1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
// test file for HSO3.hpp and HSO4.hpp
// (C) Copyright Hubert Holin 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <iostream>
#include <boost/math/quaternion.hpp>
#include "HSO3.hpp"
#include "HSO4.hpp"
const int number_of_intervals = 5;
const float pi = ::std::atan(1.0f)*4;
void test_SO3();
void test_SO4();
int main()
{
test_SO3();
test_SO4();
::std::cout << "That's all folks!" << ::std::endl;
}
//
// Test of quaternion and R^3 rotation relationship
//
void test_SO3_spherical()
{
::std::cout << "Testing spherical:" << ::std::endl;
::std::cout << ::std::endl;
const float rho = 1.0f;
float theta;
float phi1;
float phi2;
for (int idxphi2 = 0; idxphi2 <= number_of_intervals; idxphi2++)
{
phi2 = (-pi/2)+(idxphi2*pi)/number_of_intervals;
for (int idxphi1 = 0; idxphi1 <= number_of_intervals; idxphi1++)
{
phi1 = (-pi/2)+(idxphi1*pi)/number_of_intervals;
for (int idxtheta = 0; idxtheta <= number_of_intervals; idxtheta++)
{
theta = -pi+(idxtheta*(2*pi))/number_of_intervals;
::std::cout << "theta = " << theta << " ; ";
::std::cout << "phi1 = " << phi1 << " ; ";
::std::cout << "phi2 = " << phi2;
::std::cout << ::std::endl;
::boost::math::quaternion<float> q = ::boost::math::spherical(rho, theta, phi1, phi2);
::std::cout << "q = " << q << ::std::endl;
R3_matrix<float> rot = quaternion_to_R3_rotation(q);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl;
::boost::math::quaternion<float> p = R3_rotation_to_quaternion(rot, &q);
::std::cout << "p = " << p << ::std::endl;
::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
::std::cout << ::std::endl;
}
void test_SO3_semipolar()
{
::std::cout << "Testing semipolar:" << ::std::endl;
::std::cout << ::std::endl;
const float rho = 1.0f;
float alpha;
float theta1;
float theta2;
for (int idxalpha = 0; idxalpha <= number_of_intervals; idxalpha++)
{
alpha = (idxalpha*(pi/2))/number_of_intervals;
for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++)
{
theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals;
for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++)
{
theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals;
::std::cout << "alpha = " << alpha << " ; ";
::std::cout << "theta1 = " << theta1 << " ; ";
::std::cout << "theta2 = " << theta2;
::std::cout << ::std::endl;
::boost::math::quaternion<float> q = ::boost::math::semipolar(rho, alpha, theta1, theta2);
::std::cout << "q = " << q << ::std::endl;
R3_matrix<float> rot = quaternion_to_R3_rotation(q);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl;
::boost::math::quaternion<float> p = R3_rotation_to_quaternion(rot, &q);
::std::cout << "p = " << p << ::std::endl;
::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
::std::cout << ::std::endl;
}
void test_SO3_multipolar()
{
::std::cout << "Testing multipolar:" << ::std::endl;
::std::cout << ::std::endl;
float rho1;
float rho2;
float theta1;
float theta2;
for (int idxrho = 0; idxrho <= number_of_intervals; idxrho++)
{
rho1 = (idxrho*1.0f)/number_of_intervals;
rho2 = ::std::sqrt(1.0f-rho1*rho1);
for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++)
{
theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals;
for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++)
{
theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals;
::std::cout << "rho1 = " << rho1 << " ; ";
::std::cout << "theta1 = " << theta1 << " ; ";
::std::cout << "theta2 = " << theta2;
::std::cout << ::std::endl;
::boost::math::quaternion<float> q = ::boost::math::multipolar(rho1, theta1, rho2, theta2);
::std::cout << "q = " << q << ::std::endl;
R3_matrix<float> rot = quaternion_to_R3_rotation(q);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl;
::boost::math::quaternion<float> p = R3_rotation_to_quaternion(rot, &q);
::std::cout << "p = " << p << ::std::endl;
::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
::std::cout << ::std::endl;
}
void test_SO3_cylindrospherical()
{
::std::cout << "Testing cylindrospherical:" << ::std::endl;
::std::cout << ::std::endl;
float t;
float radius;
float longitude;
float latitude;
for (int idxt = 0; idxt <= number_of_intervals; idxt++)
{
t = -1.0f+(idxt*2.0f)/number_of_intervals;
radius = ::std::sqrt(1.0f-t*t);
for (int idxlatitude = 0; idxlatitude <= number_of_intervals; idxlatitude++)
{
latitude = (-pi/2)+(idxlatitude*pi)/number_of_intervals;
for (int idxlongitude = 0; idxlongitude <= number_of_intervals; idxlongitude++)
{
longitude = -pi+(idxlongitude*(2*pi))/number_of_intervals;
::std::cout << "t = " << t << " ; ";
::std::cout << "longitude = " << longitude;
::std::cout << "latitude = " << latitude;
::std::cout << ::std::endl;
::boost::math::quaternion<float> q = ::boost::math::cylindrospherical(t, radius, longitude, latitude);
::std::cout << "q = " << q << ::std::endl;
R3_matrix<float> rot = quaternion_to_R3_rotation(q);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl;
::boost::math::quaternion<float> p = R3_rotation_to_quaternion(rot, &q);
::std::cout << "p = " << p << ::std::endl;
::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
::std::cout << ::std::endl;
}
void test_SO3_cylindrical()
{
::std::cout << "Testing cylindrical:" << ::std::endl;
::std::cout << ::std::endl;
float r;
float angle;
float h1;
float h2;
for (int idxh2 = 0; idxh2 <= number_of_intervals; idxh2++)
{
h2 = -1.0f+(idxh2*2.0f)/number_of_intervals;
for (int idxh1 = 0; idxh1 <= number_of_intervals; idxh1++)
{
h1 = ::std::sqrt(1.0f-h2*h2)*(-1.0f+(idxh2*2.0f)/number_of_intervals);
r = ::std::sqrt(1.0f-h1*h1-h2*h2);
for (int idxangle = 0; idxangle <= number_of_intervals; idxangle++)
{
angle = -pi+(idxangle*(2*pi))/number_of_intervals;
::std::cout << "angle = " << angle << " ; ";
::std::cout << "h1 = " << h1;
::std::cout << "h2 = " << h2;
::std::cout << ::std::endl;
::boost::math::quaternion<float> q = ::boost::math::cylindrical(r, angle, h1, h2);
::std::cout << "q = " << q << ::std::endl;
R3_matrix<float> rot = quaternion_to_R3_rotation(q);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << ::std::endl;
::boost::math::quaternion<float> p = R3_rotation_to_quaternion(rot, &q);
::std::cout << "p = " << p << ::std::endl;
::std::cout << "round trip discrepancy: " << ::boost::math::abs(q-p) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
::std::cout << ::std::endl;
}
void test_SO3()
{
::std::cout << "Testing SO3:" << ::std::endl;
::std::cout << ::std::endl;
test_SO3_spherical();
test_SO3_semipolar();
test_SO3_multipolar();
test_SO3_cylindrospherical();
test_SO3_cylindrical();
}
//
// Test of quaternion and R^4 rotation relationship
//
void test_SO4_spherical()
{
::std::cout << "Testing spherical:" << ::std::endl;
::std::cout << ::std::endl;
const float rho1 = 1.0f;
const float rho2 = 1.0f;
float theta1;
float phi11;
float phi21;
float theta2;
float phi12;
float phi22;
for (int idxphi21 = 0; idxphi21 <= number_of_intervals; idxphi21++)
{
phi21 = (-pi/2)+(idxphi21*pi)/number_of_intervals;
for (int idxphi22 = 0; idxphi22 <= number_of_intervals; idxphi22++)
{
phi22 = (-pi/2)+(idxphi22*pi)/number_of_intervals;
for (int idxphi11 = 0; idxphi11 <= number_of_intervals; idxphi11++)
{
phi11 = (-pi/2)+(idxphi11*pi)/number_of_intervals;
for (int idxphi12 = 0; idxphi12 <= number_of_intervals; idxphi12++)
{
phi12 = (-pi/2)+(idxphi12*pi)/number_of_intervals;
for (int idxtheta1 = 0; idxtheta1 <= number_of_intervals; idxtheta1++)
{
theta1 = -pi+(idxtheta1*(2*pi))/number_of_intervals;
for (int idxtheta2 = 0; idxtheta2 <= number_of_intervals; idxtheta2++)
{
theta2 = -pi+(idxtheta2*(2*pi))/number_of_intervals;
::std::cout << "theta1 = " << theta1 << " ; ";
::std::cout << "phi11 = " << phi11 << " ; ";
::std::cout << "phi21 = " << phi21;
::std::cout << "theta2 = " << theta2 << " ; ";
::std::cout << "phi12 = " << phi12 << " ; ";
::std::cout << "phi22 = " << phi22;
::std::cout << ::std::endl;
::boost::math::quaternion<float> p1 = ::boost::math::spherical(rho1, theta1, phi11, phi21);
::std::cout << "p1 = " << p1 << ::std::endl;
::boost::math::quaternion<float> q1 = ::boost::math::spherical(rho2, theta2, phi12, phi22);
::std::cout << "q1 = " << q1 << ::std::endl;
::std::pair< ::boost::math::quaternion<float> , ::boost::math::quaternion<float> > pq1 =
::std::make_pair(p1,q1);
R4_matrix<float> rot = quaternions_to_R4_rotation(pq1);
::std::cout << "rot = ";
::std::cout << "\t" << rot.a11 << "\t" << rot.a12 << "\t" << rot.a13 << "\t" << rot.a14 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a21 << "\t" << rot.a22 << "\t" << rot.a23 << "\t" << rot.a24 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a31 << "\t" << rot.a32 << "\t" << rot.a33 << "\t" << rot.a34 << ::std::endl;
::std::cout << "\t";
::std::cout << "\t" << rot.a41 << "\t" << rot.a42 << "\t" << rot.a43 << "\t" << rot.a44 << ::std::endl;
::std::pair< ::boost::math::quaternion<float> , ::boost::math::quaternion<float> > pq2 =
R4_rotation_to_quaternions(rot, &pq1);
::std::cout << "p1 = " << pq2.first << ::std::endl;
::std::cout << "p2 = " << pq2.second << ::std::endl;
::std::cout << "round trip discrepancy: " << ::std::sqrt(::boost::math::norm(pq1.first-pq2.first)+::boost::math::norm(pq1.second-pq2.second)) << ::std::endl;
::std::cout << ::std::endl;
}
}
}
}
}
}
::std::cout << ::std::endl;
}
void test_SO4()
{
::std::cout << "Testing SO4:" << ::std::endl;
::std::cout << ::std::endl;
test_SO4_spherical();
}
|