summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/compaction_iterator.cc
blob: 93c2b5fa9e938ddb7fa27ea2aec8ffea3d21c8c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include "db/compaction_iterator.h"

#include "db/snapshot_checker.h"
#include "port/likely.h"
#include "rocksdb/listener.h"
#include "table/internal_iterator.h"
#include "util/sync_point.h"

#define DEFINITELY_IN_SNAPSHOT(seq, snapshot)                       \
  ((seq) <= (snapshot) &&                                           \
   (snapshot_checker_ == nullptr ||                                 \
    LIKELY(snapshot_checker_->CheckInSnapshot((seq), (snapshot)) == \
           SnapshotCheckerResult::kInSnapshot)))

#define DEFINITELY_NOT_IN_SNAPSHOT(seq, snapshot)                     \
  ((seq) > (snapshot) ||                                              \
   (snapshot_checker_ != nullptr &&                                   \
    UNLIKELY(snapshot_checker_->CheckInSnapshot((seq), (snapshot)) == \
             SnapshotCheckerResult::kNotInSnapshot)))

#define IN_EARLIEST_SNAPSHOT(seq) \
  ((seq) <= earliest_snapshot_ && \
   (snapshot_checker_ == nullptr || LIKELY(IsInEarliestSnapshot(seq))))

namespace rocksdb {

CompactionIterator::CompactionIterator(
    InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
    SequenceNumber last_sequence, std::vector<SequenceNumber>* snapshots,
    SequenceNumber earliest_write_conflict_snapshot,
    const SnapshotChecker* snapshot_checker, Env* env,
    bool report_detailed_time, bool expect_valid_internal_key,
    CompactionRangeDelAggregator* range_del_agg, const Compaction* compaction,
    const CompactionFilter* compaction_filter,
    const std::atomic<bool>* shutting_down,
    const SequenceNumber preserve_deletes_seqnum)
    : CompactionIterator(
          input, cmp, merge_helper, last_sequence, snapshots,
          earliest_write_conflict_snapshot, snapshot_checker, env,
          report_detailed_time, expect_valid_internal_key, range_del_agg,
          std::unique_ptr<CompactionProxy>(
              compaction ? new CompactionProxy(compaction) : nullptr),
          compaction_filter, shutting_down, preserve_deletes_seqnum) {}

CompactionIterator::CompactionIterator(
    InternalIterator* input, const Comparator* cmp, MergeHelper* merge_helper,
    SequenceNumber /*last_sequence*/, std::vector<SequenceNumber>* snapshots,
    SequenceNumber earliest_write_conflict_snapshot,
    const SnapshotChecker* snapshot_checker, Env* env,
    bool report_detailed_time, bool expect_valid_internal_key,
    CompactionRangeDelAggregator* range_del_agg,
    std::unique_ptr<CompactionProxy> compaction,
    const CompactionFilter* compaction_filter,
    const std::atomic<bool>* shutting_down,
    const SequenceNumber preserve_deletes_seqnum)
    : input_(input),
      cmp_(cmp),
      merge_helper_(merge_helper),
      snapshots_(snapshots),
      earliest_write_conflict_snapshot_(earliest_write_conflict_snapshot),
      snapshot_checker_(snapshot_checker),
      env_(env),
      report_detailed_time_(report_detailed_time),
      expect_valid_internal_key_(expect_valid_internal_key),
      range_del_agg_(range_del_agg),
      compaction_(std::move(compaction)),
      compaction_filter_(compaction_filter),
      shutting_down_(shutting_down),
      preserve_deletes_seqnum_(preserve_deletes_seqnum),
      current_user_key_sequence_(0),
      current_user_key_snapshot_(0),
      merge_out_iter_(merge_helper_),
      current_key_committed_(false) {
  assert(compaction_filter_ == nullptr || compaction_ != nullptr);
  assert(snapshots_ != nullptr);
  bottommost_level_ =
      compaction_ == nullptr ? false : compaction_->bottommost_level();
  if (compaction_ != nullptr) {
    level_ptrs_ = std::vector<size_t>(compaction_->number_levels(), 0);
  }
  if (snapshots_->size() == 0) {
    // optimize for fast path if there are no snapshots
    visible_at_tip_ = true;
    earliest_snapshot_iter_ = snapshots_->end();
    earliest_snapshot_ = kMaxSequenceNumber;
    latest_snapshot_ = 0;
  } else {
    visible_at_tip_ = false;
    earliest_snapshot_iter_ = snapshots_->begin();
    earliest_snapshot_ = snapshots_->at(0);
    latest_snapshot_ = snapshots_->back();
  }
#ifndef NDEBUG
  // findEarliestVisibleSnapshot assumes this ordering.
  for (size_t i = 1; i < snapshots_->size(); ++i) {
    assert(snapshots_->at(i - 1) < snapshots_->at(i));
  }
#endif
  input_->SetPinnedItersMgr(&pinned_iters_mgr_);
  TEST_SYNC_POINT_CALLBACK("CompactionIterator:AfterInit", compaction_.get());
}

CompactionIterator::~CompactionIterator() {
  // input_ Iteartor lifetime is longer than pinned_iters_mgr_ lifetime
  input_->SetPinnedItersMgr(nullptr);
}

void CompactionIterator::ResetRecordCounts() {
  iter_stats_.num_record_drop_user = 0;
  iter_stats_.num_record_drop_hidden = 0;
  iter_stats_.num_record_drop_obsolete = 0;
  iter_stats_.num_record_drop_range_del = 0;
  iter_stats_.num_range_del_drop_obsolete = 0;
  iter_stats_.num_optimized_del_drop_obsolete = 0;
}

void CompactionIterator::SeekToFirst() {
  NextFromInput();
  PrepareOutput();
}

void CompactionIterator::Next() {
  // If there is a merge output, return it before continuing to process the
  // input.
  if (merge_out_iter_.Valid()) {
    merge_out_iter_.Next();

    // Check if we returned all records of the merge output.
    if (merge_out_iter_.Valid()) {
      key_ = merge_out_iter_.key();
      value_ = merge_out_iter_.value();
      bool valid_key __attribute__((__unused__));
      valid_key =  ParseInternalKey(key_, &ikey_);
      // MergeUntil stops when it encounters a corrupt key and does not
      // include them in the result, so we expect the keys here to be valid.
      assert(valid_key);
      // Keep current_key_ in sync.
      current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
      key_ = current_key_.GetInternalKey();
      ikey_.user_key = current_key_.GetUserKey();
      valid_ = true;
    } else {
      // We consumed all pinned merge operands, release pinned iterators
      pinned_iters_mgr_.ReleasePinnedData();
      // MergeHelper moves the iterator to the first record after the merged
      // records, so even though we reached the end of the merge output, we do
      // not want to advance the iterator.
      NextFromInput();
    }
  } else {
    // Only advance the input iterator if there is no merge output and the
    // iterator is not already at the next record.
    if (!at_next_) {
      input_->Next();
    }
    NextFromInput();
  }

  if (valid_) {
    // Record that we've outputted a record for the current key.
    has_outputted_key_ = true;
  }

  PrepareOutput();
}

void CompactionIterator::InvokeFilterIfNeeded(bool* need_skip,
                                              Slice* skip_until) {
  if (compaction_filter_ != nullptr &&
      (ikey_.type == kTypeValue || ikey_.type == kTypeBlobIndex)) {
    // If the user has specified a compaction filter and the sequence
    // number is greater than any external snapshot, then invoke the
    // filter. If the return value of the compaction filter is true,
    // replace the entry with a deletion marker.
    CompactionFilter::Decision filter;
    compaction_filter_value_.clear();
    compaction_filter_skip_until_.Clear();
    CompactionFilter::ValueType value_type =
        ikey_.type == kTypeValue ? CompactionFilter::ValueType::kValue
                                 : CompactionFilter::ValueType::kBlobIndex;
    // Hack: pass internal key to BlobIndexCompactionFilter since it needs
    // to get sequence number.
    Slice& filter_key = ikey_.type == kTypeValue ? ikey_.user_key : key_;
    {
      StopWatchNano timer(env_, report_detailed_time_);
      filter = compaction_filter_->FilterV2(
          compaction_->level(), filter_key, value_type, value_,
          &compaction_filter_value_, compaction_filter_skip_until_.rep());
      iter_stats_.total_filter_time +=
          env_ != nullptr && report_detailed_time_ ? timer.ElapsedNanos() : 0;
    }

    if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil &&
        cmp_->Compare(*compaction_filter_skip_until_.rep(), ikey_.user_key) <=
            0) {
      // Can't skip to a key smaller than the current one.
      // Keep the key as per FilterV2 documentation.
      filter = CompactionFilter::Decision::kKeep;
    }

    if (filter == CompactionFilter::Decision::kRemove) {
      // convert the current key to a delete; key_ is pointing into
      // current_key_ at this point, so updating current_key_ updates key()
      ikey_.type = kTypeDeletion;
      current_key_.UpdateInternalKey(ikey_.sequence, kTypeDeletion);
      // no value associated with delete
      value_.clear();
      iter_stats_.num_record_drop_user++;
    } else if (filter == CompactionFilter::Decision::kChangeValue) {
      value_ = compaction_filter_value_;
    } else if (filter == CompactionFilter::Decision::kRemoveAndSkipUntil) {
      *need_skip = true;
      compaction_filter_skip_until_.ConvertFromUserKey(kMaxSequenceNumber,
                                                       kValueTypeForSeek);
      *skip_until = compaction_filter_skip_until_.Encode();
    }
  }
}

void CompactionIterator::NextFromInput() {
  at_next_ = false;
  valid_ = false;

  while (!valid_ && input_->Valid() && !IsShuttingDown()) {
    key_ = input_->key();
    value_ = input_->value();
    iter_stats_.num_input_records++;

    if (!ParseInternalKey(key_, &ikey_)) {
      // If `expect_valid_internal_key_` is false, return the corrupted key
      // and let the caller decide what to do with it.
      // TODO(noetzli): We should have a more elegant solution for this.
      if (expect_valid_internal_key_) {
        assert(!"Corrupted internal key not expected.");
        status_ = Status::Corruption("Corrupted internal key not expected.");
        break;
      }
      key_ = current_key_.SetInternalKey(key_);
      has_current_user_key_ = false;
      current_user_key_sequence_ = kMaxSequenceNumber;
      current_user_key_snapshot_ = 0;
      iter_stats_.num_input_corrupt_records++;
      valid_ = true;
      break;
    }
    TEST_SYNC_POINT_CALLBACK("CompactionIterator:ProcessKV", &ikey_);

    // Update input statistics
    if (ikey_.type == kTypeDeletion || ikey_.type == kTypeSingleDeletion) {
      iter_stats_.num_input_deletion_records++;
    }
    iter_stats_.total_input_raw_key_bytes += key_.size();
    iter_stats_.total_input_raw_value_bytes += value_.size();

    // If need_skip is true, we should seek the input iterator
    // to internal key skip_until and continue from there.
    bool need_skip = false;
    // Points either into compaction_filter_skip_until_ or into
    // merge_helper_->compaction_filter_skip_until_.
    Slice skip_until;

    // Check whether the user key changed. After this if statement current_key_
    // is a copy of the current input key (maybe converted to a delete by the
    // compaction filter). ikey_.user_key is pointing to the copy.
    if (!has_current_user_key_ ||
        !cmp_->Equal(ikey_.user_key, current_user_key_)) {
      // First occurrence of this user key
      // Copy key for output
      key_ = current_key_.SetInternalKey(key_, &ikey_);
      current_user_key_ = ikey_.user_key;
      has_current_user_key_ = true;
      has_outputted_key_ = false;
      current_user_key_sequence_ = kMaxSequenceNumber;
      current_user_key_snapshot_ = 0;
      current_key_committed_ = KeyCommitted(ikey_.sequence);

      // Apply the compaction filter to the first committed version of the user
      // key.
      if (current_key_committed_) {
        InvokeFilterIfNeeded(&need_skip, &skip_until);
      }
    } else {
      // Update the current key to reflect the new sequence number/type without
      // copying the user key.
      // TODO(rven): Compaction filter does not process keys in this path
      // Need to have the compaction filter process multiple versions
      // if we have versions on both sides of a snapshot
      current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
      key_ = current_key_.GetInternalKey();
      ikey_.user_key = current_key_.GetUserKey();

      // Note that newer version of a key is ordered before older versions. If a
      // newer version of a key is committed, so as the older version. No need
      // to query snapshot_checker_ in that case.
      if (UNLIKELY(!current_key_committed_)) {
        assert(snapshot_checker_ != nullptr);
        current_key_committed_ = KeyCommitted(ikey_.sequence);
        // Apply the compaction filter to the first committed version of the
        // user key.
        if (current_key_committed_) {
          InvokeFilterIfNeeded(&need_skip, &skip_until);
        }
      }
    }

    if (UNLIKELY(!current_key_committed_)) {
      assert(snapshot_checker_ != nullptr);
      valid_ = true;
      break;
    }

    // If there are no snapshots, then this kv affect visibility at tip.
    // Otherwise, search though all existing snapshots to find the earliest
    // snapshot that is affected by this kv.
    SequenceNumber last_sequence __attribute__((__unused__));
    last_sequence = current_user_key_sequence_;
    current_user_key_sequence_ = ikey_.sequence;
    SequenceNumber last_snapshot = current_user_key_snapshot_;
    SequenceNumber prev_snapshot = 0;  // 0 means no previous snapshot
    current_user_key_snapshot_ =
        visible_at_tip_
            ? earliest_snapshot_
            : findEarliestVisibleSnapshot(ikey_.sequence, &prev_snapshot);

    if (need_skip) {
      // This case is handled below.
    } else if (clear_and_output_next_key_) {
      // In the previous iteration we encountered a single delete that we could
      // not compact out.  We will keep this Put, but can drop it's data.
      // (See Optimization 3, below.)
      assert(ikey_.type == kTypeValue);
      assert(current_user_key_snapshot_ == last_snapshot);

      value_.clear();
      valid_ = true;
      clear_and_output_next_key_ = false;
    } else if (ikey_.type == kTypeSingleDeletion) {
      // We can compact out a SingleDelete if:
      // 1) We encounter the corresponding PUT -OR- we know that this key
      //    doesn't appear past this output level
      // =AND=
      // 2) We've already returned a record in this snapshot -OR-
      //    there are no earlier earliest_write_conflict_snapshot.
      //
      // Rule 1 is needed for SingleDelete correctness.  Rule 2 is needed to
      // allow Transactions to do write-conflict checking (if we compacted away
      // all keys, then we wouldn't know that a write happened in this
      // snapshot).  If there is no earlier snapshot, then we know that there
      // are no active transactions that need to know about any writes.
      //
      // Optimization 3:
      // If we encounter a SingleDelete followed by a PUT and Rule 2 is NOT
      // true, then we must output a SingleDelete.  In this case, we will decide
      // to also output the PUT.  While we are compacting less by outputting the
      // PUT now, hopefully this will lead to better compaction in the future
      // when Rule 2 is later true (Ie, We are hoping we can later compact out
      // both the SingleDelete and the Put, while we couldn't if we only
      // outputted the SingleDelete now).
      // In this case, we can save space by removing the PUT's value as it will
      // never be read.
      //
      // Deletes and Merges are not supported on the same key that has a
      // SingleDelete as it is not possible to correctly do any partial
      // compaction of such a combination of operations.  The result of mixing
      // those operations for a given key is documented as being undefined.  So
      // we can choose how to handle such a combinations of operations.  We will
      // try to compact out as much as we can in these cases.
      // We will report counts on these anomalous cases.

      // The easiest way to process a SingleDelete during iteration is to peek
      // ahead at the next key.
      ParsedInternalKey next_ikey;
      input_->Next();

      // Check whether the next key exists, is not corrupt, and is the same key
      // as the single delete.
      if (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) &&
          cmp_->Equal(ikey_.user_key, next_ikey.user_key)) {
        // Check whether the next key belongs to the same snapshot as the
        // SingleDelete.
        if (prev_snapshot == 0 ||
            DEFINITELY_NOT_IN_SNAPSHOT(next_ikey.sequence, prev_snapshot)) {
          if (next_ikey.type == kTypeSingleDeletion) {
            // We encountered two SingleDeletes in a row.  This could be due to
            // unexpected user input.
            // Skip the first SingleDelete and let the next iteration decide how
            // to handle the second SingleDelete

            // First SingleDelete has been skipped since we already called
            // input_->Next().
            ++iter_stats_.num_record_drop_obsolete;
            ++iter_stats_.num_single_del_mismatch;
          } else if (has_outputted_key_ ||
                     DEFINITELY_IN_SNAPSHOT(
                         ikey_.sequence, earliest_write_conflict_snapshot_)) {
            // Found a matching value, we can drop the single delete and the
            // value.  It is safe to drop both records since we've already
            // outputted a key in this snapshot, or there is no earlier
            // snapshot (Rule 2 above).

            // Note: it doesn't matter whether the second key is a Put or if it
            // is an unexpected Merge or Delete.  We will compact it out
            // either way. We will maintain counts of how many mismatches
            // happened
            if (next_ikey.type != kTypeValue &&
                next_ikey.type != kTypeBlobIndex) {
              ++iter_stats_.num_single_del_mismatch;
            }

            ++iter_stats_.num_record_drop_hidden;
            ++iter_stats_.num_record_drop_obsolete;
            // Already called input_->Next() once.  Call it a second time to
            // skip past the second key.
            input_->Next();
          } else {
            // Found a matching value, but we cannot drop both keys since
            // there is an earlier snapshot and we need to leave behind a record
            // to know that a write happened in this snapshot (Rule 2 above).
            // Clear the value and output the SingleDelete. (The value will be
            // outputted on the next iteration.)

            // Setting valid_ to true will output the current SingleDelete
            valid_ = true;

            // Set up the Put to be outputted in the next iteration.
            // (Optimization 3).
            clear_and_output_next_key_ = true;
          }
        } else {
          // We hit the next snapshot without hitting a put, so the iterator
          // returns the single delete.
          valid_ = true;
        }
      } else {
        // We are at the end of the input, could not parse the next key, or hit
        // a different key. The iterator returns the single delete if the key
        // possibly exists beyond the current output level.  We set
        // has_current_user_key to false so that if the iterator is at the next
        // key, we do not compare it again against the previous key at the next
        // iteration. If the next key is corrupt, we return before the
        // comparison, so the value of has_current_user_key does not matter.
        has_current_user_key_ = false;
        if (compaction_ != nullptr && IN_EARLIEST_SNAPSHOT(ikey_.sequence) &&
            compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
                                                       &level_ptrs_)) {
          // Key doesn't exist outside of this range.
          // Can compact out this SingleDelete.
          ++iter_stats_.num_record_drop_obsolete;
          ++iter_stats_.num_single_del_fallthru;
          if (!bottommost_level_) {
            ++iter_stats_.num_optimized_del_drop_obsolete;
          }
        } else {
          // Output SingleDelete
          valid_ = true;
        }
      }

      if (valid_) {
        at_next_ = true;
      }
    } else if (last_snapshot == current_user_key_snapshot_ ||
               (last_snapshot > 0 &&
                last_snapshot < current_user_key_snapshot_)) {
      // If the earliest snapshot is which this key is visible in
      // is the same as the visibility of a previous instance of the
      // same key, then this kv is not visible in any snapshot.
      // Hidden by an newer entry for same user key
      //
      // Note: Dropping this key will not affect TransactionDB write-conflict
      // checking since there has already been a record returned for this key
      // in this snapshot.
      assert(last_sequence >= current_user_key_sequence_);

      // Note2: if last_snapshot < current_user_key_snapshot, it can only
      // mean last_snapshot is released between we process last value and
      // this value, and findEarliestVisibleSnapshot returns the next snapshot
      // as current_user_key_snapshot. In this case last value and current
      // value are both in current_user_key_snapshot currently.
      // Although last_snapshot is released we might still get a definitive
      // response when key sequence number changes, e.g., when seq is determined
      // too old and visible in all snapshots.
      assert(last_snapshot == current_user_key_snapshot_ ||
             (snapshot_checker_ != nullptr &&
              snapshot_checker_->CheckInSnapshot(current_user_key_sequence_,
                                                 last_snapshot) !=
                  SnapshotCheckerResult::kNotInSnapshot));

      ++iter_stats_.num_record_drop_hidden;  // (A)
      input_->Next();
    } else if (compaction_ != nullptr && ikey_.type == kTypeDeletion &&
               IN_EARLIEST_SNAPSHOT(ikey_.sequence) &&
               ikeyNotNeededForIncrementalSnapshot() &&
               compaction_->KeyNotExistsBeyondOutputLevel(ikey_.user_key,
                                                          &level_ptrs_)) {
      // TODO(noetzli): This is the only place where we use compaction_
      // (besides the constructor). We should probably get rid of this
      // dependency and find a way to do similar filtering during flushes.
      //
      // For this user key:
      // (1) there is no data in higher levels
      // (2) data in lower levels will have larger sequence numbers
      // (3) data in layers that are being compacted here and have
      //     smaller sequence numbers will be dropped in the next
      //     few iterations of this loop (by rule (A) above).
      // Therefore this deletion marker is obsolete and can be dropped.
      //
      // Note:  Dropping this Delete will not affect TransactionDB
      // write-conflict checking since it is earlier than any snapshot.
      //
      // It seems that we can also drop deletion later than earliest snapshot
      // given that:
      // (1) The deletion is earlier than earliest_write_conflict_snapshot, and
      // (2) No value exist earlier than the deletion.
      ++iter_stats_.num_record_drop_obsolete;
      if (!bottommost_level_) {
        ++iter_stats_.num_optimized_del_drop_obsolete;
      }
      input_->Next();
    } else if ((ikey_.type == kTypeDeletion) && bottommost_level_ &&
               ikeyNotNeededForIncrementalSnapshot()) {
      // Handle the case where we have a delete key at the bottom most level
      // We can skip outputting the key iff there are no subsequent puts for this
      // key
      ParsedInternalKey next_ikey;
      input_->Next();
      // Skip over all versions of this key that happen to occur in the same snapshot
      // range as the delete
      while (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) &&
             cmp_->Equal(ikey_.user_key, next_ikey.user_key) &&
             (prev_snapshot == 0 ||
              DEFINITELY_NOT_IN_SNAPSHOT(next_ikey.sequence, prev_snapshot))) {
        input_->Next();
      }
      // If you find you still need to output a row with this key, we need to output the
      // delete too
      if (input_->Valid() && ParseInternalKey(input_->key(), &next_ikey) &&
          cmp_->Equal(ikey_.user_key, next_ikey.user_key)) {
        valid_ = true;
        at_next_ = true;
      }
    } else if (ikey_.type == kTypeMerge) {
      if (!merge_helper_->HasOperator()) {
        status_ = Status::InvalidArgument(
            "merge_operator is not properly initialized.");
        return;
      }

      pinned_iters_mgr_.StartPinning();
      // We know the merge type entry is not hidden, otherwise we would
      // have hit (A)
      // We encapsulate the merge related state machine in a different
      // object to minimize change to the existing flow.
      Status s = merge_helper_->MergeUntil(input_, range_del_agg_,
                                           prev_snapshot, bottommost_level_);
      merge_out_iter_.SeekToFirst();

      if (!s.ok() && !s.IsMergeInProgress()) {
        status_ = s;
        return;
      } else if (merge_out_iter_.Valid()) {
        // NOTE: key, value, and ikey_ refer to old entries.
        //       These will be correctly set below.
        key_ = merge_out_iter_.key();
        value_ = merge_out_iter_.value();
        bool valid_key __attribute__((__unused__));
        valid_key = ParseInternalKey(key_, &ikey_);
        // MergeUntil stops when it encounters a corrupt key and does not
        // include them in the result, so we expect the keys here to valid.
        assert(valid_key);
        // Keep current_key_ in sync.
        current_key_.UpdateInternalKey(ikey_.sequence, ikey_.type);
        key_ = current_key_.GetInternalKey();
        ikey_.user_key = current_key_.GetUserKey();
        valid_ = true;
      } else {
        // all merge operands were filtered out. reset the user key, since the
        // batch consumed by the merge operator should not shadow any keys
        // coming after the merges
        has_current_user_key_ = false;
        pinned_iters_mgr_.ReleasePinnedData();

        if (merge_helper_->FilteredUntil(&skip_until)) {
          need_skip = true;
        }
      }
    } else {
      // 1. new user key -OR-
      // 2. different snapshot stripe
      bool should_delete = range_del_agg_->ShouldDelete(
          key_, RangeDelPositioningMode::kForwardTraversal);
      if (should_delete) {
        ++iter_stats_.num_record_drop_hidden;
        ++iter_stats_.num_record_drop_range_del;
        input_->Next();
      } else {
        valid_ = true;
      }
    }

    if (need_skip) {
      input_->Seek(skip_until);
    }
  }

  if (!valid_ && IsShuttingDown()) {
    status_ = Status::ShutdownInProgress();
  }
}

void CompactionIterator::PrepareOutput() {
  // Zeroing out the sequence number leads to better compression.
  // If this is the bottommost level (no files in lower levels)
  // and the earliest snapshot is larger than this seqno
  // and the userkey differs from the last userkey in compaction
  // then we can squash the seqno to zero.
  //
  // This is safe for TransactionDB write-conflict checking since transactions
  // only care about sequence number larger than any active snapshots.
  //
  // Can we do the same for levels above bottom level as long as
  // KeyNotExistsBeyondOutputLevel() return true?
  if ((compaction_ != nullptr && !compaction_->allow_ingest_behind()) &&
      ikeyNotNeededForIncrementalSnapshot() && bottommost_level_ && valid_ &&
      IN_EARLIEST_SNAPSHOT(ikey_.sequence) && ikey_.type != kTypeMerge) {
    assert(ikey_.type != kTypeDeletion && ikey_.type != kTypeSingleDeletion);
    ikey_.sequence = 0;
    current_key_.UpdateInternalKey(0, ikey_.type);
  }
}

inline SequenceNumber CompactionIterator::findEarliestVisibleSnapshot(
    SequenceNumber in, SequenceNumber* prev_snapshot) {
  assert(snapshots_->size());
  auto snapshots_iter = std::lower_bound(
      snapshots_->begin(), snapshots_->end(), in);
  if (snapshots_iter == snapshots_->begin()) {
    *prev_snapshot = 0;
  } else {
    *prev_snapshot = *std::prev(snapshots_iter);
    assert(*prev_snapshot < in);
  }
  if (snapshot_checker_ == nullptr) {
    return snapshots_iter != snapshots_->end()
      ? *snapshots_iter : kMaxSequenceNumber;
  }
  bool has_released_snapshot = !released_snapshots_.empty();
  for (; snapshots_iter != snapshots_->end(); ++snapshots_iter) {
    auto cur = *snapshots_iter;
    assert(in <= cur);
    // Skip if cur is in released_snapshots.
    if (has_released_snapshot && released_snapshots_.count(cur) > 0) {
      continue;
    }
    auto res = snapshot_checker_->CheckInSnapshot(in, cur);
    if (res == SnapshotCheckerResult::kInSnapshot) {
      return cur;
    } else if (res == SnapshotCheckerResult::kSnapshotReleased) {
      released_snapshots_.insert(cur);
    }
    *prev_snapshot = cur;
  }
  return kMaxSequenceNumber;
}

// used in 2 places - prevents deletion markers to be dropped if they may be
// needed and disables seqnum zero-out in PrepareOutput for recent keys.
inline bool CompactionIterator::ikeyNotNeededForIncrementalSnapshot() {
  return (!compaction_->preserve_deletes()) ||
         (ikey_.sequence < preserve_deletes_seqnum_);
}

bool CompactionIterator::IsInEarliestSnapshot(SequenceNumber sequence) {
  assert(snapshot_checker_ != nullptr);
  assert(earliest_snapshot_ == kMaxSequenceNumber ||
         (earliest_snapshot_iter_ != snapshots_->end() &&
          *earliest_snapshot_iter_ == earliest_snapshot_));
  auto in_snapshot =
      snapshot_checker_->CheckInSnapshot(sequence, earliest_snapshot_);
  while (UNLIKELY(in_snapshot == SnapshotCheckerResult::kSnapshotReleased)) {
    // Avoid the the current earliest_snapshot_ being return as
    // earliest visible snapshot for the next value. So if a value's sequence
    // is zero-ed out by PrepareOutput(), the next value will be compact out.
    released_snapshots_.insert(earliest_snapshot_);
    earliest_snapshot_iter_++;

    if (earliest_snapshot_iter_ == snapshots_->end()) {
      earliest_snapshot_ = kMaxSequenceNumber;
    } else {
      earliest_snapshot_ = *earliest_snapshot_iter_;
    }
    in_snapshot =
        snapshot_checker_->CheckInSnapshot(sequence, earliest_snapshot_);
  }
  assert(in_snapshot != SnapshotCheckerResult::kSnapshotReleased);
  return in_snapshot == SnapshotCheckerResult::kInSnapshot;
}

}  // namespace rocksdb