1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#ifndef CEPH_OSDMAPMAPPING_H
#define CEPH_OSDMAPMAPPING_H
#include <vector>
#include <map>
#include "osd/osd_types.h"
#include "common/WorkQueue.h"
#include "common/Cond.h"
class OSDMap;
/// work queue to perform work on batches of pgids on multiple CPUs
class ParallelPGMapper {
public:
struct Job {
utime_t start, finish;
unsigned shards = 0;
const OSDMap *osdmap;
bool aborted = false;
Context *onfinish = nullptr;
Mutex lock = {"ParallelPGMapper::Job::lock"};
Cond cond;
Job(const OSDMap *om) : start(ceph_clock_now()), osdmap(om) {}
virtual ~Job() {
ceph_assert(shards == 0);
}
// child must implement either form of process
virtual void process(const vector<pg_t>& pgs) = 0;
virtual void process(int64_t poolid, unsigned ps_begin, unsigned ps_end) = 0;
virtual void complete() = 0;
void set_finish_event(Context *fin) {
lock.Lock();
if (shards == 0) {
// already done.
lock.Unlock();
fin->complete(0);
} else {
// set finisher
onfinish = fin;
lock.Unlock();
}
}
bool is_done() {
std::lock_guard l(lock);
return shards == 0;
}
utime_t get_duration() {
return finish - start;
}
void wait() {
std::lock_guard l(lock);
while (shards > 0) {
cond.Wait(lock);
}
}
bool wait_for(double duration) {
utime_t until = start;
until += duration;
std::lock_guard l(lock);
while (shards > 0) {
if (ceph_clock_now() >= until) {
return false;
}
cond.Wait(lock);
}
return true;
}
void abort() {
Context *fin = nullptr;
{
std::lock_guard l(lock);
aborted = true;
fin = onfinish;
onfinish = nullptr;
while (shards > 0) {
cond.Wait(lock);
}
}
if (fin) {
fin->complete(-ECANCELED);
}
}
void start_one() {
std::lock_guard l(lock);
++shards;
}
void finish_one();
};
protected:
CephContext *cct;
struct Item {
Job *job;
int64_t pool;
unsigned begin, end;
vector<pg_t> pgs;
Item(Job *j, vector<pg_t> pgs) : job(j), pgs(pgs) {}
Item(Job *j, int64_t p, unsigned b, unsigned e)
: job(j),
pool(p),
begin(b),
end(e) {}
};
std::deque<Item*> q;
struct WQ : public ThreadPool::WorkQueue<Item> {
ParallelPGMapper *m;
WQ(ParallelPGMapper *m_, ThreadPool *tp)
: ThreadPool::WorkQueue<Item>("ParallelPGMapper::WQ", 0, 0, tp),
m(m_) {}
bool _enqueue(Item *i) override {
m->q.push_back(i);
return true;
}
void _dequeue(Item *i) override {
ceph_abort();
}
Item *_dequeue() override {
while (!m->q.empty()) {
Item *i = m->q.front();
m->q.pop_front();
if (i->job->aborted) {
i->job->finish_one();
delete i;
} else {
return i;
}
}
return nullptr;
}
void _process(Item *i, ThreadPool::TPHandle &h) override;
void _clear() override {
ceph_assert(_empty());
}
bool _empty() override {
return m->q.empty();
}
} wq;
public:
ParallelPGMapper(CephContext *cct, ThreadPool *tp)
: cct(cct),
wq(this, tp) {}
void queue(
Job *job,
unsigned pgs_per_item,
const vector<pg_t>& input_pgs);
void drain() {
wq.drain();
}
};
/// a precalculated mapping of every PG for a given OSDMap
class OSDMapMapping {
public:
MEMPOOL_CLASS_HELPERS();
private:
struct PoolMapping {
MEMPOOL_CLASS_HELPERS();
unsigned size = 0;
unsigned pg_num = 0;
bool erasure = false;
mempool::osdmap_mapping::vector<int32_t> table;
size_t row_size() const {
return
1 + // acting_primary
1 + // up_primary
1 + // num acting
1 + // num up
size + // acting
size; // up
}
PoolMapping(int s, int p, bool e)
: size(s),
pg_num(p),
erasure(e),
table(pg_num * row_size()) {
}
void get(size_t ps,
std::vector<int> *up,
int *up_primary,
std::vector<int> *acting,
int *acting_primary) const {
const int32_t *row = &table[row_size() * ps];
if (acting_primary) {
*acting_primary = row[0];
}
if (up_primary) {
*up_primary = row[1];
}
if (acting) {
acting->resize(row[2]);
for (int i = 0; i < row[2]; ++i) {
(*acting)[i] = row[4 + i];
}
}
if (up) {
up->resize(row[3]);
for (int i = 0; i < row[3]; ++i) {
(*up)[i] = row[4 + size + i];
}
}
}
void set(size_t ps,
const std::vector<int>& up,
int up_primary,
const std::vector<int>& acting,
int acting_primary) {
int32_t *row = &table[row_size() * ps];
row[0] = acting_primary;
row[1] = up_primary;
// these should always be <= the pool size, but just in case, avoid
// blowing out the array. Note that our mapping is not completely
// accurate in this case--this is just to avoid crashing.
row[2] = std::min<int32_t>(acting.size(), size);
row[3] = std::min<int32_t>(up.size(), size);
for (int i = 0; i < row[2]; ++i) {
row[4 + i] = acting[i];
}
for (int i = 0; i < row[3]; ++i) {
row[4 + size + i] = up[i];
}
}
};
mempool::osdmap_mapping::map<int64_t,PoolMapping> pools;
mempool::osdmap_mapping::vector<
mempool::osdmap_mapping::vector<pg_t>> acting_rmap; // osd -> pg
//unused: mempool::osdmap_mapping::vector<std::vector<pg_t>> up_rmap; // osd -> pg
epoch_t epoch = 0;
uint64_t num_pgs = 0;
void _init_mappings(const OSDMap& osdmap);
void _update_range(
const OSDMap& map,
int64_t pool,
unsigned pg_begin, unsigned pg_end);
void _build_rmap(const OSDMap& osdmap);
void _start(const OSDMap& osdmap) {
_init_mappings(osdmap);
}
void _finish(const OSDMap& osdmap);
void _dump();
friend class ParallelPGMapper;
struct MappingJob : public ParallelPGMapper::Job {
OSDMapMapping *mapping;
MappingJob(const OSDMap *osdmap, OSDMapMapping *m)
: Job(osdmap), mapping(m) {
mapping->_start(*osdmap);
}
void process(const vector<pg_t>& pgs) override {}
void process(int64_t pool, unsigned ps_begin, unsigned ps_end) override {
mapping->_update_range(*osdmap, pool, ps_begin, ps_end);
}
void complete() override {
mapping->_finish(*osdmap);
}
};
public:
void get(pg_t pgid,
std::vector<int> *up,
int *up_primary,
std::vector<int> *acting,
int *acting_primary) const {
auto p = pools.find(pgid.pool());
ceph_assert(p != pools.end());
ceph_assert(pgid.ps() < p->second.pg_num);
p->second.get(pgid.ps(), up, up_primary, acting, acting_primary);
}
bool get_primary_and_shard(pg_t pgid,
int *acting_primary,
spg_t *spgid) {
auto p = pools.find(pgid.pool());
ceph_assert(p != pools.end());
ceph_assert(pgid.ps() < p->second.pg_num);
vector<int> acting;
p->second.get(pgid.ps(), nullptr, nullptr, &acting, acting_primary);
if (p->second.erasure) {
for (uint8_t i = 0; i < acting.size(); ++i) {
if (acting[i] == *acting_primary) {
*spgid = spg_t(pgid, shard_id_t(i));
return true;
}
}
return false;
} else {
*spgid = spg_t(pgid);
return true;
}
}
const mempool::osdmap_mapping::vector<pg_t>& get_osd_acting_pgs(unsigned osd) {
ceph_assert(osd < acting_rmap.size());
return acting_rmap[osd];
}
void update(const OSDMap& map);
void update(const OSDMap& map, pg_t pgid);
std::unique_ptr<MappingJob> start_update(
const OSDMap& map,
ParallelPGMapper& mapper,
unsigned pgs_per_item) {
std::unique_ptr<MappingJob> job(new MappingJob(&map, this));
mapper.queue(job.get(), pgs_per_item, {});
return job;
}
epoch_t get_epoch() const {
return epoch;
}
uint64_t get_num_pgs() const {
return num_pgs;
}
};
#endif
|