1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A btree implementation of the STL set and map interfaces. A btree is both
// smaller and faster than STL set/map. The red-black tree implementation of
// STL set/map has an overhead of 3 pointers (left, right and parent) plus the
// node color information for each stored value. So a set<int32> consumes 20
// bytes for each value stored. This btree implementation stores multiple
// values on fixed size nodes (usually 256 bytes) and doesn't store child
// pointers for leaf nodes. The result is that a btree_set<int32> may use much
// less memory per stored value. For the random insertion benchmark in
// btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per
// stored value.
//
// The packing of multiple values on to each node of a btree has another effect
// besides better space utilization: better cache locality due to fewer cache
// lines being accessed. Better cache locality translates into faster
// operations.
//
// CAVEATS
//
// Insertions and deletions on a btree can cause splitting, merging or
// rebalancing of btree nodes. And even without these operations, insertions
// and deletions on a btree will move values around within a node. In both
// cases, the result is that insertions and deletions can invalidate iterators
// pointing to values other than the one being inserted/deleted. This is
// notably different from STL set/map which takes care to not invalidate
// iterators on insert/erase except, of course, for iterators pointing to the
// value being erased. A partial workaround when erasing is available:
// erase() returns an iterator pointing to the item just after the one that was
// erased (or end() if none exists). See also safe_btree.
// PERFORMANCE
//
// btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk
//
// Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06
// Benchmark STL(ns) B-Tree(ns) @ <size>
// --------------------------------------------------------
// BM_set_int32_insert 1516 608 +59.89% <256> [40.0, 5.2]
// BM_set_int32_lookup 1160 414 +64.31% <256> [40.0, 5.2]
// BM_set_int32_fulllookup 960 410 +57.29% <256> [40.0, 4.4]
// BM_set_int32_delete 1741 528 +69.67% <256> [40.0, 5.2]
// BM_set_int32_queueaddrem 3078 1046 +66.02% <256> [40.0, 5.5]
// BM_set_int32_mixedaddrem 3600 1384 +61.56% <256> [40.0, 5.3]
// BM_set_int32_fifo 227 113 +50.22% <256> [40.0, 4.4]
// BM_set_int32_fwditer 158 26 +83.54% <256> [40.0, 5.2]
// BM_map_int32_insert 1551 636 +58.99% <256> [48.0, 10.5]
// BM_map_int32_lookup 1200 508 +57.67% <256> [48.0, 10.5]
// BM_map_int32_fulllookup 989 487 +50.76% <256> [48.0, 8.8]
// BM_map_int32_delete 1794 628 +64.99% <256> [48.0, 10.5]
// BM_map_int32_queueaddrem 3189 1266 +60.30% <256> [48.0, 11.6]
// BM_map_int32_mixedaddrem 3822 1623 +57.54% <256> [48.0, 10.9]
// BM_map_int32_fifo 151 134 +11.26% <256> [48.0, 8.8]
// BM_map_int32_fwditer 161 32 +80.12% <256> [48.0, 10.5]
// BM_set_int64_insert 1546 636 +58.86% <256> [40.0, 10.5]
// BM_set_int64_lookup 1200 512 +57.33% <256> [40.0, 10.5]
// BM_set_int64_fulllookup 971 487 +49.85% <256> [40.0, 8.8]
// BM_set_int64_delete 1745 616 +64.70% <256> [40.0, 10.5]
// BM_set_int64_queueaddrem 3163 1195 +62.22% <256> [40.0, 11.6]
// BM_set_int64_mixedaddrem 3760 1564 +58.40% <256> [40.0, 10.9]
// BM_set_int64_fifo 146 103 +29.45% <256> [40.0, 8.8]
// BM_set_int64_fwditer 162 31 +80.86% <256> [40.0, 10.5]
// BM_map_int64_insert 1551 720 +53.58% <256> [48.0, 20.7]
// BM_map_int64_lookup 1214 612 +49.59% <256> [48.0, 20.7]
// BM_map_int64_fulllookup 994 592 +40.44% <256> [48.0, 17.2]
// BM_map_int64_delete 1778 764 +57.03% <256> [48.0, 20.7]
// BM_map_int64_queueaddrem 3189 1547 +51.49% <256> [48.0, 20.9]
// BM_map_int64_mixedaddrem 3779 1887 +50.07% <256> [48.0, 21.6]
// BM_map_int64_fifo 147 145 +1.36% <256> [48.0, 17.2]
// BM_map_int64_fwditer 162 41 +74.69% <256> [48.0, 20.7]
// BM_set_string_insert 1989 1966 +1.16% <256> [64.0, 44.5]
// BM_set_string_lookup 1709 1600 +6.38% <256> [64.0, 44.5]
// BM_set_string_fulllookup 1573 1529 +2.80% <256> [64.0, 35.4]
// BM_set_string_delete 2520 1920 +23.81% <256> [64.0, 44.5]
// BM_set_string_queueaddrem 4706 4309 +8.44% <256> [64.0, 48.3]
// BM_set_string_mixedaddrem 5080 4654 +8.39% <256> [64.0, 46.7]
// BM_set_string_fifo 318 512 -61.01% <256> [64.0, 35.4]
// BM_set_string_fwditer 182 93 +48.90% <256> [64.0, 44.5]
// BM_map_string_insert 2600 2227 +14.35% <256> [72.0, 55.8]
// BM_map_string_lookup 2068 1730 +16.34% <256> [72.0, 55.8]
// BM_map_string_fulllookup 1859 1618 +12.96% <256> [72.0, 44.0]
// BM_map_string_delete 3168 2080 +34.34% <256> [72.0, 55.8]
// BM_map_string_queueaddrem 5840 4701 +19.50% <256> [72.0, 59.4]
// BM_map_string_mixedaddrem 6400 5200 +18.75% <256> [72.0, 57.8]
// BM_map_string_fifo 398 596 -49.75% <256> [72.0, 44.0]
// BM_map_string_fwditer 243 113 +53.50% <256> [72.0, 55.8]
#ifndef UTIL_BTREE_BTREE_H__
#define UTIL_BTREE_BTREE_H__
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <type_traits>
#include <new>
#include <ostream>
#include <string>
#include <utility>
#include "include/ceph_assert.h"
namespace btree {
// Inside a btree method, if we just call swap(), it will choose the
// btree::swap method, which we don't want. And we can't say ::swap
// because then MSVC won't pickup any std::swap() implementations. We
// can't just use std::swap() directly because then we don't get the
// specialization for types outside the std namespace. So the solution
// is to have a special swap helper function whose name doesn't
// collide with other swap functions defined by the btree classes.
template <typename T>
inline void btree_swap_helper(T &a, T &b) {
using std::swap;
swap(a, b);
}
// A template helper used to select A or B based on a condition.
template<bool cond, typename A, typename B>
struct if_{
typedef A type;
};
template<typename A, typename B>
struct if_<false, A, B> {
typedef B type;
};
// Types small_ and big_ are promise that sizeof(small_) < sizeof(big_)
typedef char small_;
struct big_ {
char dummy[2];
};
// A compile-time assertion.
template <bool>
struct CompileAssert {
};
#define COMPILE_ASSERT(expr, msg) \
typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
// A helper type used to indicate that a key-compare-to functor has been
// provided. A user can specify a key-compare-to functor by doing:
//
// struct MyStringComparer
// : public util::btree::btree_key_compare_to_tag {
// int operator()(const string &a, const string &b) const {
// return a.compare(b);
// }
// };
//
// Note that the return type is an int and not a bool. There is a
// COMPILE_ASSERT which enforces this return type.
struct btree_key_compare_to_tag {
};
// A helper class that indicates if the Compare parameter is derived from
// btree_key_compare_to_tag.
template <typename Compare>
struct btree_is_key_compare_to
: public std::is_convertible<Compare, btree_key_compare_to_tag> {
};
// A helper class to convert a boolean comparison into a three-way
// "compare-to" comparison that returns a negative value to indicate
// less-than, zero to indicate equality and a positive value to
// indicate greater-than. This helper class is specialized for
// less<string> and greater<string>. The btree_key_compare_to_adapter
// class is provided so that btree users automatically get the more
// efficient compare-to code when using common google string types
// with common comparison functors.
template <typename Compare>
struct btree_key_compare_to_adapter : Compare {
btree_key_compare_to_adapter() { }
btree_key_compare_to_adapter(const Compare &c) : Compare(c) { }
btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare> &c)
: Compare(c) {
}
};
template <>
struct btree_key_compare_to_adapter<std::less<std::string> >
: public btree_key_compare_to_tag {
btree_key_compare_to_adapter() {}
btree_key_compare_to_adapter(const std::less<std::string>&) {}
btree_key_compare_to_adapter(
const btree_key_compare_to_adapter<std::less<std::string> >&) {}
int operator()(const std::string &a, const std::string &b) const {
return a.compare(b);
}
};
template <>
struct btree_key_compare_to_adapter<std::greater<std::string> >
: public btree_key_compare_to_tag {
btree_key_compare_to_adapter() {}
btree_key_compare_to_adapter(const std::greater<std::string>&) {}
btree_key_compare_to_adapter(
const btree_key_compare_to_adapter<std::greater<std::string> >&) {}
int operator()(const std::string &a, const std::string &b) const {
return b.compare(a);
}
};
// A helper class that allows a compare-to functor to behave like a plain
// compare functor. This specialization is used when we do not have a
// compare-to functor.
template <typename Key, typename Compare, bool HaveCompareTo>
struct btree_key_comparer {
btree_key_comparer() {}
btree_key_comparer(Compare c) : comp(c) {}
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
return comp(x, y);
}
bool operator()(const Key &x, const Key &y) const {
return bool_compare(comp, x, y);
}
Compare comp;
};
// A specialization of btree_key_comparer when a compare-to functor is
// present. We need a plain (boolean) comparison in some parts of the btree
// code, such as insert-with-hint.
template <typename Key, typename Compare>
struct btree_key_comparer<Key, Compare, true> {
btree_key_comparer() {}
btree_key_comparer(Compare c) : comp(c) {}
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) {
return comp(x, y) < 0;
}
bool operator()(const Key &x, const Key &y) const {
return bool_compare(comp, x, y);
}
Compare comp;
};
// A helper function to compare to keys using the specified compare
// functor. This dispatches to the appropriate btree_key_comparer comparison,
// depending on whether we have a compare-to functor or not (which depends on
// whether Compare is derived from btree_key_compare_to_tag).
template <typename Key, typename Compare>
static bool btree_compare_keys(
const Compare &comp, const Key &x, const Key &y) {
typedef btree_key_comparer<Key, Compare,
btree_is_key_compare_to<Compare>::value> key_comparer;
return key_comparer::bool_compare(comp, x, y);
}
template <typename Key, typename Compare,
typename Alloc, int TargetNodeSize, int ValueSize>
struct btree_common_params {
// If Compare is derived from btree_key_compare_to_tag then use it as the
// key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will
// fall-back to Compare if we don't have an appropriate specialization.
typedef typename if_<
btree_is_key_compare_to<Compare>::value,
Compare, btree_key_compare_to_adapter<Compare> >::type key_compare;
// A type which indicates if we have a key-compare-to functor or a plain old
// key-compare functor.
typedef btree_is_key_compare_to<key_compare> is_key_compare_to;
typedef Alloc allocator_type;
typedef Key key_type;
typedef ssize_t size_type;
typedef ptrdiff_t difference_type;
enum {
kTargetNodeSize = TargetNodeSize,
// Available space for values. This is largest for leaf nodes,
// which has overhead no fewer than two pointers.
kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*),
};
// This is an integral type large enough to hold as many
// ValueSize-values as will fit a node of TargetNodeSize bytes.
typedef typename if_<
(kNodeValueSpace / ValueSize) >= 256,
uint16_t,
uint8_t>::type node_count_type;
};
// A parameters structure for holding the type parameters for a btree_map.
template <typename Key, typename Data, typename Compare,
typename Alloc, int TargetNodeSize>
struct btree_map_params
: public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
sizeof(Key) + sizeof(Data)> {
typedef Data data_type;
typedef Data mapped_type;
typedef std::pair<const Key, data_type> value_type;
typedef std::pair<Key, data_type> mutable_value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
enum {
kValueSize = sizeof(Key) + sizeof(data_type),
};
static const Key& key(const value_type &x) { return x.first; }
static const Key& key(const mutable_value_type &x) { return x.first; }
static void swap(mutable_value_type *a, mutable_value_type *b) {
btree_swap_helper(a->first, b->first);
btree_swap_helper(a->second, b->second);
}
};
// A parameters structure for holding the type parameters for a btree_set.
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize>
struct btree_set_params
: public btree_common_params<Key, Compare, Alloc, TargetNodeSize,
sizeof(Key)> {
typedef std::false_type data_type;
typedef std::false_type mapped_type;
typedef Key value_type;
typedef value_type mutable_value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
enum {
kValueSize = sizeof(Key),
};
static const Key& key(const value_type &x) { return x; }
static void swap(mutable_value_type *a, mutable_value_type *b) {
btree_swap_helper<mutable_value_type>(*a, *b);
}
};
// An adapter class that converts a lower-bound compare into an upper-bound
// compare.
template <typename Key, typename Compare>
struct btree_upper_bound_adapter : public Compare {
btree_upper_bound_adapter(Compare c) : Compare(c) {}
bool operator()(const Key &a, const Key &b) const {
return !static_cast<const Compare&>(*this)(b, a);
}
};
template <typename Key, typename CompareTo>
struct btree_upper_bound_compare_to_adapter : public CompareTo {
btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {}
int operator()(const Key &a, const Key &b) const {
return static_cast<const CompareTo&>(*this)(b, a);
}
};
// Dispatch helper class for using linear search with plain compare.
template <typename K, typename N, typename Compare>
struct btree_linear_search_plain_compare {
static int lower_bound(const K &k, const N &n, Compare comp) {
return n.linear_search_plain_compare(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, Compare comp) {
typedef btree_upper_bound_adapter<K, Compare> upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using linear search with compare-to
template <typename K, typename N, typename CompareTo>
struct btree_linear_search_compare_to {
static int lower_bound(const K &k, const N &n, CompareTo comp) {
return n.linear_search_compare_to(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, CompareTo comp) {
typedef btree_upper_bound_adapter<K,
btree_key_comparer<K, CompareTo, true> > upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using binary search with plain compare.
template <typename K, typename N, typename Compare>
struct btree_binary_search_plain_compare {
static int lower_bound(const K &k, const N &n, Compare comp) {
return n.binary_search_plain_compare(k, 0, n.count(), comp);
}
static int upper_bound(const K &k, const N &n, Compare comp) {
typedef btree_upper_bound_adapter<K, Compare> upper_compare;
return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// Dispatch helper class for using binary search with compare-to.
template <typename K, typename N, typename CompareTo>
struct btree_binary_search_compare_to {
static int lower_bound(const K &k, const N &n, CompareTo comp) {
return n.binary_search_compare_to(k, 0, n.count(), CompareTo());
}
static int upper_bound(const K &k, const N &n, CompareTo comp) {
typedef btree_upper_bound_adapter<K,
btree_key_comparer<K, CompareTo, true> > upper_compare;
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp));
}
};
// A node in the btree holding. The same node type is used for both internal
// and leaf nodes in the btree, though the nodes are allocated in such a way
// that the children array is only valid in internal nodes.
template <typename Params>
class btree_node {
public:
typedef Params params_type;
typedef btree_node<Params> self_type;
typedef typename Params::key_type key_type;
typedef typename Params::data_type data_type;
typedef typename Params::value_type value_type;
typedef typename Params::mutable_value_type mutable_value_type;
typedef typename Params::pointer pointer;
typedef typename Params::const_pointer const_pointer;
typedef typename Params::reference reference;
typedef typename Params::const_reference const_reference;
typedef typename Params::key_compare key_compare;
typedef typename Params::size_type size_type;
typedef typename Params::difference_type difference_type;
// Typedefs for the various types of node searches.
typedef btree_linear_search_plain_compare<
key_type, self_type, key_compare> linear_search_plain_compare_type;
typedef btree_linear_search_compare_to<
key_type, self_type, key_compare> linear_search_compare_to_type;
typedef btree_binary_search_plain_compare<
key_type, self_type, key_compare> binary_search_plain_compare_type;
typedef btree_binary_search_compare_to<
key_type, self_type, key_compare> binary_search_compare_to_type;
// If we have a valid key-compare-to type, use linear_search_compare_to,
// otherwise use linear_search_plain_compare.
typedef typename if_<
Params::is_key_compare_to::value,
linear_search_compare_to_type,
linear_search_plain_compare_type>::type linear_search_type;
// If we have a valid key-compare-to type, use binary_search_compare_to,
// otherwise use binary_search_plain_compare.
typedef typename if_<
Params::is_key_compare_to::value,
binary_search_compare_to_type,
binary_search_plain_compare_type>::type binary_search_type;
// If the key is an integral or floating point type, use linear search which
// is faster than binary search for such types. Might be wise to also
// configure linear search based on node-size.
typedef typename if_<
std::is_integral<key_type>::value ||
std::is_floating_point<key_type>::value,
linear_search_type, binary_search_type>::type search_type;
struct base_fields {
typedef typename Params::node_count_type field_type;
// A boolean indicating whether the node is a leaf or not.
bool leaf;
// The position of the node in the node's parent.
field_type position;
// The maximum number of values the node can hold.
field_type max_count;
// The count of the number of values in the node.
field_type count;
// A pointer to the node's parent.
btree_node *parent;
};
enum {
kValueSize = params_type::kValueSize,
kTargetNodeSize = params_type::kTargetNodeSize,
// Compute how many values we can fit onto a leaf node.
kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize,
// We need a minimum of 3 values per internal node in order to perform
// splitting (1 value for the two nodes involved in the split and 1 value
// propagated to the parent as the delimiter for the split).
kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
kExactMatch = 1 << 30,
kMatchMask = kExactMatch - 1,
};
struct leaf_fields : public base_fields {
// The array of values. Only the first count of these values have been
// constructed and are valid.
mutable_value_type values[kNodeValues];
};
struct internal_fields : public leaf_fields {
// The array of child pointers. The keys in children_[i] are all less than
// key(i). The keys in children_[i + 1] are all greater than key(i). There
// are always count + 1 children.
btree_node *children[kNodeValues + 1];
};
struct root_fields : public internal_fields {
btree_node *rightmost;
size_type size;
};
public:
// Getter/setter for whether this is a leaf node or not. This value doesn't
// change after the node is created.
bool leaf() const { return fields_.leaf; }
// Getter for the position of this node in its parent.
int position() const { return fields_.position; }
void set_position(int v) { fields_.position = v; }
// Getter/setter for the number of values stored in this node.
int count() const { return fields_.count; }
void set_count(int v) { fields_.count = v; }
int max_count() const { return fields_.max_count; }
// Getter for the parent of this node.
btree_node* parent() const { return fields_.parent; }
// Getter for whether the node is the root of the tree. The parent of the
// root of the tree is the leftmost node in the tree which is guaranteed to
// be a leaf.
bool is_root() const { return parent()->leaf(); }
void make_root() {
ceph_assert(parent()->is_root());
fields_.parent = fields_.parent->parent();
}
// Getter for the rightmost root node field. Only valid on the root node.
btree_node* rightmost() const { return fields_.rightmost; }
btree_node** mutable_rightmost() { return &fields_.rightmost; }
// Getter for the size root node field. Only valid on the root node.
size_type size() const { return fields_.size; }
size_type* mutable_size() { return &fields_.size; }
// Getters for the key/value at position i in the node.
const key_type& key(int i) const {
return params_type::key(fields_.values[i]);
}
reference value(int i) {
return reinterpret_cast<reference>(fields_.values[i]);
}
const_reference value(int i) const {
return reinterpret_cast<const_reference>(fields_.values[i]);
}
mutable_value_type* mutable_value(int i) {
return &fields_.values[i];
}
// Swap value i in this node with value j in node x.
void value_swap(int i, btree_node *x, int j) {
params_type::swap(mutable_value(i), x->mutable_value(j));
}
// Getters/setter for the child at position i in the node.
btree_node* child(int i) const { return fields_.children[i]; }
btree_node** mutable_child(int i) { return &fields_.children[i]; }
void set_child(int i, btree_node *c) {
*mutable_child(i) = c;
c->fields_.parent = this;
c->fields_.position = i;
}
// Returns the position of the first value whose key is not less than k.
template <typename Compare>
int lower_bound(const key_type &k, const Compare &comp) const {
return search_type::lower_bound(k, *this, comp);
}
// Returns the position of the first value whose key is greater than k.
template <typename Compare>
int upper_bound(const key_type &k, const Compare &comp) const {
return search_type::upper_bound(k, *this, comp);
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using plain compare.
template <typename Compare>
int linear_search_plain_compare(
const key_type &k, int s, int e, const Compare &comp) const {
while (s < e) {
if (!btree_compare_keys(comp, key(s), k)) {
break;
}
++s;
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using compare-to.
template <typename Compare>
int linear_search_compare_to(
const key_type &k, int s, int e, const Compare &comp) const {
while (s < e) {
int c = comp(key(s), k);
if (c == 0) {
return s | kExactMatch;
} else if (c > 0) {
break;
}
++s;
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using plain compare.
template <typename Compare>
int binary_search_plain_compare(
const key_type &k, int s, int e, const Compare &comp) const {
while (s != e) {
int mid = (s + e) / 2;
if (btree_compare_keys(comp, key(mid), k)) {
s = mid + 1;
} else {
e = mid;
}
}
return s;
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using compare-to.
template <typename CompareTo>
int binary_search_compare_to(
const key_type &k, int s, int e, const CompareTo &comp) const {
while (s != e) {
int mid = (s + e) / 2;
int c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else if (c > 0) {
e = mid;
} else {
// Need to return the first value whose key is not less than k, which
// requires continuing the binary search. Note that we are guaranteed
// that the result is an exact match because if "key(mid-1) < k" the
// call to binary_search_compare_to() will return "mid".
s = binary_search_compare_to(k, s, mid, comp);
return s | kExactMatch;
}
}
return s;
}
// Inserts the value x at position i, shifting all existing values and
// children at positions >= i to the right by 1.
void insert_value(int i, const value_type &x);
// Removes the value at position i, shifting all existing values and children
// at positions > i to the left by 1.
void remove_value(int i);
// Rebalances a node with its right sibling.
void rebalance_right_to_left(btree_node *sibling, int to_move);
void rebalance_left_to_right(btree_node *sibling, int to_move);
// Splits a node, moving a portion of the node's values to its right sibling.
void split(btree_node *sibling, int insert_position);
// Merges a node with its right sibling, moving all of the values and the
// delimiting key in the parent node onto itself.
void merge(btree_node *sibling);
// Swap the contents of "this" and "src".
void swap(btree_node *src);
#ifdef NDEBUG
static constexpr auto no_debug = true;
#else
static constexpr auto no_debug = false;
#endif
// Node allocation/deletion routines.
static btree_node* init_leaf(
leaf_fields *f, btree_node *parent, int max_count) {
btree_node *n = reinterpret_cast<btree_node*>(f);
f->leaf = 1;
f->position = 0;
f->max_count = max_count;
f->count = 0;
f->parent = parent;
if (!no_debug) {
memset(&f->values, 0, max_count * sizeof(value_type));
}
return n;
}
static btree_node* init_internal(internal_fields *f, btree_node *parent) {
btree_node *n = init_leaf(f, parent, kNodeValues);
f->leaf = 0;
if (!no_debug) {
memset(f->children, 0, sizeof(f->children));
}
return n;
}
static btree_node* init_root(root_fields *f, btree_node *parent) {
btree_node *n = init_internal(f, parent);
f->rightmost = parent;
f->size = parent->count();
return n;
}
void destroy() {
for (int i = 0; i < count(); ++i) {
value_destroy(i);
}
}
private:
void value_init(int i) {
new (&fields_.values[i]) mutable_value_type;
}
void value_init(int i, const value_type &x) {
new (&fields_.values[i]) mutable_value_type(x);
}
void value_destroy(int i) {
fields_.values[i].~mutable_value_type();
}
private:
root_fields fields_;
private:
btree_node(const btree_node&);
void operator=(const btree_node&);
};
template <typename Node, typename Reference, typename Pointer>
struct btree_iterator {
typedef typename Node::key_type key_type;
typedef typename Node::size_type size_type;
typedef typename Node::difference_type difference_type;
typedef typename Node::params_type params_type;
typedef Node node_type;
typedef typename std::remove_const<Node>::type normal_node;
typedef const Node const_node;
typedef typename params_type::value_type value_type;
typedef typename params_type::pointer normal_pointer;
typedef typename params_type::reference normal_reference;
typedef typename params_type::const_pointer const_pointer;
typedef typename params_type::const_reference const_reference;
typedef Pointer pointer;
typedef Reference reference;
typedef std::bidirectional_iterator_tag iterator_category;
typedef btree_iterator<
normal_node, normal_reference, normal_pointer> iterator;
typedef btree_iterator<
const_node, const_reference, const_pointer> const_iterator;
typedef btree_iterator<Node, Reference, Pointer> self_type;
btree_iterator()
: node(NULL),
position(-1) {
}
btree_iterator(Node *n, int p)
: node(n),
position(p) {
}
btree_iterator(const iterator &x)
: node(x.node),
position(x.position) {
}
// Increment/decrement the iterator.
void increment() {
if (node->leaf() && ++position < node->count()) {
return;
}
increment_slow();
}
void increment_by(int count);
void increment_slow();
void decrement() {
if (node->leaf() && --position >= 0) {
return;
}
decrement_slow();
}
void decrement_slow();
bool operator==(const const_iterator &x) const {
return node == x.node && position == x.position;
}
bool operator!=(const const_iterator &x) const {
return node != x.node || position != x.position;
}
// Accessors for the key/value the iterator is pointing at.
const key_type& key() const {
return node->key(position);
}
reference operator*() const {
return node->value(position);
}
pointer operator->() const {
return &node->value(position);
}
self_type& operator++() {
increment();
return *this;
}
self_type& operator--() {
decrement();
return *this;
}
self_type operator++(int) {
self_type tmp = *this;
++*this;
return tmp;
}
self_type operator--(int) {
self_type tmp = *this;
--*this;
return tmp;
}
// The node in the tree the iterator is pointing at.
Node *node;
// The position within the node of the tree the iterator is pointing at.
int position;
};
// Dispatch helper class for using btree::internal_locate with plain compare.
struct btree_internal_locate_plain_compare {
template <typename K, typename T, typename Iter>
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
return t.internal_locate_plain_compare(k, iter);
}
};
// Dispatch helper class for using btree::internal_locate with compare-to.
struct btree_internal_locate_compare_to {
template <typename K, typename T, typename Iter>
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) {
return t.internal_locate_compare_to(k, iter);
}
};
template <typename Params>
class btree : public Params::key_compare {
typedef btree<Params> self_type;
typedef btree_node<Params> node_type;
typedef typename node_type::base_fields base_fields;
typedef typename node_type::leaf_fields leaf_fields;
typedef typename node_type::internal_fields internal_fields;
typedef typename node_type::root_fields root_fields;
typedef typename Params::is_key_compare_to is_key_compare_to;
friend class btree_internal_locate_plain_compare;
friend class btree_internal_locate_compare_to;
typedef typename if_<
is_key_compare_to::value,
btree_internal_locate_compare_to,
btree_internal_locate_plain_compare>::type internal_locate_type;
enum {
kNodeValues = node_type::kNodeValues,
kMinNodeValues = kNodeValues / 2,
kValueSize = node_type::kValueSize,
kExactMatch = node_type::kExactMatch,
kMatchMask = node_type::kMatchMask,
};
// A helper class to get the empty base class optimization for 0-size
// allocators. Base is internal_allocator_type.
// (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is
// 0-size, the compiler doesn't have to reserve any space for it and
// sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base
// class optimization] for more details.
template <typename Base, typename Data>
struct empty_base_handle : public Base {
empty_base_handle(const Base &b, const Data &d)
: Base(b),
data(d) {
}
Data data;
};
struct node_stats {
node_stats(ssize_t l, ssize_t i)
: leaf_nodes(l),
internal_nodes(i) {
}
node_stats& operator+=(const node_stats &x) {
leaf_nodes += x.leaf_nodes;
internal_nodes += x.internal_nodes;
return *this;
}
ssize_t leaf_nodes;
ssize_t internal_nodes;
};
public:
typedef Params params_type;
typedef typename Params::key_type key_type;
typedef typename Params::data_type data_type;
typedef typename Params::mapped_type mapped_type;
typedef typename Params::value_type value_type;
typedef typename Params::key_compare key_compare;
typedef typename Params::pointer pointer;
typedef typename Params::const_pointer const_pointer;
typedef typename Params::reference reference;
typedef typename Params::const_reference const_reference;
typedef typename Params::size_type size_type;
typedef typename Params::difference_type difference_type;
typedef btree_iterator<node_type, reference, pointer> iterator;
typedef typename iterator::const_iterator const_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef typename Params::allocator_type allocator_type;
typedef typename allocator_type::template rebind<char>::other
internal_allocator_type;
public:
// Default constructor.
btree(const key_compare &comp, const allocator_type &alloc);
// Copy constructor.
btree(const self_type &x);
// Destructor.
~btree() {
clear();
}
// Iterator routines.
iterator begin() {
return iterator(leftmost(), 0);
}
const_iterator begin() const {
return const_iterator(leftmost(), 0);
}
iterator end() {
return iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
}
const_iterator end() const {
return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0);
}
reverse_iterator rbegin() {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Finds the first element whose key is not less than key.
iterator lower_bound(const key_type &key) {
return internal_end(
internal_lower_bound(key, iterator(root(), 0)));
}
const_iterator lower_bound(const key_type &key) const {
return internal_end(
internal_lower_bound(key, const_iterator(root(), 0)));
}
// Finds the first element whose key is greater than key.
iterator upper_bound(const key_type &key) {
return internal_end(
internal_upper_bound(key, iterator(root(), 0)));
}
const_iterator upper_bound(const key_type &key) const {
return internal_end(
internal_upper_bound(key, const_iterator(root(), 0)));
}
// Finds the range of values which compare equal to key. The first member of
// the returned pair is equal to lower_bound(key). The second member pair of
// the pair is equal to upper_bound(key).
std::pair<iterator,iterator> equal_range(const key_type &key) {
return std::make_pair(lower_bound(key), upper_bound(key));
}
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const {
return std::make_pair(lower_bound(key), upper_bound(key));
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed. The
// ValuePointer type is used to avoid instatiating the value unless the key
// is being inserted. Value is not dereferenced if the key already exists in
// the btree. See btree_map::operator[].
template <typename ValuePointer>
std::pair<iterator,bool> insert_unique(const key_type &key, ValuePointer value);
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
std::pair<iterator,bool> insert_unique(const value_type &v) {
return insert_unique(params_type::key(v), &v);
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_unique(v) were made.
iterator insert_unique(iterator position, const value_type &v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_unique(InputIterator b, InputIterator e);
// Inserts a value into the btree. The ValuePointer type is used to avoid
// instatiating the value unless the key is being inserted. Value is not
// dereferenced if the key already exists in the btree. See
// btree_map::operator[].
template <typename ValuePointer>
iterator insert_multi(const key_type &key, ValuePointer value);
// Inserts a value into the btree.
iterator insert_multi(const value_type &v) {
return insert_multi(params_type::key(v), &v);
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_multi(v) were made.
iterator insert_multi(iterator position, const value_type &v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_multi(InputIterator b, InputIterator e);
void assign(const self_type &x);
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
iterator erase(iterator iter);
// Erases range. Returns the number of keys erased.
int erase(iterator begin, iterator end);
// Erases the specified key from the btree. Returns 1 if an element was
// erased and 0 otherwise.
int erase_unique(const key_type &key);
// Erases all of the entries matching the specified key from the
// btree. Returns the number of elements erased.
int erase_multi(const key_type &key);
// Finds the iterator corresponding to a key or returns end() if the key is
// not present.
iterator find_unique(const key_type &key) {
return internal_end(
internal_find_unique(key, iterator(root(), 0)));
}
const_iterator find_unique(const key_type &key) const {
return internal_end(
internal_find_unique(key, const_iterator(root(), 0)));
}
iterator find_multi(const key_type &key) {
return internal_end(
internal_find_multi(key, iterator(root(), 0)));
}
const_iterator find_multi(const key_type &key) const {
return internal_end(
internal_find_multi(key, const_iterator(root(), 0)));
}
// Returns a count of the number of times the key appears in the btree.
size_type count_unique(const key_type &key) const {
const_iterator begin = internal_find_unique(
key, const_iterator(root(), 0));
if (!begin.node) {
// The key doesn't exist in the tree.
return 0;
}
return 1;
}
// Returns a count of the number of times the key appears in the btree.
size_type count_multi(const key_type &key) const {
return distance(lower_bound(key), upper_bound(key));
}
// Clear the btree, deleting all of the values it contains.
void clear();
// Swap the contents of *this and x.
void swap(self_type &x);
// Assign the contents of x to *this.
self_type& operator=(const self_type &x) {
if (&x == this) {
// Don't copy onto ourselves.
return *this;
}
assign(x);
return *this;
}
key_compare* mutable_key_comp() {
return this;
}
const key_compare& key_comp() const {
return *this;
}
bool compare_keys(const key_type &x, const key_type &y) const {
return btree_compare_keys(key_comp(), x, y);
}
// Dump the btree to the specified ostream. Requires that operator<< is
// defined for Key and Value.
void dump(std::ostream &os) const {
if (root() != NULL) {
internal_dump(os, root(), 0);
}
}
// Verifies the structure of the btree.
void verify() const;
// Size routines. Note that empty() is slightly faster than doing size()==0.
size_type size() const {
if (empty()) return 0;
if (root()->leaf()) return root()->count();
return root()->size();
}
size_type max_size() const { return std::numeric_limits<size_type>::max(); }
bool empty() const { return root() == NULL; }
// The height of the btree. An empty tree will have height 0.
size_type height() const {
size_type h = 0;
if (root()) {
// Count the length of the chain from the leftmost node up to the
// root. We actually count from the root back around to the level below
// the root, but the calculation is the same because of the circularity
// of that traversal.
const node_type *n = root();
do {
++h;
n = n->parent();
} while (n != root());
}
return h;
}
// The number of internal, leaf and total nodes used by the btree.
size_type leaf_nodes() const {
return internal_stats(root()).leaf_nodes;
}
size_type internal_nodes() const {
return internal_stats(root()).internal_nodes;
}
size_type nodes() const {
node_stats stats = internal_stats(root());
return stats.leaf_nodes + stats.internal_nodes;
}
// The total number of bytes used by the btree.
size_type bytes_used() const {
node_stats stats = internal_stats(root());
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
return sizeof(*this) +
sizeof(base_fields) + root()->max_count() * sizeof(value_type);
} else {
return sizeof(*this) +
sizeof(root_fields) - sizeof(internal_fields) +
stats.leaf_nodes * sizeof(leaf_fields) +
stats.internal_nodes * sizeof(internal_fields);
}
}
// The average number of bytes used per value stored in the btree.
static double average_bytes_per_value() {
// Returns the number of bytes per value on a leaf node that is 75%
// full. Experimentally, this matches up nicely with the computed number of
// bytes per value in trees that had their values inserted in random order.
return sizeof(leaf_fields) / (kNodeValues * 0.75);
}
// The fullness of the btree. Computed as the number of elements in the btree
// divided by the maximum number of elements a tree with the current number
// of nodes could hold. A value of 1 indicates perfect space
// utilization. Smaller values indicate space wastage.
double fullness() const {
return double(size()) / (nodes() * kNodeValues);
}
// The overhead of the btree structure in bytes per node. Computed as the
// total number of bytes used by the btree minus the number of bytes used for
// storing elements divided by the number of elements.
double overhead() const {
if (empty()) {
return 0.0;
}
return (bytes_used() - size() * kValueSize) / double(size());
}
private:
// Internal accessor routines.
node_type* root() { return root_.data; }
const node_type* root() const { return root_.data; }
node_type** mutable_root() { return &root_.data; }
// The rightmost node is stored in the root node.
node_type* rightmost() {
return (!root() || root()->leaf()) ? root() : root()->rightmost();
}
const node_type* rightmost() const {
return (!root() || root()->leaf()) ? root() : root()->rightmost();
}
node_type** mutable_rightmost() { return root()->mutable_rightmost(); }
// The leftmost node is stored as the parent of the root node.
node_type* leftmost() { return root() ? root()->parent() : NULL; }
const node_type* leftmost() const { return root() ? root()->parent() : NULL; }
// The size of the tree is stored in the root node.
size_type* mutable_size() { return root()->mutable_size(); }
// Allocator routines.
internal_allocator_type* mutable_internal_allocator() {
return static_cast<internal_allocator_type*>(&root_);
}
const internal_allocator_type& internal_allocator() const {
return *static_cast<const internal_allocator_type*>(&root_);
}
// Node creation/deletion routines.
node_type* new_internal_node(node_type *parent) {
internal_fields *p = reinterpret_cast<internal_fields*>(
mutable_internal_allocator()->allocate(sizeof(internal_fields)));
return node_type::init_internal(p, parent);
}
node_type* new_internal_root_node() {
root_fields *p = reinterpret_cast<root_fields*>(
mutable_internal_allocator()->allocate(sizeof(root_fields)));
return node_type::init_root(p, root()->parent());
}
node_type* new_leaf_node(node_type *parent) {
leaf_fields *p = reinterpret_cast<leaf_fields*>(
mutable_internal_allocator()->allocate(sizeof(leaf_fields)));
return node_type::init_leaf(p, parent, kNodeValues);
}
node_type* new_leaf_root_node(int max_count) {
leaf_fields *p = reinterpret_cast<leaf_fields*>(
mutable_internal_allocator()->allocate(
sizeof(base_fields) + max_count * sizeof(value_type)));
return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count);
}
void delete_internal_node(node_type *node) {
node->destroy();
ceph_assert(node != root());
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(node), sizeof(internal_fields));
}
void delete_internal_root_node() {
root()->destroy();
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(root()), sizeof(root_fields));
}
void delete_leaf_node(node_type *node) {
node->destroy();
mutable_internal_allocator()->deallocate(
reinterpret_cast<char*>(node),
sizeof(base_fields) + node->max_count() * sizeof(value_type));
}
// Rebalances or splits the node iter points to.
void rebalance_or_split(iterator *iter);
// Merges the values of left, right and the delimiting key on their parent
// onto left, removing the delimiting key and deleting right.
void merge_nodes(node_type *left, node_type *right);
// Tries to merge node with its left or right sibling, and failing that,
// rebalance with its left or right sibling. Returns true if a merge
// occurred, at which point it is no longer valid to access node. Returns
// false if no merging took place.
bool try_merge_or_rebalance(iterator *iter);
// Tries to shrink the height of the tree by 1.
void try_shrink();
iterator internal_end(iterator iter) {
return iter.node ? iter : end();
}
const_iterator internal_end(const_iterator iter) const {
return iter.node ? iter : end();
}
// Inserts a value into the btree immediately before iter. Requires that
// key(v) <= iter.key() and (--iter).key() <= key(v).
iterator internal_insert(iterator iter, const value_type &v);
// Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location as
// iter.position == iter.node->count(). This routine simply moves iter up in
// the tree to a valid location.
template <typename IterType>
static IterType internal_last(IterType iter);
// Returns an iterator pointing to the leaf position at which key would
// reside in the tree. We provide 2 versions of internal_locate. The first
// version (internal_locate_plain_compare) always returns 0 for the second
// field of the pair. The second version (internal_locate_compare_to) is for
// the key-compare-to specialization and returns either kExactMatch (if the
// key was found in the tree) or -kExactMatch (if it wasn't) in the second
// field of the pair. The compare_to specialization allows the caller to
// avoid a subsequent comparison to determine if an exact match was made,
// speeding up string keys.
template <typename IterType>
std::pair<IterType, int> internal_locate(
const key_type &key, IterType iter) const;
template <typename IterType>
std::pair<IterType, int> internal_locate_plain_compare(
const key_type &key, IterType iter) const;
template <typename IterType>
std::pair<IterType, int> internal_locate_compare_to(
const key_type &key, IterType iter) const;
// Internal routine which implements lower_bound().
template <typename IterType>
IterType internal_lower_bound(
const key_type &key, IterType iter) const;
// Internal routine which implements upper_bound().
template <typename IterType>
IterType internal_upper_bound(
const key_type &key, IterType iter) const;
// Internal routine which implements find_unique().
template <typename IterType>
IterType internal_find_unique(
const key_type &key, IterType iter) const;
// Internal routine which implements find_multi().
template <typename IterType>
IterType internal_find_multi(
const key_type &key, IterType iter) const;
// Deletes a node and all of its children.
void internal_clear(node_type *node);
// Dumps a node and all of its children to the specified ostream.
void internal_dump(std::ostream &os, const node_type *node, int level) const;
// Verifies the tree structure of node.
int internal_verify(const node_type *node,
const key_type *lo, const key_type *hi) const;
node_stats internal_stats(const node_type *node) const {
if (!node) {
return node_stats(0, 0);
}
if (node->leaf()) {
return node_stats(1, 0);
}
node_stats res(0, 1);
for (int i = 0; i <= node->count(); ++i) {
res += internal_stats(node->child(i));
}
return res;
}
private:
empty_base_handle<internal_allocator_type, node_type*> root_;
private:
// A never instantiated helper function that returns big_ if we have a
// key-compare-to functor or if R is bool and small_ otherwise.
template <typename R>
static typename if_<
if_<is_key_compare_to::value,
std::is_same<R, int>,
std::is_same<R, bool> >::type::value,
big_, small_>::type key_compare_checker(R);
// A never instantiated helper function that returns the key comparison
// functor.
static key_compare key_compare_helper();
// Verify that key_compare returns a bool. This is similar to the way
// is_convertible in base/type_traits.h works. Note that key_compare_checker
// is never actually invoked. The compiler will select which
// key_compare_checker() to instantiate and then figure out the size of the
// return type of key_compare_checker() at compile time which we then check
// against the sizeof of big_.
COMPILE_ASSERT(
sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) ==
sizeof(big_),
key_comparison_function_must_return_bool);
// Note: We insist on kTargetValues, which is computed from
// Params::kTargetNodeSize, must fit the base_fields::field_type.
COMPILE_ASSERT(kNodeValues <
(1 << (8 * sizeof(typename base_fields::field_type))),
target_node_size_too_large);
// Test the assumption made in setting kNodeValueSpace.
COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*),
node_space_assumption_incorrect);
};
////
// btree_node methods
template <typename P>
inline void btree_node<P>::insert_value(int i, const value_type &x) {
ceph_assert(i <= count());
value_init(count(), x);
for (int j = count(); j > i; --j) {
value_swap(j, this, j - 1);
}
set_count(count() + 1);
if (!leaf()) {
++i;
for (int j = count(); j > i; --j) {
*mutable_child(j) = child(j - 1);
child(j)->set_position(j);
}
*mutable_child(i) = NULL;
}
}
template <typename P>
inline void btree_node<P>::remove_value(int i) {
if (!leaf()) {
ceph_assert(child(i + 1)->count() == 0);
for (int j = i + 1; j < count(); ++j) {
*mutable_child(j) = child(j + 1);
child(j)->set_position(j);
}
*mutable_child(count()) = NULL;
}
set_count(count() - 1);
for (; i < count(); ++i) {
value_swap(i, this, i + 1);
}
value_destroy(i);
}
template <typename P>
void btree_node<P>::rebalance_right_to_left(btree_node *src, int to_move) {
ceph_assert(parent() == src->parent());
ceph_assert(position() + 1 == src->position());
ceph_assert(src->count() >= count());
ceph_assert(to_move >= 1);
ceph_assert(to_move <= src->count());
// Make room in the left node for the new values.
for (int i = 0; i < to_move; ++i) {
value_init(i + count());
}
// Move the delimiting value to the left node and the new delimiting value
// from the right node.
value_swap(count(), parent(), position());
parent()->value_swap(position(), src, to_move - 1);
// Move the values from the right to the left node.
for (int i = 1; i < to_move; ++i) {
value_swap(count() + i, src, i - 1);
}
// Shift the values in the right node to their correct position.
for (int i = to_move; i < src->count(); ++i) {
src->value_swap(i - to_move, src, i);
}
for (int i = 1; i <= to_move; ++i) {
src->value_destroy(src->count() - i);
}
if (!leaf()) {
// Move the child pointers from the right to the left node.
for (int i = 0; i < to_move; ++i) {
set_child(1 + count() + i, src->child(i));
}
for (int i = 0; i <= src->count() - to_move; ++i) {
ceph_assert(i + to_move <= src->max_count());
src->set_child(i, src->child(i + to_move));
*src->mutable_child(i + to_move) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(count() + to_move);
src->set_count(src->count() - to_move);
}
template <typename P>
void btree_node<P>::rebalance_left_to_right(btree_node *dest, int to_move) {
ceph_assert(parent() == dest->parent());
ceph_assert(position() + 1 == dest->position());
ceph_assert(count() >= dest->count());
ceph_assert(to_move >= 1);
ceph_assert(to_move <= count());
// Make room in the right node for the new values.
for (int i = 0; i < to_move; ++i) {
dest->value_init(i + dest->count());
}
for (int i = dest->count() - 1; i >= 0; --i) {
dest->value_swap(i, dest, i + to_move);
}
// Move the delimiting value to the right node and the new delimiting value
// from the left node.
dest->value_swap(to_move - 1, parent(), position());
parent()->value_swap(position(), this, count() - to_move);
value_destroy(count() - to_move);
// Move the values from the left to the right node.
for (int i = 1; i < to_move; ++i) {
value_swap(count() - to_move + i, dest, i - 1);
value_destroy(count() - to_move + i);
}
if (!leaf()) {
// Move the child pointers from the left to the right node.
for (int i = dest->count(); i >= 0; --i) {
dest->set_child(i + to_move, dest->child(i));
*dest->mutable_child(i) = NULL;
}
for (int i = 1; i <= to_move; ++i) {
dest->set_child(i - 1, child(count() - to_move + i));
*mutable_child(count() - to_move + i) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(count() - to_move);
dest->set_count(dest->count() + to_move);
}
template <typename P>
void btree_node<P>::split(btree_node *dest, int insert_position) {
ceph_assert(dest->count() == 0);
// We bias the split based on the position being inserted. If we're
// inserting at the beginning of the left node then bias the split to put
// more values on the right node. If we're inserting at the end of the
// right node then bias the split to put more values on the left node.
if (insert_position == 0) {
dest->set_count(count() - 1);
} else if (insert_position == max_count()) {
dest->set_count(0);
} else {
dest->set_count(count() / 2);
}
set_count(count() - dest->count());
ceph_assert(count() >= 1);
// Move values from the left sibling to the right sibling.
for (int i = 0; i < dest->count(); ++i) {
dest->value_init(i);
value_swap(count() + i, dest, i);
value_destroy(count() + i);
}
// The split key is the largest value in the left sibling.
set_count(count() - 1);
parent()->insert_value(position(), value_type());
value_swap(count(), parent(), position());
value_destroy(count());
parent()->set_child(position() + 1, dest);
if (!leaf()) {
for (int i = 0; i <= dest->count(); ++i) {
ceph_assert(child(count() + i + 1) != NULL);
dest->set_child(i, child(count() + i + 1));
*mutable_child(count() + i + 1) = NULL;
}
}
}
template <typename P>
void btree_node<P>::merge(btree_node *src) {
ceph_assert(parent() == src->parent());
ceph_assert(position() + 1 == src->position());
// Move the delimiting value to the left node.
value_init(count());
value_swap(count(), parent(), position());
// Move the values from the right to the left node.
for (int i = 0; i < src->count(); ++i) {
value_init(1 + count() + i);
value_swap(1 + count() + i, src, i);
src->value_destroy(i);
}
if (!leaf()) {
// Move the child pointers from the right to the left node.
for (int i = 0; i <= src->count(); ++i) {
set_child(1 + count() + i, src->child(i));
*src->mutable_child(i) = NULL;
}
}
// Fixup the counts on the src and dest nodes.
set_count(1 + count() + src->count());
src->set_count(0);
// Remove the value on the parent node.
parent()->remove_value(position());
}
template <typename P>
void btree_node<P>::swap(btree_node *x) {
ceph_assert(leaf() == x->leaf());
// Swap the values.
for (int i = count(); i < x->count(); ++i) {
value_init(i);
}
for (int i = x->count(); i < count(); ++i) {
x->value_init(i);
}
int n = std::max(count(), x->count());
for (int i = 0; i < n; ++i) {
value_swap(i, x, i);
}
for (int i = count(); i < x->count(); ++i) {
x->value_destroy(i);
}
for (int i = x->count(); i < count(); ++i) {
value_destroy(i);
}
if (!leaf()) {
// Swap the child pointers.
for (int i = 0; i <= n; ++i) {
btree_swap_helper(*mutable_child(i), *x->mutable_child(i));
}
for (int i = 0; i <= count(); ++i) {
x->child(i)->fields_.parent = x;
}
for (int i = 0; i <= x->count(); ++i) {
child(i)->fields_.parent = this;
}
}
// Swap the counts.
btree_swap_helper(fields_.count, x->fields_.count);
}
////
// btree_iterator methods
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() {
if (node->leaf()) {
ceph_assert(position >= node->count());
self_type save(*this);
while (position == node->count() && !node->is_root()) {
ceph_assert(node->parent()->child(node->position()) == node);
position = node->position();
node = node->parent();
}
if (position == node->count()) {
*this = save;
}
} else {
ceph_assert(position < node->count());
node = node->child(position + 1);
while (!node->leaf()) {
node = node->child(0);
}
position = 0;
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_by(int count) {
while (count > 0) {
if (node->leaf()) {
int rest = node->count() - position;
position += std::min(rest, count);
count = count - rest;
if (position < node->count()) {
return;
}
} else {
--count;
}
increment_slow();
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::decrement_slow() {
if (node->leaf()) {
ceph_assert(position <= -1);
self_type save(*this);
while (position < 0 && !node->is_root()) {
ceph_assert(node->parent()->child(node->position()) == node);
position = node->position() - 1;
node = node->parent();
}
if (position < 0) {
*this = save;
}
} else {
ceph_assert(position >= 0);
node = node->child(position);
while (!node->leaf()) {
node = node->child(node->count());
}
position = node->count() - 1;
}
}
////
// btree methods
template <typename P>
btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
: key_compare(comp),
root_(alloc, NULL) {
}
template <typename P>
btree<P>::btree(const self_type &x)
: key_compare(x.key_comp()),
root_(x.internal_allocator(), NULL) {
assign(x);
}
template <typename P> template <typename ValuePointer>
std::pair<typename btree<P>::iterator, bool>
btree<P>::insert_unique(const key_type &key, ValuePointer value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0));
iterator &iter = res.first;
if (res.second == kExactMatch) {
// The key already exists in the tree, do nothing.
return std::make_pair(internal_last(iter), false);
} else if (!res.second) {
iterator last = internal_last(iter);
if (last.node && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return std::make_pair(last, false);
}
}
return std::make_pair(internal_insert(iter, *value), true);
}
template <typename P>
inline typename btree<P>::iterator
btree<P>::insert_unique(iterator position, const value_type &v) {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || compare_keys(key, position.key())) {
iterator prev = position;
if (position == begin() || compare_keys((--prev).key(), key)) {
// prev.key() < key < position.key()
return internal_insert(position, v);
}
} else if (compare_keys(position.key(), key)) {
iterator next = position;
++next;
if (next == end() || compare_keys(key, next.key())) {
// position.key() < key < next.key()
return internal_insert(next, v);
}
} else {
// position.key() == key
return position;
}
}
return insert_unique(v).first;
}
template <typename P> template <typename InputIterator>
void btree<P>::insert_unique(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_unique(end(), *b);
}
}
template <typename P> template <typename ValuePointer>
typename btree<P>::iterator
btree<P>::insert_multi(const key_type &key, ValuePointer value) {
if (empty()) {
*mutable_root() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key, iterator(root(), 0));
if (!iter.node) {
iter = end();
}
return internal_insert(iter, *value);
}
template <typename P>
typename btree<P>::iterator
btree<P>::insert_multi(iterator position, const value_type &v) {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || !compare_keys(position.key(), key)) {
iterator prev = position;
if (position == begin() || !compare_keys(key, (--prev).key())) {
// prev.key() <= key <= position.key()
return internal_insert(position, v);
}
} else {
iterator next = position;
++next;
if (next == end() || !compare_keys(next.key(), key)) {
// position.key() < key <= next.key()
return internal_insert(next, v);
}
}
}
return insert_multi(v);
}
template <typename P> template <typename InputIterator>
void btree<P>::insert_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_multi(end(), *b);
}
}
template <typename P>
void btree<P>::assign(const self_type &x) {
clear();
*mutable_key_comp() = x.key_comp();
*mutable_internal_allocator() = x.internal_allocator();
// Assignment can avoid key comparisons because we know the order of the
// values is the same order we'll store them in.
for (const_iterator iter = x.begin(); iter != x.end(); ++iter) {
if (empty()) {
insert_multi(*iter);
} else {
// If the btree is not empty, we can just insert the new value at the end
// of the tree!
internal_insert(end(), *iter);
}
}
}
template <typename P>
typename btree<P>::iterator btree<P>::erase(iterator iter) {
bool internal_delete = false;
if (!iter.node->leaf()) {
// Deletion of a value on an internal node. Swap the key with the largest
// value of our left child. This is easy, we just decrement iter.
iterator tmp_iter(iter--);
ceph_assert(iter.node->leaf());
ceph_assert(!compare_keys(tmp_iter.key(), iter.key()));
iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position);
internal_delete = true;
--*mutable_size();
} else if (!root()->leaf()) {
--*mutable_size();
}
// Delete the key from the leaf.
iter.node->remove_value(iter.position);
// We want to return the next value after the one we just erased. If we
// erased from an internal node (internal_delete == true), then the next
// value is ++(++iter). If we erased from a leaf node (internal_delete ==
// false) then the next value is ++iter. Note that ++iter may point to an
// internal node and the value in the internal node may move to a leaf node
// (iter.node) when rebalancing is performed at the leaf level.
// Merge/rebalance as we walk back up the tree.
iterator res(iter);
for (;;) {
if (iter.node == root()) {
try_shrink();
if (empty()) {
return end();
}
break;
}
if (iter.node->count() >= kMinNodeValues) {
break;
}
bool merged = try_merge_or_rebalance(&iter);
if (iter.node->leaf()) {
res = iter;
}
if (!merged) {
break;
}
iter.node = iter.node->parent();
}
// Adjust our return value. If we're pointing at the end of a node, advance
// the iterator.
if (res.position == res.node->count()) {
res.position = res.node->count() - 1;
++res;
}
// If we erased from an internal node, advance the iterator.
if (internal_delete) {
++res;
}
return res;
}
template <typename P>
int btree<P>::erase(iterator begin, iterator end) {
int count = distance(begin, end);
for (int i = 0; i < count; i++) {
begin = erase(begin);
}
return count;
}
template <typename P>
int btree<P>::erase_unique(const key_type &key) {
iterator iter = internal_find_unique(key, iterator(root(), 0));
if (!iter.node) {
// The key doesn't exist in the tree, return nothing done.
return 0;
}
erase(iter);
return 1;
}
template <typename P>
int btree<P>::erase_multi(const key_type &key) {
iterator begin = internal_lower_bound(key, iterator(root(), 0));
if (!begin.node) {
// The key doesn't exist in the tree, return nothing done.
return 0;
}
// Delete all of the keys between begin and upper_bound(key).
iterator end = internal_end(
internal_upper_bound(key, iterator(root(), 0)));
return erase(begin, end);
}
template <typename P>
void btree<P>::clear() {
if (root() != NULL) {
internal_clear(root());
}
*mutable_root() = NULL;
}
template <typename P>
void btree<P>::swap(self_type &x) {
std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x));
std::swap(root_, x.root_);
}
template <typename P>
void btree<P>::verify() const {
if (root() != NULL) {
ceph_assert(size() == internal_verify(root(), NULL, NULL));
ceph_assert(leftmost() == (++const_iterator(root(), -1)).node);
ceph_assert(rightmost() == (--const_iterator(root(), root()->count())).node);
ceph_assert(leftmost()->leaf());
ceph_assert(rightmost()->leaf());
} else {
ceph_assert(size() == 0);
ceph_assert(leftmost() == NULL);
ceph_assert(rightmost() == NULL);
}
}
template <typename P>
void btree<P>::rebalance_or_split(iterator *iter) {
node_type *&node = iter->node;
int &insert_position = iter->position;
ceph_assert(node->count() == node->max_count());
// First try to make room on the node by rebalancing.
node_type *parent = node->parent();
if (node != root()) {
if (node->position() > 0) {
// Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1);
if (left->count() < left->max_count()) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the end of the right node then we bias rebalancing to
// fill up the left node.
int to_move = (left->max_count() - left->count()) /
(1 + (insert_position < left->max_count()));
to_move = std::max(1, to_move);
if (((insert_position - to_move) >= 0) ||
((left->count() + to_move) < left->max_count())) {
left->rebalance_right_to_left(node, to_move);
ceph_assert(node->max_count() - node->count() == to_move);
insert_position = insert_position - to_move;
if (insert_position < 0) {
insert_position = insert_position + left->count() + 1;
node = left;
}
ceph_assert(node->count() < node->max_count());
return;
}
}
}
if (node->position() < parent->count()) {
// Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1);
if (right->count() < right->max_count()) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node.
int to_move = (right->max_count() - right->count()) /
(1 + (insert_position > 0));
to_move = std::max(1, to_move);
if ((insert_position <= (node->count() - to_move)) ||
((right->count() + to_move) < right->max_count())) {
node->rebalance_left_to_right(right, to_move);
if (insert_position > node->count()) {
insert_position = insert_position - node->count() - 1;
node = right;
}
ceph_assert(node->count() < node->max_count());
return;
}
}
}
// Rebalancing failed, make sure there is room on the parent node for a new
// value.
if (parent->count() == parent->max_count()) {
iterator parent_iter(node->parent(), node->position());
rebalance_or_split(&parent_iter);
}
} else {
// Rebalancing not possible because this is the root node.
if (root()->leaf()) {
// The root node is currently a leaf node: create a new root node and set
// the current root node as the child of the new root.
parent = new_internal_root_node();
parent->set_child(0, root());
*mutable_root() = parent;
ceph_assert(*mutable_rightmost() == parent->child(0));
} else {
// The root node is an internal node. We do not want to create a new root
// node because the root node is special and holds the size of the tree
// and a pointer to the rightmost node. So we create a new internal node
// and move all of the items on the current root into the new node.
parent = new_internal_node(parent);
parent->set_child(0, parent);
parent->swap(root());
node = parent;
}
}
// Split the node.
node_type *split_node;
if (node->leaf()) {
split_node = new_leaf_node(parent);
node->split(split_node, insert_position);
if (rightmost() == node) {
*mutable_rightmost() = split_node;
}
} else {
split_node = new_internal_node(parent);
node->split(split_node, insert_position);
}
if (insert_position > node->count()) {
insert_position = insert_position - node->count() - 1;
node = split_node;
}
}
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right);
if (right->leaf()) {
if (rightmost() == right) {
*mutable_rightmost() = left;
}
delete_leaf_node(right);
} else {
delete_internal_node(right);
}
}
template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
node_type *parent = iter->node->parent();
if (iter->node->position() > 0) {
// Try merging with our left sibling.
node_type *left = parent->child(iter->node->position() - 1);
if ((1 + left->count() + iter->node->count()) <= left->max_count()) {
iter->position += 1 + left->count();
merge_nodes(left, iter->node);
iter->node = left;
return true;
}
}
if (iter->node->position() < parent->count()) {
// Try merging with our right sibling.
node_type *right = parent->child(iter->node->position() + 1);
if ((1 + iter->node->count() + right->count()) <= right->max_count()) {
merge_nodes(iter->node, right);
return true;
}
// Try rebalancing with our right sibling. We don't perform rebalancing if
// we deleted the first element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the front of the tree.
if ((right->count() > kMinNodeValues) &&
((iter->node->count() == 0) ||
(iter->position > 0))) {
int to_move = (right->count() - iter->node->count()) / 2;
to_move = std::min(to_move, right->count() - 1);
iter->node->rebalance_right_to_left(right, to_move);
return false;
}
}
if (iter->node->position() > 0) {
// Try rebalancing with our left sibling. We don't perform rebalancing if
// we deleted the last element from iter->node and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the back of the tree.
node_type *left = parent->child(iter->node->position() - 1);
if ((left->count() > kMinNodeValues) &&
((iter->node->count() == 0) ||
(iter->position < iter->node->count()))) {
int to_move = (left->count() - iter->node->count()) / 2;
to_move = std::min(to_move, left->count() - 1);
left->rebalance_left_to_right(iter->node, to_move);
iter->position += to_move;
return false;
}
}
return false;
}
template <typename P>
void btree<P>::try_shrink() {
if (root()->count() > 0) {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
if (root()->leaf()) {
ceph_assert(size() == 0);
delete_leaf_node(root());
*mutable_root() = NULL;
} else {
node_type *child = root()->child(0);
if (child->leaf()) {
// The child is a leaf node so simply make it the root node in the tree.
child->make_root();
delete_internal_root_node();
*mutable_root() = child;
} else {
// The child is an internal node. We want to keep the existing root node
// so we move all of the values from the child node into the existing
// (empty) root node.
child->swap(root());
delete_internal_node(child);
}
}
}
template <typename P> template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) {
while (iter.node && iter.position == iter.node->count()) {
iter.position = iter.node->position();
iter.node = iter.node->parent();
if (iter.node->leaf()) {
iter.node = NULL;
}
}
return iter;
}
template <typename P>
inline typename btree<P>::iterator
btree<P>::internal_insert(iterator iter, const value_type &v) {
if (!iter.node->leaf()) {
// We can't insert on an internal node. Instead, we'll insert after the
// previous value which is guaranteed to be on a leaf node.
--iter;
++iter.position;
}
if (iter.node->count() == iter.node->max_count()) {
// Make room in the leaf for the new item.
if (iter.node->max_count() < kNodeValues) {
// Insertion into the root where the root is smaller that the full node
// size. Simply grow the size of the root node.
ceph_assert(iter.node == root());
iter.node = new_leaf_root_node(
std::min<int>(kNodeValues, 2 * iter.node->max_count()));
iter.node->swap(root());
delete_leaf_node(root());
*mutable_root() = iter.node;
} else {
rebalance_or_split(&iter);
++*mutable_size();
}
} else if (!root()->leaf()) {
++*mutable_size();
}
iter.node->insert_value(iter.position, v);
return iter;
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate(
const key_type &key, IterType iter) const {
return internal_locate_type::dispatch(key, *this, iter);
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate_plain_compare(
const key_type &key, IterType iter) const {
for (;;) {
iter.position = iter.node->lower_bound(key, key_comp());
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
return std::make_pair(iter, 0);
}
template <typename P> template <typename IterType>
inline std::pair<IterType, int> btree<P>::internal_locate_compare_to(
const key_type &key, IterType iter) const {
for (;;) {
int res = iter.node->lower_bound(key, key_comp());
iter.position = res & kMatchMask;
if (res & kExactMatch) {
return std::make_pair(iter, static_cast<int>(kExactMatch));
}
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
return std::make_pair(iter, -kExactMatch);
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_lower_bound(
const key_type &key, IterType iter) const {
if (iter.node) {
for (;;) {
iter.position =
iter.node->lower_bound(key, key_comp()) & kMatchMask;
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
iter = internal_last(iter);
}
return iter;
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_upper_bound(
const key_type &key, IterType iter) const {
if (iter.node) {
for (;;) {
iter.position = iter.node->upper_bound(key, key_comp());
if (iter.node->leaf()) {
break;
}
iter.node = iter.node->child(iter.position);
}
iter = internal_last(iter);
}
return iter;
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_find_unique(
const key_type &key, IterType iter) const {
if (iter.node) {
std::pair<IterType, int> res = internal_locate(key, iter);
if (res.second == kExactMatch) {
return res.first;
}
if (!res.second) {
iter = internal_last(res.first);
if (iter.node && !compare_keys(key, iter.key())) {
return iter;
}
}
}
return IterType(NULL, 0);
}
template <typename P> template <typename IterType>
IterType btree<P>::internal_find_multi(
const key_type &key, IterType iter) const {
if (iter.node) {
iter = internal_lower_bound(key, iter);
if (iter.node) {
iter = internal_last(iter);
if (iter.node && !compare_keys(key, iter.key())) {
return iter;
}
}
}
return IterType(NULL, 0);
}
template <typename P>
void btree<P>::internal_clear(node_type *node) {
if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) {
internal_clear(node->child(i));
}
if (node == root()) {
delete_internal_root_node();
} else {
delete_internal_node(node);
}
} else {
delete_leaf_node(node);
}
}
template <typename P>
void btree<P>::internal_dump(
std::ostream &os, const node_type *node, int level) const {
for (int i = 0; i < node->count(); ++i) {
if (!node->leaf()) {
internal_dump(os, node->child(i), level + 1);
}
for (int j = 0; j < level; ++j) {
os << " ";
}
os << node->key(i) << " [" << level << "]\n";
}
if (!node->leaf()) {
internal_dump(os, node->child(node->count()), level + 1);
}
}
template <typename P>
int btree<P>::internal_verify(
const node_type *node, const key_type *lo, const key_type *hi) const {
ceph_assert(node->count() > 0);
ceph_assert(node->count() <= node->max_count());
if (lo) {
ceph_assert(!compare_keys(node->key(0), *lo));
}
if (hi) {
ceph_assert(!compare_keys(*hi, node->key(node->count() - 1)));
}
for (int i = 1; i < node->count(); ++i) {
ceph_assert(!compare_keys(node->key(i), node->key(i - 1)));
}
int count = node->count();
if (!node->leaf()) {
for (int i = 0; i <= node->count(); ++i) {
ceph_assert(node->child(i) != NULL);
ceph_assert(node->child(i)->parent() == node);
ceph_assert(node->child(i)->position() == i);
count += internal_verify(
node->child(i),
(i == 0) ? lo : &node->key(i - 1),
(i == node->count()) ? hi : &node->key(i));
}
}
return count;
}
} // namespace btree
#endif // UTIL_BTREE_BTREE_H__
|