1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
|
// Copyright John Maddock 2014
// Copyright Christopher Kormanyos 2014.
// Copyright Paul A. Bristow 2016.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// Contains Quickbook snippets as C++ comments - do not remove.
/*
`This example shows use of a specified-width floating-point typedef
to evaluate a moderately complex math function using
[@http://en.wikipedia.org/wiki/Double-precision_floating-point_format IEEE754 64-bit double-precision].
about 15 decimal digits `std::numeric_limits<boost::float64_t>::digits10`,
(but never exceeding 17 decimal digits `std::numeric_limits<boost::float64_t>::max_digits10`).
The Jahnke-Emden lambda function is described at
Weisstein, Eric W. "Lambda Function." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/LambdaFunction.html
E. Jahnke and F. Emden, "Tables of Functions with Formulae and Curves,"
Dover, New York, 4th ed., (1945), pages 180-188.
*/
//[cstdfloat_example_1
#include <boost/cstdfloat.hpp> // For float_64_t, float128_t. Must be first include!
#include <cmath> // for pow function.
#include <boost/math/special_functions.hpp> // For gamma function.
//] [/cstdfloat_example_1]
#include <boost/type_traits/is_same.hpp>
#include <iostream>
/*!
Function max_digits10
Returns maximum number of possibly significant decimal digits for a floating-point type FPT,
even for older compilers/standard libraries that
lack support for std::numeric_limits<FPT>::max_digits10,
when the Kahan formula 2 + binary_digits * 0.3010 is used instead.
Also provides the correct result for Visual Studio 2010
(where the value 8 provided for float is wrong).
*/
namespace boost
{
template <typename FPT>
const int max_digits10()
{
// Since max_digits10 is not defined (or wrong) on older systems, define a local max_digits10.
// Usage: int m = max_digits10<boost::float64_t>();
const int m =
#if (defined BOOST_NO_CXX11_NUMERIC_LIMITS) || (_MSC_VER == 1600) // is wrongly 8 not 9 for VS2010.
2 + std::numeric_limits<FPT>::digits * 3010/10000;
#else
std::numeric_limits<FPT>::max_digits10;
#endif
return m;
}
} // namespace boost
//`Define the Jahnke-Emden_lambda function.
//[cstdfloat_example_2
boost::float64_t jahnke_emden_lambda(boost::float64_t v, boost::float64_t x)
{
const boost::float64_t gamma_v_plus_one = boost::math::tgamma(v + 1);
const boost::float64_t x_half_pow_v = std::pow(x /2, v);
return gamma_v_plus_one * boost::math::cyl_bessel_j(x, v) / x_half_pow_v;
}
//] [/cstdfloat_example_2]
int main()
{
std::cout.setf(std::ios::showpoint); // show all significant trailing zeros.
long double p = 1.L;
//std::cout.precision(std::numeric_limits<long double>::digits10);
std::cout << "pi = " << p << std::endl;
//[cstdfloat_example_3
//`Ensure that all possibly significant digits (17) including trailing zeros are shown.
std::cout.precision(std::numeric_limits<boost::float64_t>::max_digits10);
std::cout.setf(std::ios::showpoint); // Show trailing zeros.
try
{ // Always use try'n'catch blocks to ensure any error messages are displayed.
// Evaluate and display an evaluation of the Jahnke-Emden lambda function:
boost::float64_t v = 1.;
boost::float64_t x = 1.;
std::cout << jahnke_emden_lambda(v, x) << std::endl; // 0.88010117148986700
//] [/cstdfloat_example_3]
// We can show some evaluations with various precisions:
{ // float64_t
for (int i = 0; i < 10; i++)
{
std::cout << std::setprecision(2) << boost::float64_t(i) << ' '
<< std::setprecision(std::numeric_limits<boost::float64_t>::max_digits10)
<< jahnke_emden_lambda(boost::float64_t(i), v) << std::endl; //
}
}
{ // floatmax_t = the maximum available on this platform.
for (int i = 0; i < 10; i++)
{
std::cout << std::setprecision(2) << boost::floatmax_t(i) << ' '
<< std::setprecision(std::numeric_limits<boost::floatmax_t>::max_digits10)
<< jahnke_emden_lambda(boost::floatmax_t(i), v) << std::endl; //
}
}
// Show the precision of long double (this might be 64, 80 or 128 bits).
std::cout << "Floating-point type long double is available with:" << std::endl;
std::cout << " std::numeric_limits<long double>::digits10 == "
<< std::numeric_limits<long double>::digits10 << std::endl; // 18
std::cout << " std::numeric_limits<long double>::max_digits10 == "
<< std::numeric_limits<long double>::max_digits10 << std::endl; // 21
long double p = boost::math::constants::pi<double>();
std::cout.precision(std::numeric_limits<long double>::digits10);
std::cout << "pi = " << p << std::endl;
//[cstdfloat_constant_2
//`These allow floating-point [*constants of at least the specified width] to be declared:
// Declare Archimedes' constant using float32_t with approximately 7 decimal digits of precision.
static const boost::float32_t pi = BOOST_FLOAT32_C(3.1415926536);
// Declare the Euler-gamma constant with approximately 15 decimal digits of precision.
static const boost::float64_t euler =
BOOST_FLOAT64_C(0.57721566490153286060651209008240243104216);
// Declare the Golden Ratio constant with the maximum decimal digits of precision that the platform supports.
static const boost::floatmax_t golden_ratio =
BOOST_FLOATMAX_C(1.61803398874989484820458683436563811772);
//] [/cstdfloat_constant_2]
// http://www.boost.org/doc/libs/1_55_0/libs/multiprecision/doc/html/boost_multiprecision/tut/floats/float128.html
//[cstdfloat_constant_1
// Display the constant pi to the maximum available precision.
boost::floatmax_t pi_max = boost::math::constants::pi<boost::floatmax_t>();
std::cout.precision(std::numeric_limits<boost::floatmax_t>::digits10);
std::cout << "Most precise pi = " << pi_max << std::endl;
// If floatmax_t is float_128_t, then
// Most precise pi = 3.141592653589793238462643383279503
//] [/cstdfloat_constant_1]
// Test all the floating-point precisions in turn, and if they are available
// then display how many decimal digits of precision.
#ifdef BOOST_FLOAT16_C
std::cout << "Floating-point type boost::float16_t is available." << std::endl;
#else
std::cout << "Floating-point type boost::float16_t is NOT available." << std::endl;
#endif
#ifdef BOOST_FLOAT32_C
std::cout << "Floating-point type boost::float32_t is available." << std::endl;
std::cout << " std::numeric_limits<boost::float32_t>::digits10 == "
<< std::numeric_limits<boost::float32_t>::digits10 << std::endl;
std::cout << " std::numeric_limits<boost::float32_t>::max_digits10 == "
<< std::numeric_limits<boost::float32_t>::max_digits10 << std::endl;
#else
std::cout << "Floating-point type boost::float32_t is NOT available." << std::endl;
#endif
#ifdef BOOST_FLOAT64_C
std::cout << "Floating-point type boost::float64_t is available." << std::endl;
std::cout << " std::numeric_limits<boost::float64_t>::digits10 == "
<< std::numeric_limits<boost::float64_t>::digits10 << std::endl;
std::cout << " std::numeric_limits<boost::float64_t>::max_digits10 == "
<< std::numeric_limits<boost::float64_t>::max_digits10 << std::endl;
#else
std::cout << "Floating-point type boost::float64_t is NOT available." << std::endl;
#endif
#ifdef BOOST_FLOAT80_C
std::cout << "Floating-point type boost::float80_t is available." << std::endl;
std::cout << " std::numeric_limits<boost::float80_t>::digits10 == "
<< std::numeric_limits<boost::float80_t>::digits10 << std::endl;
std::cout << " std::numeric_limits<boost::float80_t>::max_digits10 == "
<< std::numeric_limits<boost::float80_t>::max_digits10 << std::endl;
#else
std::cout << "Floating-point type boost::float80_t is NOT available." << std::endl;
#endif
#ifdef BOOST_FLOAT128_C
std::cout << "Floating-point type boost::float128_t is available." << std::endl;
std::cout << " std::numeric_limits<boost::float128_t>::digits10 == "
<< std::numeric_limits<boost::float128_t>::digits10 << std::endl;
std::cout << " std::numeric_limits<boost::float128_t>::max_digits10 == "
<< std::numeric_limits<boost::float128_t>::max_digits10 << std::endl;
#else
std::cout << "Floating-point type boost::float128_t is NOT available." << std::endl;
#endif
// Show some constants at a precision depending on the available type(s).
#ifdef BOOST_FLOAT16_C
std::cout.precision(boost::max_digits10<boost::float16_t>()); // Show all significant decimal digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT16_C(123.456789012345678901234567890) = "
<< BOOST_FLOAT16_C(123.456789012345678901234567890) << std::endl;
// BOOST_FLOAT16_C(123.456789012345678901234567890) = 123.45678901234568
#endif
//[floatmax_widths_1
#ifdef BOOST_FLOAT32_C
std::cout.precision(boost::max_digits10<boost::float32_t>()); // Show all significant decimal digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) << std::endl;
// BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
#endif
//] [/floatmax_widths_1]
#ifdef BOOST_FLOAT64_C
std::cout.precision(boost::max_digits10<boost::float64_t>()); // Show all significant decimal digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) << std::endl;
// BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
#endif
#ifdef BOOST_FLOAT80_C
std::cout.precision(boost::max_digits10<boost::float80_t>()); // Show all significant decimal digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) << std::endl;
// BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = 123.456789012345678903
#endif
#ifdef BOOST_FLOAT128_C
std::cout.precision(boost::max_digits10<boost::float128_t>()); // Show all significant decimal digits,
std::cout.setf(std::ios::showpoint); // including all significant trailing zeros.
std::cout << "BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = "
<< BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) << std::endl;
// BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453
#endif
/*
//[floatmax_widths_2
BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = 123.456789012345678903
BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453
//] [/floatmax_widths_2]
*/
// Display the precisions available for floatmax_t
#ifdef BOOST_FLOATMAX_C
BOOST_ASSERT(std::numeric_limits<boost::floatmax_t>::is_specialized == true);
BOOST_ASSERT(std::numeric_limits<boost::floatmax_t>::is_iec559 == true);
BOOST_ASSERT(BOOST_FLOATMAX_C(0.) == 0);
std::cout << "floatmax_t " << std::numeric_limits<boost::floatmax_t>::digits << " bits\n" // 113
<< std::numeric_limits<boost::floatmax_t>::digits10 << " decimal digits\n" // 34
<< std::numeric_limits<boost::floatmax_t>::max_digits10 << " max_digits\n" // 36
<< std::numeric_limits<boost::floatmax_t>::radix << " radix\n"
<< std::endl;
int significand_bits = std::numeric_limits<boost::floatmax_t>::digits;
int exponent_max = std::numeric_limits<boost::floatmax_t>::max_exponent;
int exponent_min = std::numeric_limits<boost::floatmax_t>::min_exponent;
int exponent_bits = 1 + static_cast<int>(std::log2(std::numeric_limits<boost::floatmax_t>::max_exponent));
int sign_bits = std::numeric_limits<boost::floatmax_t>::is_signed;
std::cout << "significand_bits (including one implicit bit)" << significand_bits
<< ", exponent_bits " << exponent_bits
<< ", sign_bits " << sign_bits << std::endl;
// One can compute the total number of bits in the floatmax_t,
// but probably not at compile time.
std::cout << "bits = " << significand_bits + exponent_bits + sign_bits -1 << std::endl;
// -1 to take account of the implicit bit that is not part of the physical layout.
// One can compare typedefs (but, of course, only those that are defined for the platform in use.)
std::cout.setf(std::ios::boolalpha);
std::cout << "double, double: " << std::is_same<double, double>::value << std::endl;
bool b = boost::is_same<boost::floatmax_t, boost::float64_t>::value;
std::cout << "boost::is_same<boost::floatmax_t, boost::float64_t>::value; " << b << std::endl;
std::cout << "floatmax_t, float64_t: "
<< std::is_same<boost::floatmax_t, boost::float64_t>::value << std::endl;
/*`So the simplest way of obtaining the total number of bits in the floatmax_t
is to infer it from the std::numeric_limits<>::digits value.
This is possible because the type, must be a IEEE754 layout. */
//[floatmax_1
const int fpbits =
(std::numeric_limits<boost::floatmax_t>::digits == 113) ? 128 :
(std::numeric_limits<boost::floatmax_t>::digits == 64) ? 80 :
(std::numeric_limits<boost::floatmax_t>::digits == 53) ? 64 :
(std::numeric_limits<boost::floatmax_t>::digits == 24) ? 32 :
(std::numeric_limits<boost::floatmax_t>::digits == 11) ? 16 :
0; // Unknown - not IEEE754 format.
std::cout << fpbits << " bits." << std::endl;
//] [/floatmax_1]
#endif
}
catch (std::exception ex)
{ // Display details about why any exceptions are thrown.
std::cout << "Thrown exception " << ex.what() << std::endl;
}
} // int main()
/*
[cstdfloat_output
GCC 4.8.1 with quadmath
pi = 1.00000
0.88010117148986700
0.0 0.0000000000000000
1.0 0.88010117148986700
2.0 4.6137984620549872
3.0 16.274830009244951
4.0 -25.360637961042869
5.0 -1257.9038883512264
6.0 -12749.592182518225
7.0 -3020.9830849309437
8.0 2421897.6013183584
9.0 45577595.449204877
0.0 0.00000000000000000000000000000000000
1.0 0.880101171489866995756301548681221902
2.0 4.61379846205498722611082484945654869
3.0 16.2748300092449511566883302293717861
4.0 -25.3606379610428689375112298876047134
5.0 -1257.90388835122644195507746189832687
6.0 -12749.5921825182249449426308274269104
7.0 -3020.98308493094373261556029319763184
8.0 2421897.60131835844367742538452148438
9.0 45577595.4492048770189285278320312500
Floating-point type long double is available with:
std::numeric_limits<long double>::digits10 == 18
std::numeric_limits<long double>::max_digits10 == 21
pi = 3.14159265358979312
Most precise pi = 3.141592653589793238462643383279503
Floating-point type boost::float16_t is NOT available.
Floating-point type boost::float32_t is available.
std::numeric_limits<boost::float32_t>::digits10 == 6
std::numeric_limits<boost::float32_t>::max_digits10 == 9
Floating-point type boost::float64_t is available.
std::numeric_limits<boost::float64_t>::digits10 == 15
std::numeric_limits<boost::float64_t>::max_digits10 == 17
Floating-point type boost::float80_t is available.
std::numeric_limits<boost::float80_t>::digits10 == 18
std::numeric_limits<boost::float80_t>::max_digits10 == 21
Floating-point type boost::float128_t is available.
std::numeric_limits<boost::float128_t>::digits10 == 34
std::numeric_limits<boost::float128_t>::max_digits10 == 36
BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = 123.456789012345678903
BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453
floatmax_t 113 bits
34 decimal digits
36 max_digits
2 radix
significand_bits (including one implicit bit)113, exponent_bits 15, sign_bits 1
bits = 128
double, double: true
boost::is_same<boost::floatmax_t, boost::float64_t>::value; false
floatmax_t, float64_t: false
128 bits.
RUN SUCCESSFUL (total time: 53ms)
GCC 6.1.1
pi = 1.00000
0.88010117148986700
0.0 0.0000000000000000
1.0 0.88010117148986700
2.0 4.6137984620549872
3.0 16.274830009244951
4.0 -25.360637961042869
5.0 -1257.9038883512264
6.0 -12749.592182518225
7.0 -3020.9830849309437
8.0 2421897.6013183584
9.0 45577595.449204877
0.0 0.00000000000000000000000000000000000
1.0 0.880101171489866995756301548681221902
2.0 4.61379846205498722611082484945654869
3.0 16.2748300092449511566883302293717861
4.0 -25.3606379610428689375112298876047134
5.0 -1257.90388835122644195507746189832687
6.0 -12749.5921825182249449426308274269104
7.0 -3020.98308493094373261556029319763184
8.0 2421897.60131835844367742538452148438
9.0 45577595.4492048770189285278320312500
Floating-point type long double is available with:
std::numeric_limits<long double>::digits10 == 18
std::numeric_limits<long double>::max_digits10 == 21
pi = 3.14159265358979312
Most precise pi = 3.14159265358979323846264338327950
Floating-point type boost::float16_t is NOT available.
Floating-point type boost::float32_t is available.
std::numeric_limits<boost::float32_t>::digits10 == 6
std::numeric_limits<boost::float32_t>::max_digits10 == 9
Floating-point type boost::float64_t is available.
std::numeric_limits<boost::float64_t>::digits10 == 15
std::numeric_limits<boost::float64_t>::max_digits10 == 17
Floating-point type boost::float80_t is available.
std::numeric_limits<boost::float80_t>::digits10 == 18
std::numeric_limits<boost::float80_t>::max_digits10 == 21
Floating-point type boost::float128_t is available.
std::numeric_limits<boost::float128_t>::digits10 == 33
std::numeric_limits<boost::float128_t>::max_digits10 == 36
BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) = 123.456789012345678903
BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453
floatmax_t 113 bits
33 decimal digits
36 max_digits
2 radix
significand_bits (including one implicit bit)113, exponent_bits 15, sign_bits 1
bits = 128
double, double: true
boost::is_same<boost::floatmax_t, boost::float64_t>::value; false
floatmax_t, float64_t: false
128 bits.
MSVC 2013 64-bit
1> pi = 1.00000
1> 0.88010117148986700
1> 0.00 0.00000000000000000
1> 1.0 0.88010117148986700
1> 2.0 4.6137984620549854
1> 3.0 16.274830009244948
1> 4.0 -25.360637961042869
1> 5.0 -1257.9038883512258
1> 6.0 -12749.592182518225
1> 7.0 -3020.9830849309396
1> 8.0 2421897.6013183575
1> 9.0 45577595.449204892
1> 0.00 0.00000000000000000
1> 1.0 0.88010117148986700
1> 2.0 4.6137984620549854
1> 3.0 16.274830009244948
1> 4.0 -25.360637961042869
1> 5.0 -1257.9038883512258
1> 6.0 -12749.592182518225
1> 7.0 -3020.9830849309396
1> 8.0 2421897.6013183575
1> 9.0 45577595.449204892
1> Floating-point type long double is available with:
1> std::numeric_limits<long double>::digits10 == 15
1> std::numeric_limits<long double>::max_digits10 == 17
1> pi = 3.14159265358979
1> Most precise pi = 3.14159265358979
1> Floating-point type boost::float16_t is NOT available.
1> Floating-point type boost::float32_t is available.
1> std::numeric_limits<boost::float32_t>::digits10 == 6
1> std::numeric_limits<boost::float32_t>::max_digits10 == 9
1> Floating-point type boost::float64_t is available.
1> std::numeric_limits<boost::float64_t>::digits10 == 15
1> std::numeric_limits<boost::float64_t>::max_digits10 == 17
1> Floating-point type boost::float80_t is NOT available.
1> Floating-point type boost::float128_t is NOT available.
1> BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787
1> BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) = 123.45678901234568
1> floatmax_t 53 bits
1> 15 decimal digits
1> 17 max_digits
1> 2 radix
1>
1> significand_bits (including one implicit bit)53, exponent_bits 11, sign_bits 1
1> bits = 64
1> double, double: true
1> boost::is_same<boost::floatmax_t, boost::float64_t>::value; true
1> floatmax_t, float64_t: true
1> 64 bits.
] [/cstdfloat_output]
*/
|