aer_cb_fn; void *aer_cb_arg; /** * A function pointer to timeout callback function */ spdk_nvme_timeout_cb timeout_cb_fn; void *timeout_cb_arg; uint64_t timeout_ticks; }; /* * One of these per allocated PCI device. */ struct spdk_nvme_ctrlr { /* Hot data (accessed in I/O path) starts here. */ /** Array of namespaces indexed by nsid - 1 */ struct spdk_nvme_ns *ns; struct spdk_nvme_transport_id trid; uint32_t num_ns; bool is_removed; bool is_resetting; bool is_failed; bool timeout_enabled; uint16_t max_sges; uint16_t cntlid; /** Controller support flags */ uint64_t flags; /* Cold data (not accessed in normal I/O path) is after this point. */ union spdk_nvme_cap_register cap; union spdk_nvme_vs_register vs; enum nvme_ctrlr_state state; uint64_t state_timeout_tsc; uint64_t next_keep_alive_tick; uint64_t keep_alive_interval_ticks; TAILQ_ENTRY(spdk_nvme_ctrlr) tailq; /** All the log pages supported */ bool log_page_supported[256]; /** All the features supported */ bool feature_supported[256]; /** maximum i/o size in bytes */ uint32_t max_xfer_size; /** minimum page size supported by this controller in bytes */ uint32_t min_page_size; /** selected memory page size for this controller in bytes */ uint32_t page_size; uint32_t num_aers; struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS]; /** guards access to the controller itself, including admin queues */ pthread_mutex_t ctrlr_lock; struct spdk_nvme_qpair *adminq; /** shadow doorbell buffer */ uint32_t *shadow_doorbell; /** eventidx buffer */ uint32_t *eventidx; /** * Identify Controller data. */ struct spdk_nvme_ctrlr_data cdata; /** * Keep track of active namespaces */ uint32_t *active_ns_list; /** * Array of Identify Namespace data. * * Stored separately from ns since nsdata should not normally be accessed during I/O. */ struct spdk_nvme_ns_data *nsdata; struct spdk_bit_array *free_io_qids; TAILQ_HEAD(, spdk_nvme_qpair) active_io_qpairs; struct spdk_nvme_ctrlr_opts opts; uint64_t quirks; /* Extra sleep time during controller initialization */ uint64_t sleep_timeout_tsc; /** Track all the processes manage this controller */ TAILQ_HEAD(, spdk_nvme_ctrlr_process) active_procs; STAILQ_HEAD(, nvme_request) queued_aborts; uint32_t outstanding_aborts; }; struct nvme_driver { pthread_mutex_t lock; /** Multi-process shared attached controller list */ TAILQ_HEAD(, spdk_nvme_ctrlr) shared_attached_ctrlrs; bool initialized; struct spdk_uuid default_extended_host_id; }; extern struct nvme_driver *g_spdk_nvme_driver; int nvme_driver_init(void); /* * Used for the spdk_nvme_connect() public API to save user specified opts. */ struct spdk_nvme_ctrlr_connect_opts { const struct spdk_nvme_ctrlr_opts *opts; size_t opts_size; }; #define nvme_delay usleep static inline bool nvme_qpair_is_admin_queue(struct spdk_nvme_qpair *qpair) { return qpair->id == 0; } static inline bool nvme_qpair_is_io_queue(struct spdk_nvme_qpair *qpair) { return qpair->id != 0; } static inline int nvme_robust_mutex_lock(pthread_mutex_t *mtx) { int rc = pthread_mutex_lock(mtx); #ifndef __FreeBSD__ if (rc == EOWNERDEAD) { rc = pthread_mutex_consistent(mtx); } #endif return rc; } static inline int nvme_robust_mutex_unlock(pthread_mutex_t *mtx) { return pthread_mutex_unlock(mtx); } /* Admin functions */ int nvme_ctrlr_cmd_identify(struct spdk_nvme_ctrlr *ctrlr, uint8_t cns, uint16_t cntid, uint32_t nsid, void *payload, size_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_set_num_queues(struct spdk_nvme_ctrlr *ctrlr, uint32_t num_queues, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_get_num_queues(struct spdk_nvme_ctrlr *ctrlr, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_set_async_event_config(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_feat_async_event_configuration config, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_set_host_id(struct spdk_nvme_ctrlr *ctrlr, void *host_id, uint32_t host_id_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_ctrlr_list *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr, uint64_t prp1, uint64_t prp2, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, struct spdk_nvme_format *format, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_fw_commit(struct spdk_nvme_ctrlr *ctrlr, const struct spdk_nvme_fw_commit *fw_commit, spdk_nvme_cmd_cb cb_fn, void *cb_arg); int nvme_ctrlr_cmd_fw_image_download(struct spdk_nvme_ctrlr *ctrlr, uint32_t size, uint32_t offset, void *payload, spdk_nvme_cmd_cb cb_fn, void *cb_arg); void nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl); int spdk_nvme_wait_for_completion(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status); int spdk_nvme_wait_for_completion_robust_lock(struct spdk_nvme_qpair *qpair, struct nvme_completion_poll_status *status, pthread_mutex_t *robust_mutex); struct spdk_nvme_ctrlr_process *spdk_nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid); struct spdk_nvme_ctrlr_process *spdk_nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr); int nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle); void nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr); struct spdk_pci_device *nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr); int nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid, void *devhandle, spdk_nvme_probe_cb probe_cb, void *cb_ctx); int nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr); void nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr); void nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); void nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove); int nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr); void nvme_ctrlr_connected(struct spdk_nvme_ctrlr *ctrlr); int nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr, struct nvme_request *req); int nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap); int nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs); void nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap, const union spdk_nvme_vs_register *vs); int nvme_qpair_init(struct spdk_nvme_qpair *qpair, uint16_t id, struct spdk_nvme_ctrlr *ctrlr, enum spdk_nvme_qprio qprio, uint32_t num_requests); void nvme_qpair_deinit(struct spdk_nvme_qpair *qpair); void nvme_qpair_enable(struct spdk_nvme_qpair *qpair); void nvme_qpair_disable(struct spdk_nvme_qpair *qpair); int nvme_qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req); int nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr); void nvme_ns_set_identify_data(struct spdk_nvme_ns *ns); int nvme_ns_construct(struct spdk_nvme_ns *ns, uint32_t id, struct spdk_nvme_ctrlr *ctrlr); void nvme_ns_destruct(struct spdk_nvme_ns *ns); int nvme_fabric_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value); int nvme_fabric_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value); int nvme_fabric_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value); int nvme_fabric_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value); int nvme_fabric_ctrlr_discover(struct spdk_nvme_ctrlr *ctrlr, void *cb_ctx, spdk_nvme_probe_cb probe_cb); int nvme_fabric_qpair_connect(struct spdk_nvme_qpair *qpair, uint32_t num_entries); static inline struct nvme_request * nvme_allocate_request(struct spdk_nvme_qpair *qpair, const struct nvme_payload *payload, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_request *req; req = STAILQ_FIRST(&qpair->free_req); if (req == NULL) { return req; } STAILQ_REMOVE_HEAD(&qpair->free_req, stailq); /* * Only memset/zero fields that need it. All other fields * will be initialized appropriately either later in this * function, or before they are needed later in the * submission patch. For example, the children * TAILQ_ENTRY and following members are * only used as part of I/O splitting so we avoid * memsetting them until it is actually needed. * They will be initialized in nvme_request_add_child() * if the request is split. */ memset(req, 0, offsetof(struct nvme_request, payload_size)); req->cb_fn = cb_fn; req->cb_arg = cb_arg; req->payload = *payload; req->payload_size = payload_size; req->qpair = qpair; req->pid = g_spdk_nvme_pid; return req; } static inline struct nvme_request * nvme_allocate_request_contig(struct spdk_nvme_qpair *qpair, void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { struct nvme_payload payload; payload = NVME_PAYLOAD_CONTIG(buffer, NULL); return nvme_allocate_request(qpair, &payload, payload_size, cb_fn, cb_arg); } static inline struct nvme_request * nvme_allocate_request_null(struct spdk_nvme_qpair *qpair, spdk_nvme_cmd_cb cb_fn, void *cb_arg) { return nvme_allocate_request_contig(qpair, NULL, 0, cb_fn, cb_arg); } struct nvme_request *nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair, void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn, void *cb_arg, bool host_to_controller); static inline void nvme_complete_request(struct nvme_request *req, struct spdk_nvme_cpl *cpl) { struct spdk_nvme_qpair *qpair = req->qpair; struct spdk_nvme_cpl err_cpl; struct nvme_error_cmd *cmd; /* error injection at completion path, * only inject for successful completed commands */ if (spdk_unlikely(!TAILQ_EMPTY(&qpair->err_cmd_head) && !spdk_nvme_cpl_is_error(cpl))) { TAILQ_FOREACH(cmd, &qpair->err_cmd_head, link) { if (cmd->do_not_submit) { continue; } if ((cmd->opc == req->cmd.opc) && cmd->err_count) { err_cpl = *cpl; err_cpl.status.sct = cmd->status.sct; err_cpl.status.sc = cmd->status.sc; cpl = &err_cpl; cmd->err_count--; break; } } } if (req->cb_fn) { req->cb_fn(req->cb_arg, cpl); } } static inline void nvme_free_request(struct nvme_request *req) { assert(req != NULL); assert(req->num_children == 0); assert(req->qpair != NULL); STAILQ_INSERT_HEAD(&req->qpair->free_req, req, stailq); } void nvme_request_remove_child(struct nvme_request *parent, struct nvme_request *child); int nvme_request_check_timeout(struct nvme_request *req, uint16_t cid, struct spdk_nvme_ctrlr_process *active_proc, uint64_t now_tick); uint64_t nvme_get_quirks(const struct spdk_pci_id *id); int nvme_robust_mutex_init_shared(pthread_mutex_t *mtx); int nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx); bool nvme_completion_is_retry(const struct spdk_nvme_cpl *cpl); void nvme_qpair_print_command(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cmd *cmd); void nvme_qpair_print_completion(struct spdk_nvme_qpair *qpair, struct spdk_nvme_cpl *cpl); struct spdk_nvme_ctrlr *spdk_nvme_get_ctrlr_by_trid_unsafe( const struct spdk_nvme_transport_id *trid); /* Transport specific functions */ #define DECLARE_TRANSPORT(name) \ struct spdk_nvme_ctrlr *nvme_ ## name ## _ctrlr_construct(const struct spdk_nvme_transport_id *trid, const struct spdk_nvme_ctrlr_opts *opts, \ void *devhandle); \ int nvme_ ## name ## _ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); \ int nvme_ ## name ## _ctrlr_scan(const struct spdk_nvme_transport_id *trid, void *cb_ctx, spdk_nvme_probe_cb probe_cb, spdk_nvme_remove_cb remove_cb, bool direct_connect); \ int nvme_ ## name ## _ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr); \ int nvme_ ## name ## _ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value); \ int nvme_ ## name ## _ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value); \ int nvme_ ## name ## _ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value); \ int nvme_ ## name ## _ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value); \ uint32_t nvme_ ## name ## _ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr); \ uint16_t nvme_ ## name ## _ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr); \ struct spdk_nvme_qpair *nvme_ ## name ## _ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, const struct spdk_nvme_io_qpair_opts *opts); \ void *nvme_ ## name ## _ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size); \ int nvme_ ## name ## _ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size); \ int nvme_ ## name ## _ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _qpair_enable(struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _qpair_disable(struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _qpair_reset(struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _qpair_fail(struct spdk_nvme_qpair *qpair); \ int nvme_ ## name ## _qpair_submit_request(struct spdk_nvme_qpair *qpair, struct nvme_request *req); \ int32_t nvme_ ## name ## _qpair_process_completions(struct spdk_nvme_qpair *qpair, uint32_t max_completions); DECLARE_TRANSPORT(transport) /* generic transport dispatch functions */ DECLARE_TRANSPORT(pcie) #ifdef SPDK_CONFIG_RDMA DECLARE_TRANSPORT(rdma) #endif #undef DECLARE_TRANSPORT /* * Below ref related functions must be called with the global * driver lock held for the multi-process condition. * Within these functions, the per ctrlr ctrlr_lock is also * acquired for the multi-thread condition. */ void nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr); void nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr); int nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr); static inline bool _is_page_aligned(uint64_t address, uint64_t page_size) { return (address & (page_size - 1)) == 0; } #endif /* __NVME_INTERNAL_H__ */