summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/minimax/f.cpp
blob: 6ea405800e66c3f896531ee22d6ad742c94cb0ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
//  (C) Copyright John Maddock 2006.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#define L22
//#include "../tools/ntl_rr_lanczos.hpp"
//#include "../tools/ntl_rr_digamma.hpp"
#include "multiprecision.hpp"
#include <boost/math/tools/polynomial.hpp>
#include <boost/math/special_functions.hpp>
#include <boost/math/special_functions/zeta.hpp>
#include <boost/math/special_functions/expint.hpp>
#include <boost/math/special_functions/lambert_w.hpp>

#include <cmath>


mp_type f(const mp_type& x, int variant)
{
   static const mp_type tiny = boost::math::tools::min_value<mp_type>() * 64;
   switch(variant)
   {
   case 0:
      {
      mp_type x_ = sqrt(x == 0 ? 1e-80 : x);
      return boost::math::erf(x_) / x_;
      }
   case 1:
      {
      mp_type x_ = 1 / x;
      return boost::math::erfc(x_) * x_ / exp(-x_ * x_);
      }
   case 2:
      {
      return boost::math::erfc(x) * x / exp(-x * x);
      }
   case 3:
      {
         mp_type y(x);
         if(y == 0) 
            y += tiny;
         return boost::math::lgamma(y+2) / y - 0.5;
      }
   case 4:
      //
      // lgamma in the range [2,3], use:
      //
      // lgamma(x) = (x-2) * (x + 1) * (c + R(x - 2))
      //
      // Works well at 80-bit long double precision, but doesn't
      // stretch to 128-bit precision.
      //
      if(x == 0)
      {
         return boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008") / 3;
      }
      return boost::math::lgamma(x+2) / (x * (x+3));
   case 5:
      {
         //
         // lgamma in the range [1,2], use:
         //
         // lgamma(x) = (x - 1) * (x - 2) * (c + R(x - 1))
         //
         // works well over [1, 1.5] but not near 2 :-(
         //
         mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
         mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
         if(x == 0)
         {
            return r1;
         }
         if(x == 1)
         {
            return r2;
         }
         return boost::math::lgamma(x+1) / (x * (x - 1));
      }
   case 6:
      {
         //
         // lgamma in the range [1.5,2], use:
         //
         // lgamma(x) = (2 - x) * (1 - x) * (c + R(2 - x))
         //
         // works well over [1.5, 2] but not near 1 :-(
         //
         mp_type r1 = boost::lexical_cast<mp_type>("0.57721566490153286060651209008240243104215933593992");
         mp_type r2 = boost::lexical_cast<mp_type>("0.42278433509846713939348790991759756895784066406008");
         if(x == 0)
         {
            return r2;
         }
         if(x == 1)
         {
            return r1;
         }
         return boost::math::lgamma(2-x) / (x * (x - 1));
      }
   case 7:
      {
         //
         // erf_inv in range [0, 0.5]
         //
         mp_type y = x;
         if(y == 0)
            y = boost::math::tools::epsilon<mp_type>() / 64;
         return boost::math::erf_inv(y) / (y * (y+10));
      }
   case 8:
      {
         // 
         // erfc_inv in range [0.25, 0.5]
         // Use an y-offset of 0.25, and range [0, 0.25]
         // abs error, auto y-offset.
         //
         mp_type y = x;
         if(y == 0)
            y = boost::lexical_cast<mp_type>("1e-5000");
         return sqrt(-2 * log(y)) / boost::math::erfc_inv(y);
      }
   case 9:
      {
         mp_type x2 = x;
         if(x2 == 0)
            x2 = boost::lexical_cast<mp_type>("1e-5000");
         mp_type y = exp(-x2*x2); // sqrt(-log(x2)) - 5;
         return boost::math::erfc_inv(y) / x2;
      }
   case 10:
      {
         //
         // Digamma over the interval [1,2], set x-offset to 1
         // and optimise for absolute error over [0,1].
         //
         int current_precision = get_working_precision();
         if(current_precision < 1000)
            set_working_precision(1000);
         //
         // This value for the root of digamma is calculated using our
         // differentiated lanczos approximation.  It agrees with Cody
         // to ~ 25 digits and to Morris to 35 digits.  See:
         // TOMS ALGORITHM 708 (Didonato and Morris).
         // and Math. Comp. 27, 123-127 (1973) by Cody, Strecok and Thacher.
         //
         //mp_type root = boost::lexical_cast<mp_type>("1.4616321449683623412626595423257213234331845807102825466429633351908372838889871");
         //
         // Actually better to calculate the root on the fly, it appears to be more
         // accurate: convergence is easier with the 1000-bit value, the approximation
         // produced agrees with functions.mathworld.com values to 35 digits even quite
         // near the root.
         //
         static boost::math::tools::eps_tolerance<mp_type> tol(1000);
         static boost::uintmax_t max_iter = 1000;
         mp_type (*pdg)(mp_type) = &boost::math::digamma;
         static const mp_type root = boost::math::tools::bracket_and_solve_root(pdg, mp_type(1.4), mp_type(1.5), true, tol, max_iter).first;

         mp_type x2 = x;
         double lim = 1e-65;
         if(fabs(x2 - root) < lim)
         {
            //
            // This is a problem area:
            // x2-root suffers cancellation error, so does digamma.
            // That gets compounded again when Remez calculates the error
            // function.  This cludge seems to stop the worst of the problems:
            //
            static const mp_type a = boost::math::digamma(root - lim) / -lim;
            static const mp_type b = boost::math::digamma(root + lim) / lim;
            mp_type fract = (x2 - root + lim) / (2*lim);
            mp_type r = (1-fract) * a + fract * b;
            std::cout << "In root area: " << r;
            return r;
         }
         mp_type result =  boost::math::digamma(x2) / (x2 - root);
         if(current_precision < 1000)
            set_working_precision(current_precision);
         return result;
      }
   case 11:
      // expm1:
      if(x == 0)
      {
         static mp_type lim = 1e-80;
         static mp_type a = boost::math::expm1(-lim);
         static mp_type b = boost::math::expm1(lim);
         static mp_type l = (b-a) / (2 * lim);
         return l;
      }
      return boost::math::expm1(x) / x;
   case 12:
      // demo, and test case:
      return exp(x);
   case 13:
      // K(k):
      {
      return boost::math::ellint_1(x);
      }
   case 14:
      // K(k)
      {
      return boost::math::ellint_1(1-x) / log(x);
   }
   case 15:
      // E(k)
      {
         // x = 1-k^2
         mp_type z = 1 - x * log(x);
         return boost::math::ellint_2(sqrt(1-x)) / z;
      }
   case 16:
      // Bessel I0(x) over [0,16]:
      {
         return boost::math::cyl_bessel_i(0, sqrt(x));
      }
   case 17:
      // Bessel I0(x) over [16,INF]
      {
         mp_type z = 1 / (mp_type(1)/16 - x);
         return boost::math::cyl_bessel_i(0, z) * sqrt(z) / exp(z);
      }
   case 18:
      // Zeta over [0, 1]
      {
         return boost::math::zeta(1 - x) * x - x;
      }
   case 19:
      // Zeta over [1, n]
      {
         return boost::math::zeta(x) - 1 / (x - 1);
      }
   case 20:
      // Zeta over [a, b] : a >> 1
      {
         return log(boost::math::zeta(x) - 1);
      }
   case 21:
      // expint[1] over [0,1]:
      {
         mp_type tiny = boost::lexical_cast<mp_type>("1e-5000");
         mp_type z = (x <= tiny) ? tiny : x;
         return boost::math::expint(1, z) - z + log(z);
      }
   case 22:
      // expint[1] over [1,N],
      // Note that x varies from [0,1]:
      {
         mp_type z = 1 / x;
         return boost::math::expint(1, z) * exp(z) * z;
      }
   case 23:
      // expin Ei over [0,R]
      {
         static const mp_type root = 
            boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
         mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::min)() : x;
         return (boost::math::expint(z) - log(z / root)) / (z - root);
      }
   case 24:
      // Expint Ei for large x:
      {
         static const mp_type root = 
            boost::lexical_cast<mp_type>("0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392");
         mp_type z = x < (std::numeric_limits<long double>::min)() ? (std::numeric_limits<long double>::max)() : mp_type(1 / x);
         return (boost::math::expint(z) - z) * z * exp(-z);
         //return (boost::math::expint(z) - log(z)) * z * exp(-z);
      }
   case 25:
      // Expint Ei for large x:
      {
         return (boost::math::expint(x) - x) * x * exp(-x);
      }
   case 26:
      {
         //
         // erf_inv in range [0, 0.5]
         //
         mp_type y = x;
         if(y == 0)
            y = boost::math::tools::epsilon<mp_type>() / 64;
         y = sqrt(y);
         return boost::math::erf_inv(y) / (y);
      }
   case 28:
      {
         // log1p over [-0.5,0.5]
         mp_type y = x;
         if(fabs(y) < 1e-100)
            y = (y == 0) ? 1e-100 : boost::math::sign(y) * 1e-100;
         return (boost::math::log1p(y) - y + y * y / 2) / (y);
      }
   case 29:
      {
         // cbrt over [0.5, 1]
         return boost::math::cbrt(x);
      }
   case 30:
   {
      // trigamma over [x,y]
      mp_type y = x;
      y = sqrt(y);
      return boost::math::trigamma(x) * (x * x);
   }
   case 31:
   {
      // trigamma over [x, INF]
      if(x == 0) return 1;
      mp_type y = (x == 0) ? (std::numeric_limits<double>::max)() / 2 : mp_type(1/x);
      return boost::math::trigamma(y) * y;
   }
   case 32:
   {
      // I0 over [N, INF]
      // Don't need to go past x = 1/1000 = 1e-3 for double, or
      // 1/15000 = 0.0006 for long double, start at 1/7.75=0.13
      mp_type arg = 1 / x;
      return sqrt(arg) * exp(-arg) * boost::math::cyl_bessel_i(0, arg);
   }
   case 33:
   {
      // I0 over [0, N]
      mp_type xx = sqrt(x) * 2;
      return (boost::math::cyl_bessel_i(0, xx) - 1) / x;
   }
   case 34:
   {
      // I1 over [0, N]
      mp_type xx = sqrt(x) * 2;
      return (boost::math::cyl_bessel_i(1, xx) * 2 / xx - 1 - x / 2) / (x * x);
   }
   case 35:
   {
      // I1 over [N, INF]
      mp_type xx = 1 / x;
      return boost::math::cyl_bessel_i(1, xx) * sqrt(xx) * exp(-xx);
   }
   case 36:
   {
      // K0 over [0, 1]
      mp_type xx = sqrt(x);
      return boost::math::cyl_bessel_k(0, xx) + log(xx) * boost::math::cyl_bessel_i(0, xx);
   }
   case 37:
   {
      // K0 over [1, INF]
      mp_type xx = 1 / x;
      return boost::math::cyl_bessel_k(0, xx) * exp(xx) * sqrt(xx);
   }
   case 38:
   {
      // K1 over [0, 1]
      mp_type xx = sqrt(x);
      return (boost::math::cyl_bessel_k(1, xx) - log(xx) * boost::math::cyl_bessel_i(1, xx) - 1 / xx) / xx;
   }
   case 39:
   {
      // K1 over [1, INF]
      mp_type xx = 1 / x;
      return boost::math::cyl_bessel_k(1, xx) * sqrt(xx) * exp(xx);
   }
   // Lambert W0
   case 40:
      return boost::math::lambert_w0(x);
   case 41:
   {
      if (x == 0)
         return 1;
      return boost::math::lambert_w0(x) / x;
   }
   case 42:
   {
      static const mp_type e1 = exp(mp_type(-1));
      return x / -boost::math::lambert_w0(-e1 + x);
   }
   case 43:
   {
      mp_type xx = 1 / x;
      return 1 / boost::math::lambert_w0(xx);
   }
   case 44:
   {
      mp_type ex = exp(x);
      return boost::math::lambert_w0(ex) - x;
   }
   }
   return 0;
}

void show_extra(
   const boost::math::tools::polynomial<mp_type>& n, 
   const boost::math::tools::polynomial<mp_type>& d, 
   const mp_type& x_offset, 
   const mp_type& y_offset, 
   int variant)
{
   switch(variant)
   {
   default:
      // do nothing here...
      ;
   }
}