/*- * BSD LICENSE * * Copyright (c) Intel Corporation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "env_dpdk/memory.c" #include "common/lib/test_env.c" #include "spdk_cunit.h" #include "spdk/bit_array.h" static struct rte_mem_config g_mcfg = {}; static struct rte_config g_cfg = { .mem_config = &g_mcfg, }; struct rte_config * rte_eal_get_configuration(void) { return &g_cfg; } #if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0) DEFINE_STUB(rte_mem_event_callback_register, int, (const char *name, rte_mem_event_callback_t clb, void *arg), 0); DEFINE_STUB(rte_memseg_contig_walk, int, (rte_memseg_contig_walk_t func, void *arg), 0); DEFINE_STUB(rte_mem_virt2memseg, struct rte_memseg *, (const void *addr, const struct rte_memseg_list *msl), NULL); #endif #define PAGE_ARRAY_SIZE (100) static struct spdk_bit_array *g_page_array; static void *g_vaddr_to_fail = (void *)UINT64_MAX; static int test_mem_map_notify(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t len) { uint32_t i, end; SPDK_CU_ASSERT_FATAL(((uintptr_t)vaddr & MASK_2MB) == 0); SPDK_CU_ASSERT_FATAL((len & MASK_2MB) == 0); /* * This is a test requirement - the bit array we use to verify * pages are valid is only so large. */ SPDK_CU_ASSERT_FATAL((uintptr_t)vaddr < (VALUE_2MB * PAGE_ARRAY_SIZE)); i = (uintptr_t)vaddr >> SHIFT_2MB; end = i + (len >> SHIFT_2MB); for (; i < end; i++) { switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: /* This page should not already be registered */ SPDK_CU_ASSERT_FATAL(spdk_bit_array_get(g_page_array, i) == false); SPDK_CU_ASSERT_FATAL(spdk_bit_array_set(g_page_array, i) == 0); break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: SPDK_CU_ASSERT_FATAL(spdk_bit_array_get(g_page_array, i) == true); spdk_bit_array_clear(g_page_array, i); break; default: SPDK_UNREACHABLE(); } } return 0; } static int test_mem_map_notify_fail(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t size) { struct spdk_mem_map *reg_map = cb_ctx; switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: if (vaddr == g_vaddr_to_fail) { /* Test the error handling. */ return -1; } break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: /* Clear the same region in the other mem_map to be able to * verify that there was no memory left still registered after * the mem_map creation failure. */ spdk_mem_map_clear_translation(reg_map, (uint64_t)vaddr, size); break; } return 0; } static int test_mem_map_notify_checklen(void *cb_ctx, struct spdk_mem_map *map, enum spdk_mem_map_notify_action action, void *vaddr, size_t size) { size_t *len_arr = cb_ctx; /* * This is a test requirement - the len array we use to verify * pages are valid is only so large. */ SPDK_CU_ASSERT_FATAL((uintptr_t)vaddr < (VALUE_2MB * PAGE_ARRAY_SIZE)); switch (action) { case SPDK_MEM_MAP_NOTIFY_REGISTER: assert(size == len_arr[(uintptr_t)vaddr / VALUE_2MB]); break; case SPDK_MEM_MAP_NOTIFY_UNREGISTER: CU_ASSERT(size == len_arr[(uintptr_t)vaddr / VALUE_2MB]); break; } return 0; } static int test_check_regions_contiguous(uint64_t addr1, uint64_t addr2) { return addr1 == addr2; } const struct spdk_mem_map_ops test_mem_map_ops = { .notify_cb = test_mem_map_notify, .are_contiguous = test_check_regions_contiguous }; const struct spdk_mem_map_ops test_mem_map_ops_no_contig = { .notify_cb = test_mem_map_notify, .are_contiguous = NULL }; struct spdk_mem_map_ops test_map_ops_notify_fail = { .notify_cb = test_mem_map_notify_fail, .are_contiguous = NULL }; struct spdk_mem_map_ops test_map_ops_notify_checklen = { .notify_cb = test_mem_map_notify_checklen, .are_contiguous = NULL }; static void test_mem_map_alloc_free(void) { struct spdk_mem_map *map, *failed_map; uint64_t default_translation = 0xDEADBEEF0BADF00D; int i; map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL); SPDK_CU_ASSERT_FATAL(map != NULL); spdk_mem_map_free(&map); CU_ASSERT(map == NULL); map = spdk_mem_map_alloc(default_translation, NULL, NULL); SPDK_CU_ASSERT_FATAL(map != NULL); /* Register some memory for the initial memory walk in * spdk_mem_map_alloc(). We'll fail registering the last region * and will check if the mem_map cleaned up all its previously * initialized translations. */ for (i = 0; i < 5; i++) { spdk_mem_register((void *)(uintptr_t)(2 * i * VALUE_2MB), VALUE_2MB); } /* The last region */ g_vaddr_to_fail = (void *)(8 * VALUE_2MB); failed_map = spdk_mem_map_alloc(default_translation, &test_map_ops_notify_fail, map); CU_ASSERT(failed_map == NULL); for (i = 0; i < 4; i++) { uint64_t reg, size = VALUE_2MB; reg = spdk_mem_map_translate(map, 2 * i * VALUE_2MB, &size); /* check if `failed_map` didn't leave any translations behind */ CU_ASSERT(reg == default_translation); } for (i = 0; i < 5; i++) { spdk_mem_unregister((void *)(uintptr_t)(2 * i * VALUE_2MB), VALUE_2MB); } spdk_mem_map_free(&map); CU_ASSERT(map == NULL); } static void test_mem_map_translation(void) { struct spdk_mem_map *map; uint64_t default_translation = 0xDEADBEEF0BADF00D; uint64_t addr; uint64_t mapping_length; int rc; map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL); SPDK_CU_ASSERT_FATAL(map != NULL); /* Try to get translation for address with no translation */ addr = spdk_mem_map_translate(map, 10, NULL); CU_ASSERT(addr == default_translation); /* Set translation for region of non-2MB multiple size */ rc = spdk_mem_map_set_translation(map, VALUE_2MB, 1234, VALUE_2MB); CU_ASSERT(rc == -EINVAL); /* Set translation for vaddr that isn't 2MB aligned */ rc = spdk_mem_map_set_translation(map, 1234, VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == -EINVAL); /* Set translation for one 2MB page */ rc = spdk_mem_map_set_translation(map, VALUE_2MB, VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == 0); /* Set translation for region that overlaps the previous translation */ rc = spdk_mem_map_set_translation(map, 0, 3 * VALUE_2MB, 0); CU_ASSERT(rc == 0); /* Make sure we indicate that the three regions are contiguous */ mapping_length = VALUE_2MB * 3; addr = spdk_mem_map_translate(map, 0, &mapping_length); CU_ASSERT(addr == 0); CU_ASSERT(mapping_length == VALUE_2MB * 3) /* Clear translation for the middle page of the larger region. */ rc = spdk_mem_map_clear_translation(map, VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == 0); /* Get translation for first page */ addr = spdk_mem_map_translate(map, 0, NULL); CU_ASSERT(addr == 0); /* Make sure we indicate that the three regions are no longer contiguous */ mapping_length = VALUE_2MB * 3; addr = spdk_mem_map_translate(map, 0, &mapping_length); CU_ASSERT(addr == 0); CU_ASSERT(mapping_length == VALUE_2MB) /* Get translation for an unallocated block. Make sure size is 0 */ mapping_length = VALUE_2MB * 3; addr = spdk_mem_map_translate(map, VALUE_2MB, &mapping_length); CU_ASSERT(addr == default_translation); CU_ASSERT(mapping_length == VALUE_2MB) /* Verify translation for 2nd page is the default */ addr = spdk_mem_map_translate(map, VALUE_2MB, NULL); CU_ASSERT(addr == default_translation); /* Get translation for third page */ addr = spdk_mem_map_translate(map, 2 * VALUE_2MB, NULL); /* * Note that addr should be 0, not 4MB. When we set the * translation above, we said the whole 6MB region * should translate to 0. */ CU_ASSERT(addr == 0); /* Clear translation for the first page */ rc = spdk_mem_map_clear_translation(map, 0, VALUE_2MB); CU_ASSERT(rc == 0); /* Get translation for the first page */ addr = spdk_mem_map_translate(map, 0, NULL); CU_ASSERT(addr == default_translation); /* Clear translation for the third page */ rc = spdk_mem_map_clear_translation(map, 2 * VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == 0); /* Get translation for the third page */ addr = spdk_mem_map_translate(map, 2 * VALUE_2MB, NULL); CU_ASSERT(addr == default_translation); /* Set translation for the last valid 2MB region */ rc = spdk_mem_map_set_translation(map, 0xffffffe00000ULL, VALUE_2MB, 0x1234); CU_ASSERT(rc == 0); /* Verify translation for last valid 2MB region */ addr = spdk_mem_map_translate(map, 0xffffffe00000ULL, NULL); CU_ASSERT(addr == 0x1234); /* Attempt to set translation for the first invalid address */ rc = spdk_mem_map_set_translation(map, 0x1000000000000ULL, VALUE_2MB, 0x5678); CU_ASSERT(rc == -EINVAL); /* Attempt to set translation starting at a valid address but exceeding the valid range */ rc = spdk_mem_map_set_translation(map, 0xffffffe00000ULL, VALUE_2MB * 2, 0x123123); CU_ASSERT(rc != 0); spdk_mem_map_free(&map); CU_ASSERT(map == NULL); /* Allocate a map without a contiguous region checker */ map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops_no_contig, NULL); SPDK_CU_ASSERT_FATAL(map != NULL); /* map three contiguous regions */ rc = spdk_mem_map_set_translation(map, 0, 3 * VALUE_2MB, 0); CU_ASSERT(rc == 0); /* Since we can't check their contiguity, make sure we only return the size of one page */ mapping_length = VALUE_2MB * 3; addr = spdk_mem_map_translate(map, 0, &mapping_length); CU_ASSERT(addr == 0); CU_ASSERT(mapping_length == VALUE_2MB) /* Clear the translation */ rc = spdk_mem_map_clear_translation(map, 0, VALUE_2MB * 3); CU_ASSERT(rc == 0); spdk_mem_map_free(&map); CU_ASSERT(map == NULL); } static void test_mem_map_registration(void) { int rc; struct spdk_mem_map *map; uint64_t default_translation = 0xDEADBEEF0BADF00D; map = spdk_mem_map_alloc(default_translation, &test_mem_map_ops, NULL); SPDK_CU_ASSERT_FATAL(map != NULL); /* Unregister memory region that wasn't previously registered */ rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == -EINVAL); /* Register non-2MB multiple size */ rc = spdk_mem_register((void *)VALUE_2MB, 1234); CU_ASSERT(rc == -EINVAL); /* Register region that isn't 2MB aligned */ rc = spdk_mem_register((void *)1234, VALUE_2MB); CU_ASSERT(rc == -EINVAL); /* Register one 2MB page */ rc = spdk_mem_register((void *)VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == 0); /* Register an overlapping address range */ rc = spdk_mem_register((void *)0, 3 * VALUE_2MB); CU_ASSERT(rc == -EBUSY); /* Unregister a 2MB page */ rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == 0); /* Register non overlapping address range */ rc = spdk_mem_register((void *)0, 3 * VALUE_2MB); CU_ASSERT(rc == 0); /* Unregister the middle page of the larger region. */ rc = spdk_mem_unregister((void *)VALUE_2MB, VALUE_2MB); CU_ASSERT(rc == -ERANGE); /* Unregister the first page */ rc = spdk_mem_unregister((void *)0, VALUE_2MB); CU_ASSERT(rc == -ERANGE); /* Unregister the third page */ rc = spdk_mem_unregister((void *)(2 * VALUE_2MB), VALUE_2MB); CU_ASSERT(rc == -ERANGE); /* Unregister the entire address range */ rc = spdk_mem_unregister((void *)0, 3 * VALUE_2MB); CU_ASSERT(rc == 0); spdk_mem_map_free(&map); CU_ASSERT(map == NULL); } static void test_mem_map_registration_adjacent(void) { struct spdk_mem_map *map, *newmap; uint64_t default_translation = 0xDEADBEEF0BADF00D; uintptr_t vaddr; unsigned i; size_t notify_len[PAGE_ARRAY_SIZE] = {0}; size_t chunk_len[] = { 2, 1, 3, 2, 1, 1 }; map = spdk_mem_map_alloc(default_translation, &test_map_ops_notify_checklen, notify_len); SPDK_CU_ASSERT_FATAL(map != NULL); vaddr = 0; for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) { notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB; spdk_mem_register((void *)vaddr, notify_len[vaddr / VALUE_2MB]); vaddr += notify_len[vaddr / VALUE_2MB]; } /* Verify the memory is translated in the same chunks it was registered */ newmap = spdk_mem_map_alloc(default_translation, &test_map_ops_notify_checklen, notify_len); SPDK_CU_ASSERT_FATAL(newmap != NULL); spdk_mem_map_free(&newmap); CU_ASSERT(newmap == NULL); vaddr = 0; for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) { notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB; spdk_mem_unregister((void *)vaddr, notify_len[vaddr / VALUE_2MB]); vaddr += notify_len[vaddr / VALUE_2MB]; } /* Register all chunks again just to unregister them again, but this * time with only a single unregister() call. */ vaddr = 0; for (i = 0; i < SPDK_COUNTOF(chunk_len); i++) { notify_len[vaddr / VALUE_2MB] = chunk_len[i] * VALUE_2MB; spdk_mem_register((void *)vaddr, notify_len[vaddr / VALUE_2MB]); vaddr += notify_len[vaddr / VALUE_2MB]; } spdk_mem_unregister(0, vaddr); spdk_mem_map_free(&map); CU_ASSERT(map == NULL); } int main(int argc, char **argv) { CU_pSuite suite = NULL; unsigned int num_failures; /* * These tests can use PAGE_ARRAY_SIZE 2MB pages of memory. * Note that the tests just verify addresses - this memory * is not actually allocated. */ g_page_array = spdk_bit_array_create(PAGE_ARRAY_SIZE); /* Initialize the memory map */ if (spdk_mem_map_init() < 0) { return CUE_NOMEMORY; } if (CU_initialize_registry() != CUE_SUCCESS) { return CU_get_error(); } suite = CU_add_suite("memory", NULL, NULL); if (suite == NULL) { CU_cleanup_registry(); return CU_get_error(); } if ( CU_add_test(suite, "alloc and free memory map", test_mem_map_alloc_free) == NULL || CU_add_test(suite, "mem map translation", test_mem_map_translation) == NULL || CU_add_test(suite, "mem map registration", test_mem_map_registration) == NULL || CU_add_test(suite, "mem map adjacent registrations", test_mem_map_registration_adjacent) == NULL ) { CU_cleanup_registry(); return CU_get_error(); } CU_basic_set_mode(CU_BRM_VERBOSE); CU_basic_run_tests(); num_failures = CU_get_number_of_failures(); CU_cleanup_registry(); spdk_bit_array_free(&g_page_array); return num_failures; }