summaryrefslogtreecommitdiffstats
path: root/src/rgw/rgw_auth.h
blob: be7a102a714990b11fedbbe68bda76217ee0df6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab


#ifndef CEPH_RGW_AUTH_H
#define CEPH_RGW_AUTH_H

#include <functional>
#include <ostream>
#include <type_traits>
#include <system_error>
#include <utility>

#include "rgw_common.h"
#include "rgw_keystone.h"
#include "rgw_web_idp.h"

#define RGW_USER_ANON_ID "anonymous"

namespace rgw {
namespace auth {

using Exception = std::system_error;


/* Load information about identity that will be used by RGWOp to authorize
 * any operation that comes from an authenticated user. */
class Identity {
public:
  typedef std::map<std::string, int> aclspec_t;
  using idset_t = boost::container::flat_set<Principal>;

  virtual ~Identity() = default;

  /* Translate the ACL provided in @aclspec into concrete permission set that
   * can be used during the authorization phase (RGWOp::verify_permission).
   * On error throws rgw::auth::Exception storing the reason.
   *
   * NOTE: an implementation is responsible for giving the real semantic to
   * the items in @aclspec. That is, their meaning may depend on particular
   * applier that is being used. */
  virtual uint32_t get_perms_from_aclspec(const DoutPrefixProvider* dpp, const aclspec_t& aclspec) const = 0;

  /* Verify whether a given identity *can be treated as* an admin of rgw_user
  * (account in Swift's terminology) specified in @uid. On error throws
  * rgw::auth::Exception storing the reason. */
  virtual bool is_admin_of(const rgw_user& uid) const = 0;

  /* Verify whether a given identity *is* the owner of the rgw_user (account
   * in the Swift's terminology) specified in @uid. On internal error throws
   * rgw::auth::Exception storing the reason. */
  virtual bool is_owner_of(const rgw_user& uid) const = 0;

  /* Return the permission mask that is used to narrow down the set of
   * operations allowed for a given identity. This method reflects the idea
   * of subuser tied to RGWUserInfo. On  error throws rgw::auth::Exception
   * with the reason. */
  virtual uint32_t get_perm_mask() const = 0;

  virtual bool is_anonymous() const {
    /* If the identity owns the anonymous account (rgw_user), it's considered
     * the anonymous identity. On error throws rgw::auth::Exception storing
     * the reason. */
    return is_owner_of(rgw_user(RGW_USER_ANON_ID));
  }

  virtual void to_str(std::ostream& out) const = 0;

  /* Verify whether a given identity corresponds to an identity in the
     provided set */
  virtual bool is_identity(const idset_t& ids) const = 0;

  /* Identity Type: RGW/ LDAP/ Keystone */
  virtual uint32_t get_identity_type() const = 0;

  /* Name of Account */
  virtual string get_acct_name() const = 0;

  /* Subuser of Account */
  virtual string get_subuser() const = 0;
};

inline std::ostream& operator<<(std::ostream& out,
                                const rgw::auth::Identity& id) {
  id.to_str(out);
  return out;
}


std::unique_ptr<Identity> transform_old_authinfo(const req_state* const s);


/* Interface for classes applying changes to request state/RADOS store
 * imposed by a particular rgw::auth::Engine.
 *
 * In contrast to rgw::auth::Engine, implementations of this interface
 * are allowed to handle req_state or RGWRados in the read-write manner.
 *
 * It's expected that most (if not all) of implementations will also
 * conform to rgw::auth::Identity interface to provide authorization
 * policy (ACLs, account's ownership and entitlement). */
class IdentityApplier : public Identity {
public:
  typedef std::unique_ptr<IdentityApplier> aplptr_t;

  virtual ~IdentityApplier() {};

  /* Fill provided RGWUserInfo with information about the account that
   * RGWOp will operate on. Errors are handled solely through exceptions.
   *
   * XXX: be aware that the "account" term refers to rgw_user. The naming
   * is legacy. */
  virtual void load_acct_info(const DoutPrefixProvider* dpp, RGWUserInfo& user_info) const = 0; /* out */

  /* Apply any changes to request state. This method will be most useful for
   * TempURL of Swift API. */
  virtual void modify_request_state(const DoutPrefixProvider* dpp, req_state* s) const {}      /* in/out */
};


/* Interface class for completing the two-step authentication process.
 * Completer provides the second step - the complete() method that should
 * be called after Engine::authenticate() but before *committing* results
 * of an RGWOp (or sending a response in the case of non-mutating ops).
 *
 * The motivation driving the interface is to address those authentication
 * schemas that require message integrity verification *without* in-memory
 * data buffering. Typical examples are AWS Auth v4 and the auth mechanism
 * of browser uploads facilities both in S3 and Swift APIs (see RGWPostObj).
 * The workflow of request from the authentication point-of-view does look
 * like following one:
 *  A. authenticate (Engine::authenticate),
 *  B. authorize (see RGWOp::verify_permissions),
 *  C. execute-prepare (init potential data modifications),
 *  D. authenticate-complete - (Completer::complete),
 *  E. execute-commit - commit the modifications from point C. */
class Completer {
public:
  /* It's expected that Completers would tend to implement many interfaces
   * and be used not only in req_state::auth::completer. Ref counting their
   * instances would be helpful. */
  typedef std::shared_ptr<Completer> cmplptr_t;

  virtual ~Completer() = default;

  /* Complete the authentication process. Return boolean indicating whether
   * the completion succeeded. On error throws rgw::auth::Exception storing
   * the reason. */
  virtual bool complete() = 0;

  /* Apply any changes to request state. The initial use case was injecting
   * the AWSv4 filter over rgw::io::RestfulClient in req_state. */
  virtual void modify_request_state(const DoutPrefixProvider* dpp, req_state* s) = 0;     /* in/out */
};


/* Interface class for authentication backends (auth engines) in RadosGW.
 *
 * An engine is supposed only to authenticate (not authorize!) requests
 * basing on their req_state and - if access has been granted - provide
 * an upper layer with:
 *  - rgw::auth::IdentityApplier to commit all changes to the request state as
 *    well as to the RADOS store (creating an account, synchronizing
 *    user-related information with external databases and so on).
 *  - rgw::auth::Completer (optionally) to finish the authentication
 *    of the request. Typical use case is verifying message integrity
 *    in AWS Auth v4 and browser uploads (RGWPostObj).
 *
 * Both of them are supposed to be wrapped in Engine::AuthResult.
 *
 * The authentication process consists of two steps:
 *  - Engine::authenticate() which should be called before *initiating*
 *    any modifications to RADOS store that are related to an operation
 *    a client wants to perform (RGWOp::execute).
 *  - Completer::complete() supposed to be called, if completer has been
 *    returned, after the authenticate() step but before *committing*
 *    those modifications or sending a response (RGWOp::complete).
 *
 * An engine outlives both Applier and Completer. It's intended to live
 * since RadosGW's initialization and handle multiple requests till
 * a reconfiguration.
 *
 * Auth engine MUST NOT make any changes to req_state nor RADOS store.
 * This is solely an Applier's responsibility!
 *
 * Separation between authentication and global state modification has
 * been introduced because many auth engines are orthogonal to appliers
 * and thus they can be decoupled. Additional motivation is to clearly
 * distinguish all portions of code modifying data structures. */
class Engine {
public:
  virtual ~Engine() = default;

  class AuthResult {
    struct rejection_mark_t {};
    bool is_rejected = false;
    int reason = 0;

    std::pair<IdentityApplier::aplptr_t, Completer::cmplptr_t> result_pair;

    explicit AuthResult(const int reason)
      : reason(reason) {
    }

    AuthResult(rejection_mark_t&&, const int reason)
      : is_rejected(true),
        reason(reason) {
    }

    /* Allow only the reasonable combintations - returning just Completer
     * without accompanying IdentityApplier is strictly prohibited! */
    explicit AuthResult(IdentityApplier::aplptr_t&& applier)
      : result_pair(std::move(applier), nullptr) {
    }

    AuthResult(IdentityApplier::aplptr_t&& applier,
               Completer::cmplptr_t&& completer)
      : result_pair(std::move(applier), std::move(completer)) {
    }

  public:
    enum class Status {
      /* Engine doesn't grant the access but also doesn't reject it. */
      DENIED,

      /* Engine successfully authenicated requester. */
      GRANTED,

      /* Engine strictly indicates that a request should be rejected
       * without trying any further engine. */
      REJECTED
    };

    Status get_status() const {
      if (is_rejected) {
        return Status::REJECTED;
      } else if (! result_pair.first) {
        return Status::DENIED;
      } else {
        return Status::GRANTED;
      }
    }

    int get_reason() const {
      return reason;
    }

    IdentityApplier::aplptr_t get_applier() {
      return std::move(result_pair.first);
    }

    Completer::cmplptr_t&& get_completer() {
      return std::move(result_pair.second);
    }

    static AuthResult reject(const int reason = -EACCES) {
      return AuthResult(rejection_mark_t(), reason);
    }

    static AuthResult deny(const int reason = -EACCES) {
      return AuthResult(reason);
    }

    static AuthResult grant(IdentityApplier::aplptr_t&& applier) {
      return AuthResult(std::move(applier));
    }

    static AuthResult grant(IdentityApplier::aplptr_t&& applier,
                            Completer::cmplptr_t&& completer) {
      return AuthResult(std::move(applier), std::move(completer));
    }
  };

  using result_t = AuthResult;

  /* Get name of the auth engine. */
  virtual const char* get_name() const noexcept = 0;

  /* Throwing method for identity verification. When the check is positive
   * an implementation should return Engine::result_t containing:
   *  - a non-null pointer to an object conforming the Applier interface.
   *    Otherwise, the authentication is treated as failed.
   *  - a (potentially null) pointer to an object conforming the Completer
   *    interface.
   *
   * On error throws rgw::auth::Exception containing the reason. */
  virtual result_t authenticate(const DoutPrefixProvider* dpp, const req_state* s) const = 0;
};


/* Interface for extracting a token basing from data carried by req_state. */
class TokenExtractor {
public:
  virtual ~TokenExtractor() = default;
  virtual std::string get_token(const req_state* s) const = 0;
};


/* Abstract class for stacking sub-engines to expose them as a single
 * Engine. It is responsible for ordering its sub-engines and managing
 * fall-backs between them. Derivatee is supposed to encapsulate engine
 * instances and add them using the add_engine() method in the order it
 * wants to be tried during the call to authenticate().
 *
 * Each new Strategy should be exposed to StrategyRegistry for handling
 * the dynamic reconfiguration. */
class Strategy : public Engine {
public:
  /* Specifiers controlling what happens when an associated engine fails.
   * The names and semantic has been borrowed mostly from libpam. */
  enum class Control {
    /* Failure of an engine injected with the REQUISITE specifier aborts
     * the strategy's authentication process immediately. No other engine
     * will be tried. */
    REQUISITE,

    /* Success of an engine injected with the SUFFICIENT specifier ends
     * strategy's authentication process successfully. However, denying
     * doesn't abort it -- there will be fall-back to following engine
     * if the one that failed wasn't the last one. */
    SUFFICIENT,

    /* Like SUFFICIENT with the exception that on failure the reason code
     * is not overridden. Instead, it's taken directly from the last tried
     * non-FALLBACK engine. If there was no previous non-FALLBACK engine
     * in a Strategy, then the result_t::deny(reason = -EACCES) is used. */
    FALLBACK,
  };

  Engine::result_t authenticate(const DoutPrefixProvider* dpp, const req_state* s) const override final;

  bool is_empty() const {
    return auth_stack.empty();
  }

  static int apply(const DoutPrefixProvider* dpp, const Strategy& auth_strategy, req_state* s) noexcept;

private:
  /* Using the reference wrapper here to explicitly point out we are not
   * interested in storing nulls while preserving the dynamic polymorphism. */
  using stack_item_t = std::pair<std::reference_wrapper<const Engine>,
                                 Control>;
  std::vector<stack_item_t> auth_stack;

protected:
  void add_engine(Control ctrl_flag, const Engine& engine) noexcept;
};


/* A class aggregating the knowledge about all Strategies in RadosGW. It is
 * responsible for handling the dynamic reconfiguration on e.g. realm update.
 * The definition is in rgw/rgw_auth_registry.h,
 *
 * Each new Strategy should be exposed to it. */
class StrategyRegistry;

class WebIdentityApplier : public IdentityApplier {
protected:
  CephContext* const cct;
  RGWRados* const store;
  rgw::web_idp::WebTokenClaims token_claims;

  string get_idp_url() const;

public:
  WebIdentityApplier( CephContext* const cct,
                      RGWRados* const store,
                      const rgw::web_idp::WebTokenClaims& token_claims)
    : cct(cct),
      store(store),
      token_claims(token_claims) {
  }

  void load_acct_info(const DoutPrefixProvider* dpp, RGWUserInfo& user_info) const override {
    user_info.user_id = rgw_user(token_claims.sub);
    user_info.display_name = token_claims.user_name;
  }

  void modify_request_state(const DoutPrefixProvider *dpp, req_state* s) const override;

  uint32_t get_perms_from_aclspec(const DoutPrefixProvider* dpp, const aclspec_t& aclspec) const  override {
    return RGW_PERM_NONE;
  }

  bool is_admin_of(const rgw_user& uid) const override {
    return false;
  }

  bool is_owner_of(const rgw_user& uid) const override {
    return false;
  }

  uint32_t get_perm_mask() const override {
    return RGW_PERM_NONE;
  }

  void to_str(std::ostream& out) const override;

  bool is_identity(const idset_t& ids) const override;

  uint32_t get_identity_type() const override {
    return TYPE_WEB;
  }

  string get_acct_name() const override {
    return token_claims.user_name;
  }

  string get_subuser() const override {
    return {};
  }

  struct Factory {
    virtual ~Factory() {}

    virtual aplptr_t create_apl_web_identity( CephContext* cct,
                                              const req_state* s,
                                              const rgw::web_idp::WebTokenClaims& token) const = 0;
  };
};

class ImplicitTenants: public md_config_obs_t {
public:
  enum implicit_tenant_flag_bits {IMPLICIT_TENANTS_SWIFT=1,
	IMPLICIT_TENANTS_S3=2, IMPLICIT_TENANTS_BAD = -1, };
private:
  int saved;
  void recompute_value(const ConfigProxy& );
  class ImplicitTenantValue {
    friend class ImplicitTenants;
    int v;
    ImplicitTenantValue(int v) : v(v) {};
  public:
    bool inline is_split_mode()
    {
      assert(v != IMPLICIT_TENANTS_BAD);
      return v == IMPLICIT_TENANTS_SWIFT || v == IMPLICIT_TENANTS_S3;
    }
    bool inline implicit_tenants_for_(const implicit_tenant_flag_bits bit)
    {
      assert(v != IMPLICIT_TENANTS_BAD);
      return static_cast<bool>(v&bit);
    }
  };
public:
  ImplicitTenants(const ConfigProxy& c) { recompute_value(c);}
  ImplicitTenantValue get_value() {
    return ImplicitTenantValue(saved);
  }
private:
  const char** get_tracked_conf_keys() const override;
  void handle_conf_change(const ConfigProxy& conf,
    const std::set <std::string> &changed) override;
};

std::tuple<bool,bool> implicit_tenants_enabled_for_swift(CephContext * const cct);
std::tuple<bool,bool> implicit_tenants_enabled_for_s3(CephContext * const cct);

/* rgw::auth::RemoteApplier targets those authentication engines which don't
 * need to ask the RADOS store while performing the auth process. Instead,
 * they obtain credentials from an external source like Keystone or LDAP.
 *
 * As the authenticated user may not have an account yet, RGWRemoteAuthApplier
 * must be able to create it basing on data passed by an auth engine. Those
 * data will be used to fill RGWUserInfo structure. */
class RemoteApplier : public IdentityApplier {
public:
  class AuthInfo {
    friend class RemoteApplier;
  protected:
    const rgw_user acct_user;
    const std::string acct_name;
    const uint32_t perm_mask;
    const bool is_admin;
    const uint32_t acct_type;

  public:
    enum class acct_privilege_t {
      IS_ADMIN_ACCT,
      IS_PLAIN_ACCT
    };

    AuthInfo(const rgw_user& acct_user,
             const std::string& acct_name,
             const uint32_t perm_mask,
             const acct_privilege_t level,
             const uint32_t acct_type=TYPE_NONE)
    : acct_user(acct_user),
      acct_name(acct_name),
      perm_mask(perm_mask),
      is_admin(acct_privilege_t::IS_ADMIN_ACCT == level),
      acct_type(acct_type) {
    }
  };

  using aclspec_t = rgw::auth::Identity::aclspec_t;
  typedef std::function<uint32_t(const aclspec_t&)> acl_strategy_t;

protected:
  CephContext* const cct;

  /* Read-write is intensional here due to RGWUserInfo creation process. */
  RGWRados* const store;

  /* Supplemental strategy for extracting permissions from ACLs. Its results
   * will be combined (ORed) with a default strategy that is responsible for
   * handling backward compatibility. */
  const acl_strategy_t extra_acl_strategy;

  const AuthInfo info;
  rgw::auth::ImplicitTenants& implicit_tenant_context;
  const rgw::auth::ImplicitTenants::implicit_tenant_flag_bits implicit_tenant_bit;

  virtual void create_account(const DoutPrefixProvider* dpp,
                              const rgw_user& acct_user,
                              bool implicit_tenant,
                              RGWUserInfo& user_info) const;          /* out */

public:
  RemoteApplier(CephContext* const cct,
                RGWRados* const store,
                acl_strategy_t&& extra_acl_strategy,
                const AuthInfo& info,
		rgw::auth::ImplicitTenants& implicit_tenant_context,
                rgw::auth::ImplicitTenants::implicit_tenant_flag_bits implicit_tenant_bit)
    : cct(cct),
      store(store),
      extra_acl_strategy(std::move(extra_acl_strategy)),
      info(info),
      implicit_tenant_context(implicit_tenant_context),
      implicit_tenant_bit(implicit_tenant_bit) {
  }

  uint32_t get_perms_from_aclspec(const DoutPrefixProvider* dpp, const aclspec_t& aclspec) const override;
  bool is_admin_of(const rgw_user& uid) const override;
  bool is_owner_of(const rgw_user& uid) const override;
  bool is_identity(const idset_t& ids) const override;

  uint32_t get_perm_mask() const override { return info.perm_mask; }
  void to_str(std::ostream& out) const override;
  void load_acct_info(const DoutPrefixProvider* dpp, RGWUserInfo& user_info) const override; /* out */
  uint32_t get_identity_type() const override { return info.acct_type; }
  string get_acct_name() const override { return info.acct_name; }
  string get_subuser() const override { return {}; }

  struct Factory {
    virtual ~Factory() {}
    /* Providing r-value reference here is required intensionally. Callee is
     * thus disallowed to handle std::function in a way that could inhibit
     * the move behaviour (like forgetting about std::moving a l-value). */
    virtual aplptr_t create_apl_remote(CephContext* cct,
                                       const req_state* s,
                                       acl_strategy_t&& extra_acl_strategy,
                                       const AuthInfo &info) const = 0;
  };
};


/* rgw::auth::LocalApplier targets those auth engines that base on the data
 * enclosed in the RGWUserInfo control structure. As a side effect of doing
 * the authentication process, they must have it loaded. Leveraging this is
 * a way to avoid unnecessary calls to underlying RADOS store. */
class LocalApplier : public IdentityApplier {
  using aclspec_t = rgw::auth::Identity::aclspec_t;

protected:
  const RGWUserInfo user_info;
  const std::string subuser;
  uint32_t perm_mask;

  uint32_t get_perm_mask(const std::string& subuser_name,
                         const RGWUserInfo &uinfo) const;

public:
  static const std::string NO_SUBUSER;

  LocalApplier(CephContext* const cct,
               const RGWUserInfo& user_info,
               std::string subuser,
               const boost::optional<uint32_t>& perm_mask)
    : user_info(user_info),
      subuser(std::move(subuser)) {
    if (perm_mask) {
      this->perm_mask = perm_mask.get();
    } else {
      this->perm_mask = RGW_PERM_INVALID;
    }
  }


  uint32_t get_perms_from_aclspec(const DoutPrefixProvider* dpp, const aclspec_t& aclspec) const override;
  bool is_admin_of(const rgw_user& uid) const override;
  bool is_owner_of(const rgw_user& uid) const override;
  bool is_identity(const idset_t& ids) const override;
  uint32_t get_perm_mask() const override {
    if (this->perm_mask == RGW_PERM_INVALID) {
      return get_perm_mask(subuser, user_info);
    } else {
      return this->perm_mask;
    }
  }
  void to_str(std::ostream& out) const override;
  void load_acct_info(const DoutPrefixProvider* dpp, RGWUserInfo& user_info) const override; /* out */
  uint32_t get_identity_type() const override { return TYPE_RGW; }
  string get_acct_name() const override { return {}; }
  string get_subuser() const override { return subuser; }

  struct Factory {
    virtual ~Factory() {}
    virtual aplptr_t create_apl_local(CephContext* cct,
                                      const req_state* s,
                                      const RGWUserInfo& user_info,
                                      const std::string& subuser,
                                      const boost::optional<uint32_t>& perm_mask) const = 0;
    };
};

class RoleApplier : public IdentityApplier {
protected:
  const string role_name;
  const rgw_user user_id;
  vector<std::string> role_policies;

public:

  RoleApplier(CephContext* const cct,
               const string& role_name,
               const rgw_user& user_id,
               const vector<std::string>& role_policies)
    : role_name(role_name),
      user_id(user_id),
      role_policies(role_policies) {}

  uint32_t get_perms_from_aclspec(const DoutPrefixProvider* dpp, const aclspec_t& aclspec) const override {
    return 0;
  }
  bool is_admin_of(const rgw_user& uid) const override {
    return false;
  }
  bool is_owner_of(const rgw_user& uid) const override {
    return false;
  }
  bool is_identity(const idset_t& ids) const override;
  uint32_t get_perm_mask() const override {
    return RGW_PERM_NONE;
  }
  void to_str(std::ostream& out) const override;
  void load_acct_info(const DoutPrefixProvider* dpp, RGWUserInfo& user_info) const override; /* out */
  uint32_t get_identity_type() const override { return TYPE_ROLE; }
  string get_acct_name() const override { return {}; }
  string get_subuser() const override { return {}; }
  void modify_request_state(const DoutPrefixProvider* dpp, req_state* s) const override;

  struct Factory {
    virtual ~Factory() {}
    virtual aplptr_t create_apl_role( CephContext* cct,
                                      const req_state* s,
                                      const string& role_name,
                                      const rgw_user& user_id,
                                      const vector<std::string>& role_policies) const = 0;
    };
};

/* The anonymous abstract engine. */
class AnonymousEngine : public Engine {
  CephContext* const cct;
  const rgw::auth::LocalApplier::Factory* const apl_factory;

public:
  AnonymousEngine(CephContext* const cct,
                  const rgw::auth::LocalApplier::Factory* const apl_factory)
    : cct(cct),
      apl_factory(apl_factory) {
  }

  const char* get_name() const noexcept override {
    return "rgw::auth::AnonymousEngine";
  }

  Engine::result_t authenticate(const DoutPrefixProvider* dpp, const req_state* s) const override final;

protected:
  virtual bool is_applicable(const req_state*) const noexcept {
    return true;
  }
};

} /* namespace auth */
} /* namespace rgw */


uint32_t rgw_perms_from_aclspec_default_strategy(
  const rgw_user& uid,
  const rgw::auth::Identity::aclspec_t& aclspec);

#endif /* CEPH_RGW_AUTH_H */