1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// (C) Copyright Jeremy Siek 2004
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <set>
#include <boost/test/minimal.hpp>
#include <boost/graph/subgraph.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/random.hpp>
#include "graph_test.hpp"
#include <boost/graph/iteration_macros.hpp>
#include <boost/random/mersenne_twister.hpp>
#include "test_graph.hpp"
// UNDER CONSTRUCTION
// This is a helper function to recusively compare two subgraphs,
// including the index for every local edges and their children.
template<typename subgraph_t>
void sub_cmp(subgraph_t const &g1, subgraph_t const &g2)
{
BOOST_CHECK(g1.is_root() == g2.is_root());
BOOST_CHECK(num_vertices(g1) == num_vertices(g2));
BOOST_CHECK(num_edges(g1) == num_edges(g2));
typename subgraph_t::edge_iterator e1_i, e1_i_end, e2_i, e2_i_end;
boost::tie(e1_i, e1_i_end) = edges(g1);
boost::tie(e2_i, e2_i_end) = edges(g2);
for(; e1_i != e1_i_end; ++e1_i, ++e2_i)
{
BOOST_CHECK(get(boost::edge_index, g1, *e1_i)
== get(boost::edge_index, g2, *e2_i));
}
typename subgraph_t::const_children_iterator g1_i, g1_i_end, g2_i, g2_i_end;
boost::tie(g1_i, g1_i_end) = g1.children();
boost::tie(g2_i, g2_i_end) = g2.children();
for(; g1_i != g1_i_end && g2_i != g2_i_end; ++g1_i, ++g2_i)
{
sub_cmp(*g1_i, *g2_i);
}
BOOST_CHECK(g1_i == g1_i_end && g2_i == g2_i_end);
}
int test_main(int, char*[])
{
using namespace boost;
typedef adjacency_list<vecS, vecS, bidirectionalS,
property<vertex_color_t, int>,
property<edge_index_t, std::size_t, property<edge_weight_t, int> >
> graph_t;
typedef subgraph<graph_t> subgraph_t;
typedef graph_traits<subgraph_t>::vertex_descriptor vertex_t;
mt19937 gen;
for (int t = 0; t < 100; t += 5) {
subgraph_t g;
int N = t + 2;
std::vector<vertex_t> vertex_set;
std::vector< std::pair<vertex_t, vertex_t> > edge_set;
generate_random_graph(g, N, N * 2, gen,
std::back_inserter(vertex_set),
std::back_inserter(edge_set));
graph_test< subgraph_t > gt;
gt.test_incidence_graph(vertex_set, edge_set, g);
gt.test_bidirectional_graph(vertex_set, edge_set, g);
gt.test_adjacency_graph(vertex_set, edge_set, g);
gt.test_vertex_list_graph(vertex_set, g);
gt.test_edge_list_graph(vertex_set, edge_set, g);
gt.test_adjacency_matrix(vertex_set, edge_set, g);
std::vector<vertex_t> sub_vertex_set;
std::vector<vertex_t> sub_global_map;
std::vector<vertex_t> global_sub_map(num_vertices(g));
std::vector< std::pair<vertex_t, vertex_t> > sub_edge_set;
subgraph_t& g_s = g.create_subgraph();
const std::set<vertex_t>::size_type Nsub = N/2;
// Collect a set of random vertices to put in the subgraph
std::set<vertex_t> verts;
while (verts.size() < Nsub)
verts.insert(random_vertex(g, gen));
for (std::set<vertex_t>::iterator it = verts.begin();
it != verts.end(); ++it) {
vertex_t v_global = *it;
vertex_t v = add_vertex(v_global, g_s);
sub_vertex_set.push_back(v);
sub_global_map.push_back(v_global);
global_sub_map[v_global] = v;
}
// compute induced edges
BGL_FORALL_EDGES(e, g, subgraph_t)
if (container_contains(sub_global_map, source(e, g))
&& container_contains(sub_global_map, target(e, g)))
sub_edge_set.push_back(std::make_pair(global_sub_map[source(e, g)],
global_sub_map[target(e, g)]));
gt.test_incidence_graph(sub_vertex_set, sub_edge_set, g_s);
gt.test_bidirectional_graph(sub_vertex_set, sub_edge_set, g_s);
gt.test_adjacency_graph(sub_vertex_set, sub_edge_set, g_s);
gt.test_vertex_list_graph(sub_vertex_set, g_s);
gt.test_edge_list_graph(sub_vertex_set, sub_edge_set, g_s);
gt.test_adjacency_matrix(sub_vertex_set, sub_edge_set, g_s);
if (num_vertices(g_s) == 0)
return 0;
std::vector<int> weights;
for (unsigned i = 0; i < num_vertices(g_s); ++i)
weights.push_back(i*2);
gt.test_vertex_property_graph(weights, vertex_color_t(), g_s);
// A regression test: the copy constructor of subgraph did not
// copy one of the members, so local_edge->global_edge mapping
// was broken.
{
subgraph_t g;
graph_t::vertex_descriptor v1, v2;
v1 = add_vertex(g);
v2 = add_vertex(g);
add_edge(v1, v2, g);
subgraph_t sub = g.create_subgraph(vertices(g).first, vertices(g).second);
graph_t::edge_iterator ei, ee;
for (boost::tie(ei, ee) = edges(sub); ei != ee; ++ei) {
// This used to segfault.
get(edge_weight, sub, *ei);
}
}
// This block generates a complete graph with 8 vertices,
// and puts the first and last four of the vertices into two children.
// Do these again to the children, so there are 4 grandchildren with 2 vertices for each.
// Use the copy constructor to generate a copy and compare with the original one.
{
subgraph_t g1;
for(size_t i = 0; i < 8; i ++)
{
add_vertex(g1);
}
subgraph_t::vertex_iterator vi_start, vi, vi_end, vj_start, vj, vj_end;
for(tie(vi, vi_end) = vertices(g1); vi != vi_end; ++vi)
{
for(tie(vj, vj_end) = vertices(g1); vj != vj_end; ++vj)
{
if(*vi != *vj)
{
add_edge(*vi, *vj, g1);
}
}
}
tie(vi_start, vi_end) = vertices(g1);
vi = vi_start;
for(size_t i = 0; i < 4; i++)
{
++vi;
}
g1.create_subgraph(vi_start, vi);
g1.create_subgraph(++vi, vi_end);
subgraph_t::children_iterator gi1, gi2;
gi2 = g1.children().first;
gi1 = gi2++;
tie(vi_start, vi_end) = vertices(*gi1);
vi = vi_start;
tie(vj_start, vj_end) = vertices(*gi2);
vj = vj_start;
for(size_t i = 0; i < 2; i++)
{
++vi;
++vj;
}
(*gi1).create_subgraph(vi_start, vi);
(*gi1).create_subgraph(++vi, vi_end);
(*gi2).create_subgraph(vj_start, vj);
(*gi2).create_subgraph(++vj, vj_end);
subgraph_t g2(g1);
sub_cmp(g1, g2);
}
// Bootstrap the test_graph framework.
// TODO: Subgraph is fundamentally broken for property types.
// TODO: Under construction.
{
using namespace boost;
typedef property<edge_index_t, size_t, EdgeBundle> EdgeProp;
typedef adjacency_list<vecS, vecS, directedS, VertexBundle, EdgeProp> BaseGraph;
typedef subgraph<BaseGraph> Graph;
typedef graph_traits<Graph>::vertex_descriptor Vertex;
Graph g;
Vertex v = add_vertex(g);
typedef property_map<Graph, int VertexBundle::*>::type BundleMap;
BundleMap map = get(&VertexBundle::value, g);
get(map, v);
// put(map, v, 5);
// BOOST_ASSERT(get(map, v) == 5);
// test_graph(g);
return 0;
}
}
return 0;
}
|