1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/*=============================================================================
Copyright (c) 2017 Paul Fultz II
sequence.cpp
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
/*=============================================================================
Copyright (c) 2016 Paul Fultz II
print.cpp
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#include "example.h"
#include <tuple>
using namespace boost::hof;
// Transform each element of a tuple by calling f
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_transform) = [](auto&& sequence, auto f)
{
return unpack(proj(f, construct<std::tuple>()))(std::forward<decltype(sequence)>(sequence));
};
// Call f on each element of tuple
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_for_each) = [](auto&& sequence, auto f)
{
return unpack(proj(f))(std::forward<decltype(sequence)>(sequence));
};
// Fold over tuple using a f as the binary operator
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_fold) = [](auto&& sequence, auto f)
{
return unpack(fold(f))(std::forward<decltype(sequence)>(sequence));
};
// Concat multiple tuples
BOOST_HOF_STATIC_FUNCTION(tuple_cat) = unpack(construct<std::tuple>());
// Join a tuple of tuples into just a tuple
BOOST_HOF_STATIC_FUNCTION(tuple_join) = unpack(tuple_cat);
// Filter elements in a tuple using a predicate
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_filter) = [](auto&& sequence, auto predicate)
{
return compose(tuple_join, tuple_transform)(
std::forward<decltype(sequence)>(sequence),
[&](auto&& x)
{
return first_of(
if_(predicate(std::forward<decltype(x)>(x)))(pack),
always(pack())
)(std::forward<decltype(x)>(x));
}
);
};
// Zip two tuples together
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_zip_with) = [](auto&& sequence1, auto&& sequence2, auto f)
{
auto&& functions = tuple_transform(
std::forward<decltype(sequence1)>(sequence1),
[&](auto&& x)
{
return [&](auto&& y)
{
return f(std::forward<decltype(x)>(x), std::forward<decltype(y)>(y));
};
}
);
auto combined = unpack(capture(construct<std::tuple>())(combine))(functions);
return unpack(combined)(std::forward<decltype(sequence2)>(sequence2));
};
// Dot product of a tuple
BOOST_HOF_STATIC_LAMBDA_FUNCTION(tuple_dot) = [](auto&& a, auto&& b)
{
auto product = tuple_zip_with(a, b, [](auto x, auto y) { return x*y; });
return tuple_fold(product, [](auto x, auto y) { return x+y; });
};
void run_each()
{
auto t = std::make_tuple(1, 2);
tuple_for_each(t, [](int i) { std::cout << i << std::endl; });
}
void run_transform()
{
auto t = std::make_tuple(1, 2);
auto r = tuple_transform(t, [](int i) { return i*i; });
assert(r == std::make_tuple(1, 4));
(void)r;
}
void run_filter()
{
auto t = std::make_tuple(1, 2, 'x', 3);
auto r = tuple_filter(t, [](auto x) { return std::is_same<int, decltype(x)>(); });
assert(r == std::make_tuple(1, 2, 3));
(void)r;
}
void run_zip()
{
auto t1 = std::make_tuple(1, 2);
auto t2 = std::make_tuple(3, 4);
auto p = tuple_zip_with(t1, t2, [](auto x, auto y) { return x*y; });
int r = tuple_fold(p, [](auto x, auto y) { return x+y; });
assert(r == (1*3 + 4*2));
(void)r;
}
void run_dot()
{
auto t1 = std::make_tuple(1, 2);
auto t2 = std::make_tuple(3, 4);
int r = tuple_dot(t1, t2);
assert(r == (1*3 + 4*2));
(void)r;
}
int main()
{
run_transform();
run_filter();
run_zip();
}
|