1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
// Boost.Units - A C++ library for zero-overhead dimensional analysis and
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/**
\file
\brief complex.cpp
\details
Demonstrate a complex number class that functions correctly with quantities.
Output:
@verbatim
//[complex_output_1
+L = 2 + 1 i m
-L = -2 + -1 i m
L+L = 4 + 2 i m
L-L = 0 + 0 i m
L*L = 3 + 4 i m^2
L/L = 1 + 0 i dimensionless
L^3 = 2 + 11 i m^3
L^(3/2) = 2.56713 + 2.14247 i m^(3/2)
3vL = 1.29207 + 0.201294 i m^(1/3)
(3/2)vL = 1.62894 + 0.520175 i m^(2/3)
//]
//[complex_output_2
+L = 2 m + 1 m i
-L = -2 m + -1 m i
L+L = 4 m + 2 m i
L-L = 0 m + 0 m i
L*L = 3 m^2 + 4 m^2 i
L/L = 1 dimensionless + 0 dimensionless i
L^3 = 2 m^3 + 11 m^3 i
L^(3/2) = 2.56713 m^(3/2) + 2.14247 m^(3/2) i
3vL = 1.29207 m^(1/3) + 0.201294 m^(1/3) i
(3/2)vL = 1.62894 m^(2/3) + 0.520175 m^(2/3) i
//]
@endverbatim
**/
#include <cmath>
#include <complex>
#include <iostream>
#include <boost/mpl/list.hpp>
#include <boost/units/io.hpp>
#include <boost/units/pow.hpp>
#include <boost/units/quantity.hpp>
#include "test_system.hpp"
//[complex_class_snippet_1
namespace boost {
namespace units {
/// replacement complex class
template<class T>
class complex
{
public:
typedef complex<T> this_type;
constexpr complex(const T& r = 0,const T& i = 0) : r_(r),i_(i) { }
constexpr complex(const this_type& source) : r_(source.r_),i_(source.i_) { }
constexpr this_type& operator=(const this_type& source)
{
if (this == &source) return *this;
r_ = source.r_;
i_ = source.i_;
return *this;
}
constexpr T& real() { return r_; }
constexpr T& imag() { return i_; }
constexpr const T& real() const { return r_; }
constexpr const T& imag() const { return i_; }
constexpr this_type& operator+=(const T& val)
{
r_ += val;
return *this;
}
constexpr this_type& operator-=(const T& val)
{
r_ -= val;
return *this;
}
constexpr this_type& operator*=(const T& val)
{
r_ *= val;
i_ *= val;
return *this;
}
constexpr this_type& operator/=(const T& val)
{
r_ /= val;
i_ /= val;
return *this;
}
constexpr this_type& operator+=(const this_type& source)
{
r_ += source.r_;
i_ += source.i_;
return *this;
}
constexpr this_type& operator-=(const this_type& source)
{
r_ -= source.r_;
i_ -= source.i_;
return *this;
}
constexpr this_type& operator*=(const this_type& source)
{
*this = *this * source;
return *this;
}
constexpr this_type& operator/=(const this_type& source)
{
*this = *this / source;
return *this;
}
private:
T r_,i_;
};
}
}
#if BOOST_UNITS_HAS_BOOST_TYPEOF
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::complex, 1)
#endif
namespace boost {
namespace units {
template<class X>
constexpr
complex<typename unary_plus_typeof_helper<X>::type>
operator+(const complex<X>& x)
{
typedef typename unary_plus_typeof_helper<X>::type type;
return complex<type>(x.real(),x.imag());
}
template<class X>
constexpr
complex<typename unary_minus_typeof_helper<X>::type>
operator-(const complex<X>& x)
{
typedef typename unary_minus_typeof_helper<X>::type type;
return complex<type>(-x.real(),-x.imag());
}
template<class X,class Y>
constexpr
complex<typename add_typeof_helper<X,Y>::type>
operator+(const complex<X>& x,const complex<Y>& y)
{
typedef typename boost::units::add_typeof_helper<X,Y>::type type;
return complex<type>(x.real()+y.real(),x.imag()+y.imag());
}
template<class X,class Y>
constexpr
complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator-(const complex<X>& x,const complex<Y>& y)
{
typedef typename boost::units::subtract_typeof_helper<X,Y>::type type;
return complex<type>(x.real()-y.real(),x.imag()-y.imag());
}
template<class X,class Y>
constexpr
complex<typename boost::units::multiply_typeof_helper<X,Y>::type>
operator*(const complex<X>& x,const complex<Y>& y)
{
typedef typename boost::units::multiply_typeof_helper<X,Y>::type type;
return complex<type>(x.real()*y.real() - x.imag()*y.imag(),
x.real()*y.imag() + x.imag()*y.real());
// fully correct implementation has more complex return type
//
// typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
//
// typedef typename boost::units::add_typeof_helper<
// xy_type,xy_type>::type xy_plus_xy_type;
// typedef typename
// boost::units::subtract_typeof_helper<xy_type,xy_type>::type
// xy_minus_xy_type;
//
// BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_type,
// xy_minus_xy_type>::value == true));
//
// return complex<xy_plus_xy_type>(x.real()*y.real()-x.imag()*y.imag(),
// x.real()*y.imag()+x.imag()*y.real());
}
template<class X,class Y>
constexpr
complex<typename boost::units::divide_typeof_helper<X,Y>::type>
operator/(const complex<X>& x,const complex<Y>& y)
{
// naive implementation of complex division
typedef typename boost::units::divide_typeof_helper<X,Y>::type type;
return complex<type>((x.real()*y.real()+x.imag()*y.imag())/
(y.real()*y.real()+y.imag()*y.imag()),
(x.imag()*y.real()-x.real()*y.imag())/
(y.real()*y.real()+y.imag()*y.imag()));
// fully correct implementation has more complex return type
//
// typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
// typedef typename boost::units::multiply_typeof_helper<Y,Y>::type yy_type;
//
// typedef typename boost::units::add_typeof_helper<xy_type, xy_type>::type
// xy_plus_xy_type;
// typedef typename boost::units::subtract_typeof_helper<
// xy_type,xy_type>::type xy_minus_xy_type;
//
// typedef typename boost::units::divide_typeof_helper<
// xy_plus_xy_type,yy_type>::type xy_plus_xy_over_yy_type;
// typedef typename boost::units::divide_typeof_helper<
// xy_minus_xy_type,yy_type>::type xy_minus_xy_over_yy_type;
//
// BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_over_yy_type,
// xy_minus_xy_over_yy_type>::value == true));
//
// return complex<xy_plus_xy_over_yy_type>(
// (x.real()*y.real()+x.imag()*y.imag())/
// (y.real()*y.real()+y.imag()*y.imag()),
// (x.imag()*y.real()-x.real()*y.imag())/
// (y.real()*y.real()+y.imag()*y.imag()));
}
template<class Y>
complex<Y>
pow(const complex<Y>& x,const Y& y)
{
std::complex<Y> tmp(x.real(),x.imag());
tmp = std::pow(tmp,y);
return complex<Y>(tmp.real(),tmp.imag());
}
template<class Y>
std::ostream& operator<<(std::ostream& os,const complex<Y>& val)
{
os << val.real() << " + " << val.imag() << " i";
return os;
}
/// specialize power typeof helper for complex<Y>
template<class Y,long N,long D>
struct power_typeof_helper<complex<Y>,static_rational<N,D> >
{
typedef complex<
typename power_typeof_helper<Y,static_rational<N,D> >::type
> type;
static type value(const complex<Y>& x)
{
const static_rational<N,D> rat;
const Y m = Y(rat.numerator())/Y(rat.denominator());
return boost::units::pow(x,m);
}
};
/// specialize root typeof helper for complex<Y>
template<class Y,long N,long D>
struct root_typeof_helper<complex<Y>,static_rational<N,D> >
{
typedef complex<
typename root_typeof_helper<Y,static_rational<N,D> >::type
> type;
static type value(const complex<Y>& x)
{
const static_rational<N,D> rat;
const Y m = Y(rat.denominator())/Y(rat.numerator());
return boost::units::pow(x,m);
}
};
/// specialize power typeof helper for complex<quantity<Unit,Y> >
template<class Y,class Unit,long N,long D>
struct power_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
{
typedef typename
power_typeof_helper<Y,static_rational<N,D> >::type value_type;
typedef typename
power_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
typedef quantity<unit_type,value_type> quantity_type;
typedef complex<quantity_type> type;
static type value(const complex<quantity<Unit,Y> >& x)
{
const complex<value_type> tmp =
pow<static_rational<N,D> >(complex<Y>(x.real().value(),
x.imag().value()));
return type(quantity_type::from_value(tmp.real()),
quantity_type::from_value(tmp.imag()));
}
};
/// specialize root typeof helper for complex<quantity<Unit,Y> >
template<class Y,class Unit,long N,long D>
struct root_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
{
typedef typename
root_typeof_helper<Y,static_rational<N,D> >::type value_type;
typedef typename
root_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
typedef quantity<unit_type,value_type> quantity_type;
typedef complex<quantity_type> type;
static type value(const complex<quantity<Unit,Y> >& x)
{
const complex<value_type> tmp =
root<static_rational<N,D> >(complex<Y>(x.real().value(),
x.imag().value()));
return type(quantity_type::from_value(tmp.real()),
quantity_type::from_value(tmp.imag()));
}
};
} // namespace units
} // namespace boost
//]
int main(void)
{
using namespace boost::units;
using namespace boost::units::test;
{
//[complex_snippet_1
typedef quantity<length,complex<double> > length_dimension;
const length_dimension L(complex<double>(2.0,1.0)*meters);
//]
std::cout << "+L = " << +L << std::endl
<< "-L = " << -L << std::endl
<< "L+L = " << L+L << std::endl
<< "L-L = " << L-L << std::endl
<< "L*L = " << L*L << std::endl
<< "L/L = " << L/L << std::endl
<< "L^3 = " << pow<3>(L) << std::endl
<< "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
<< "3vL = " << root<3>(L) << std::endl
<< "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
<< std::endl;
}
{
//[complex_snippet_2
typedef complex<quantity<length> > length_dimension;
const length_dimension L(2.0*meters,1.0*meters);
//]
std::cout << "+L = " << +L << std::endl
<< "-L = " << -L << std::endl
<< "L+L = " << L+L << std::endl
<< "L-L = " << L-L << std::endl
<< "L*L = " << L*L << std::endl
<< "L/L = " << L/L << std::endl
<< "L^3 = " << pow<3>(L) << std::endl
<< "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
<< "3vL = " << root<3>(L) << std::endl
<< "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
<< std::endl;
}
return 0;
}
|