summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/db_impl_write.cc
blob: 21a9378d21ffdf5a2257457bdf1c8af53c178495 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl.h"

#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include "db/error_handler.h"
#include "db/event_helpers.h"
#include "monitoring/perf_context_imp.h"
#include "options/options_helper.h"
#include "util/sync_point.h"

namespace rocksdb {
// Convenience methods
Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family,
                   const Slice& key, const Slice& val) {
  return DB::Put(o, column_family, key, val);
}

Status DBImpl::Merge(const WriteOptions& o, ColumnFamilyHandle* column_family,
                     const Slice& key, const Slice& val) {
  auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
  if (!cfh->cfd()->ioptions()->merge_operator) {
    return Status::NotSupported("Provide a merge_operator when opening DB");
  } else {
    return DB::Merge(o, column_family, key, val);
  }
}

Status DBImpl::Delete(const WriteOptions& write_options,
                      ColumnFamilyHandle* column_family, const Slice& key) {
  return DB::Delete(write_options, column_family, key);
}

Status DBImpl::SingleDelete(const WriteOptions& write_options,
                            ColumnFamilyHandle* column_family,
                            const Slice& key) {
  return DB::SingleDelete(write_options, column_family, key);
}

void DBImpl::SetRecoverableStatePreReleaseCallback(
    PreReleaseCallback* callback) {
  recoverable_state_pre_release_callback_.reset(callback);
}

Status DBImpl::Write(const WriteOptions& write_options, WriteBatch* my_batch) {
  return WriteImpl(write_options, my_batch, nullptr, nullptr);
}

#ifndef ROCKSDB_LITE
Status DBImpl::WriteWithCallback(const WriteOptions& write_options,
                                 WriteBatch* my_batch,
                                 WriteCallback* callback) {
  return WriteImpl(write_options, my_batch, callback, nullptr);
}
#endif  // ROCKSDB_LITE

// The main write queue. This is the only write queue that updates LastSequence.
// When using one write queue, the same sequence also indicates the last
// published sequence.
Status DBImpl::WriteImpl(const WriteOptions& write_options,
                         WriteBatch* my_batch, WriteCallback* callback,
                         uint64_t* log_used, uint64_t log_ref,
                         bool disable_memtable, uint64_t* seq_used,
                         size_t batch_cnt,
                         PreReleaseCallback* pre_release_callback) {
  assert(!seq_per_batch_ || batch_cnt != 0);
  if (my_batch == nullptr) {
    return Status::Corruption("Batch is nullptr!");
  }
  if (tracer_) {
    InstrumentedMutexLock lock(&trace_mutex_);
    if (tracer_) {
      tracer_->Write(my_batch);
    }
  }
  if (write_options.sync && write_options.disableWAL) {
    return Status::InvalidArgument("Sync writes has to enable WAL.");
  }
  if (two_write_queues_ && immutable_db_options_.enable_pipelined_write) {
    return Status::NotSupported(
        "pipelined_writes is not compatible with concurrent prepares");
  }
  if (seq_per_batch_ && immutable_db_options_.enable_pipelined_write) {
    // TODO(yiwu): update pipeline write with seq_per_batch and batch_cnt
    return Status::NotSupported(
        "pipelined_writes is not compatible with seq_per_batch");
  }
  // Otherwise IsLatestPersistentState optimization does not make sense
  assert(!WriteBatchInternal::IsLatestPersistentState(my_batch) ||
         disable_memtable);

  Status status;
  if (write_options.low_pri) {
    status = ThrottleLowPriWritesIfNeeded(write_options, my_batch);
    if (!status.ok()) {
      return status;
    }
  }

  if (two_write_queues_ && disable_memtable) {
    return WriteImplWALOnly(write_options, my_batch, callback, log_used,
                            log_ref, seq_used, batch_cnt, pre_release_callback);
  }

  if (immutable_db_options_.enable_pipelined_write) {
    return PipelinedWriteImpl(write_options, my_batch, callback, log_used,
                              log_ref, disable_memtable, seq_used);
  }

  PERF_TIMER_GUARD(write_pre_and_post_process_time);
  WriteThread::Writer w(write_options, my_batch, callback, log_ref,
                        disable_memtable, batch_cnt, pre_release_callback);

  if (!write_options.disableWAL) {
    RecordTick(stats_, WRITE_WITH_WAL);
  }

  StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);

  write_thread_.JoinBatchGroup(&w);
  if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
    // we are a non-leader in a parallel group

    if (w.ShouldWriteToMemtable()) {
      PERF_TIMER_STOP(write_pre_and_post_process_time);
      PERF_TIMER_GUARD(write_memtable_time);

      ColumnFamilyMemTablesImpl column_family_memtables(
          versions_->GetColumnFamilySet());
      w.status = WriteBatchInternal::InsertInto(
          &w, w.sequence, &column_family_memtables, &flush_scheduler_,
          write_options.ignore_missing_column_families, 0 /*log_number*/, this,
          true /*concurrent_memtable_writes*/, seq_per_batch_, w.batch_cnt);

      PERF_TIMER_START(write_pre_and_post_process_time);
    }

    if (write_thread_.CompleteParallelMemTableWriter(&w)) {
      // we're responsible for exit batch group
      // TODO(myabandeh): propagate status to write_group
      auto last_sequence = w.write_group->last_sequence;
      versions_->SetLastSequence(last_sequence);
      MemTableInsertStatusCheck(w.status);
      write_thread_.ExitAsBatchGroupFollower(&w);
    }
    assert(w.state == WriteThread::STATE_COMPLETED);
    // STATE_COMPLETED conditional below handles exit

    status = w.FinalStatus();
  }
  if (w.state == WriteThread::STATE_COMPLETED) {
    if (log_used != nullptr) {
      *log_used = w.log_used;
    }
    if (seq_used != nullptr) {
      *seq_used = w.sequence;
    }
    // write is complete and leader has updated sequence
    return w.FinalStatus();
  }
  // else we are the leader of the write batch group
  assert(w.state == WriteThread::STATE_GROUP_LEADER);

  // Once reaches this point, the current writer "w" will try to do its write
  // job.  It may also pick up some of the remaining writers in the "writers_"
  // when it finds suitable, and finish them in the same write batch.
  // This is how a write job could be done by the other writer.
  WriteContext write_context;
  WriteThread::WriteGroup write_group;
  bool in_parallel_group = false;
  uint64_t last_sequence = kMaxSequenceNumber;
  if (!two_write_queues_) {
    last_sequence = versions_->LastSequence();
  }

  mutex_.Lock();

  bool need_log_sync = write_options.sync;
  bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
  if (!two_write_queues_ || !disable_memtable) {
    // With concurrent writes we do preprocess only in the write thread that
    // also does write to memtable to avoid sync issue on shared data structure
    // with the other thread

    // PreprocessWrite does its own perf timing.
    PERF_TIMER_STOP(write_pre_and_post_process_time);

    status = PreprocessWrite(write_options, &need_log_sync, &write_context);

    PERF_TIMER_START(write_pre_and_post_process_time);
  }
  log::Writer* log_writer = logs_.back().writer;

  mutex_.Unlock();

  // Add to log and apply to memtable.  We can release the lock
  // during this phase since &w is currently responsible for logging
  // and protects against concurrent loggers and concurrent writes
  // into memtables

  TEST_SYNC_POINT("DBImpl::WriteImpl:BeforeLeaderEnters");
  last_batch_group_size_ =
      write_thread_.EnterAsBatchGroupLeader(&w, &write_group);

  if (status.ok()) {
    // Rules for when we can update the memtable concurrently
    // 1. supported by memtable
    // 2. Puts are not okay if inplace_update_support
    // 3. Merges are not okay
    //
    // Rules 1..2 are enforced by checking the options
    // during startup (CheckConcurrentWritesSupported), so if
    // options.allow_concurrent_memtable_write is true then they can be
    // assumed to be true.  Rule 3 is checked for each batch.  We could
    // relax rules 2 if we could prevent write batches from referring
    // more than once to a particular key.
    bool parallel = immutable_db_options_.allow_concurrent_memtable_write &&
                    write_group.size > 1;
    size_t total_count = 0;
    size_t valid_batches = 0;
    size_t total_byte_size = 0;
    for (auto* writer : write_group) {
      if (writer->CheckCallback(this)) {
        valid_batches += writer->batch_cnt;
        if (writer->ShouldWriteToMemtable()) {
          total_count += WriteBatchInternal::Count(writer->batch);
          parallel = parallel && !writer->batch->HasMerge();
        }

        total_byte_size = WriteBatchInternal::AppendedByteSize(
            total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
      }
    }
    // Note about seq_per_batch_: either disableWAL is set for the entire write
    // group or not. In either case we inc seq for each write batch with no
    // failed callback. This means that there could be a batch with
    // disalbe_memtable in between; although we do not write this batch to
    // memtable it still consumes a seq. Otherwise, if !seq_per_batch_, we inc
    // the seq per valid written key to mem.
    size_t seq_inc = seq_per_batch_ ? valid_batches : total_count;

    const bool concurrent_update = two_write_queues_;
    // Update stats while we are an exclusive group leader, so we know
    // that nobody else can be writing to these particular stats.
    // We're optimistic, updating the stats before we successfully
    // commit.  That lets us release our leader status early.
    auto stats = default_cf_internal_stats_;
    stats->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, total_count,
                      concurrent_update);
    RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
    stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size,
                      concurrent_update);
    RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
    stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1, concurrent_update);
    RecordTick(stats_, WRITE_DONE_BY_SELF);
    auto write_done_by_other = write_group.size - 1;
    if (write_done_by_other > 0) {
      stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER, write_done_by_other,
                        concurrent_update);
      RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
    }
    RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);

    if (write_options.disableWAL) {
      has_unpersisted_data_.store(true, std::memory_order_relaxed);
    }

    PERF_TIMER_STOP(write_pre_and_post_process_time);

    if (!two_write_queues_) {
      if (status.ok() && !write_options.disableWAL) {
        PERF_TIMER_GUARD(write_wal_time);
        status = WriteToWAL(write_group, log_writer, log_used, need_log_sync,
                            need_log_dir_sync, last_sequence + 1);
      }
    } else {
      if (status.ok() && !write_options.disableWAL) {
        PERF_TIMER_GUARD(write_wal_time);
        // LastAllocatedSequence is increased inside WriteToWAL under
        // wal_write_mutex_ to ensure ordered events in WAL
        status = ConcurrentWriteToWAL(write_group, log_used, &last_sequence,
                                      seq_inc);
      } else {
        // Otherwise we inc seq number for memtable writes
        last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
      }
    }
    assert(last_sequence != kMaxSequenceNumber);
    const SequenceNumber current_sequence = last_sequence + 1;
    last_sequence += seq_inc;

    // PreReleaseCallback is called after WAL write and before memtable write
    if (status.ok()) {
      SequenceNumber next_sequence = current_sequence;
      // Note: the logic for advancing seq here must be consistent with the
      // logic in WriteBatchInternal::InsertInto(write_group...) as well as
      // with WriteBatchInternal::InsertInto(write_batch...) that is called on
      // the merged batch during recovery from the WAL.
      for (auto* writer : write_group) {
        if (writer->CallbackFailed()) {
          continue;
        }
        writer->sequence = next_sequence;
        if (writer->pre_release_callback) {
          Status ws = writer->pre_release_callback->Callback(
              writer->sequence, disable_memtable, writer->log_used);
          if (!ws.ok()) {
            status = ws;
            break;
          }
        }
        if (seq_per_batch_) {
          assert(writer->batch_cnt);
          next_sequence += writer->batch_cnt;
        } else if (writer->ShouldWriteToMemtable()) {
          next_sequence += WriteBatchInternal::Count(writer->batch);
        }
      }
    }

    if (status.ok()) {
      PERF_TIMER_GUARD(write_memtable_time);

      if (!parallel) {
        // w.sequence will be set inside InsertInto
        w.status = WriteBatchInternal::InsertInto(
            write_group, current_sequence, column_family_memtables_.get(),
            &flush_scheduler_, write_options.ignore_missing_column_families,
            0 /*recovery_log_number*/, this, parallel, seq_per_batch_,
            batch_per_txn_);
      } else {
        write_group.last_sequence = last_sequence;
        write_thread_.LaunchParallelMemTableWriters(&write_group);
        in_parallel_group = true;

        // Each parallel follower is doing each own writes. The leader should
        // also do its own.
        if (w.ShouldWriteToMemtable()) {
          ColumnFamilyMemTablesImpl column_family_memtables(
              versions_->GetColumnFamilySet());
          assert(w.sequence == current_sequence);
          w.status = WriteBatchInternal::InsertInto(
              &w, w.sequence, &column_family_memtables, &flush_scheduler_,
              write_options.ignore_missing_column_families, 0 /*log_number*/,
              this, true /*concurrent_memtable_writes*/, seq_per_batch_,
              w.batch_cnt, batch_per_txn_);
        }
      }
      if (seq_used != nullptr) {
        *seq_used = w.sequence;
      }
    }
  }
  PERF_TIMER_START(write_pre_and_post_process_time);

  if (!w.CallbackFailed()) {
    WriteStatusCheck(status);
  }

  if (need_log_sync) {
    mutex_.Lock();
    MarkLogsSynced(logfile_number_, need_log_dir_sync, status);
    mutex_.Unlock();
    // Requesting sync with two_write_queues_ is expected to be very rare. We
    // hence provide a simple implementation that is not necessarily efficient.
    if (two_write_queues_) {
      if (manual_wal_flush_) {
        status = FlushWAL(true);
      } else {
        status = SyncWAL();
      }
    }
  }

  bool should_exit_batch_group = true;
  if (in_parallel_group) {
    // CompleteParallelWorker returns true if this thread should
    // handle exit, false means somebody else did
    should_exit_batch_group = write_thread_.CompleteParallelMemTableWriter(&w);
  }
  if (should_exit_batch_group) {
    if (status.ok()) {
      // Note: if we are to resume after non-OK statuses we need to revisit how
      // we reacts to non-OK statuses here.
      versions_->SetLastSequence(last_sequence);
    }
    MemTableInsertStatusCheck(w.status);
    write_thread_.ExitAsBatchGroupLeader(write_group, status);
  }

  if (status.ok()) {
    status = w.FinalStatus();
  }
  return status;
}

Status DBImpl::PipelinedWriteImpl(const WriteOptions& write_options,
                                  WriteBatch* my_batch, WriteCallback* callback,
                                  uint64_t* log_used, uint64_t log_ref,
                                  bool disable_memtable, uint64_t* seq_used) {
  PERF_TIMER_GUARD(write_pre_and_post_process_time);
  StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);

  WriteContext write_context;

  WriteThread::Writer w(write_options, my_batch, callback, log_ref,
                        disable_memtable);
  write_thread_.JoinBatchGroup(&w);
  if (w.state == WriteThread::STATE_GROUP_LEADER) {
    WriteThread::WriteGroup wal_write_group;
    if (w.callback && !w.callback->AllowWriteBatching()) {
      write_thread_.WaitForMemTableWriters();
    }
    mutex_.Lock();
    bool need_log_sync = !write_options.disableWAL && write_options.sync;
    bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
    // PreprocessWrite does its own perf timing.
    PERF_TIMER_STOP(write_pre_and_post_process_time);
    w.status = PreprocessWrite(write_options, &need_log_sync, &write_context);
    PERF_TIMER_START(write_pre_and_post_process_time);
    log::Writer* log_writer = logs_.back().writer;
    mutex_.Unlock();

    // This can set non-OK status if callback fail.
    last_batch_group_size_ =
        write_thread_.EnterAsBatchGroupLeader(&w, &wal_write_group);
    const SequenceNumber current_sequence =
        write_thread_.UpdateLastSequence(versions_->LastSequence()) + 1;
    size_t total_count = 0;
    size_t total_byte_size = 0;

    if (w.status.ok()) {
      SequenceNumber next_sequence = current_sequence;
      for (auto writer : wal_write_group) {
        if (writer->CheckCallback(this)) {
          if (writer->ShouldWriteToMemtable()) {
            writer->sequence = next_sequence;
            size_t count = WriteBatchInternal::Count(writer->batch);
            next_sequence += count;
            total_count += count;
          }
          total_byte_size = WriteBatchInternal::AppendedByteSize(
              total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
        }
      }
      if (w.disable_wal) {
        has_unpersisted_data_.store(true, std::memory_order_relaxed);
      }
      write_thread_.UpdateLastSequence(current_sequence + total_count - 1);
    }

    auto stats = default_cf_internal_stats_;
    stats->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, total_count);
    RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
    stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size);
    RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
    RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);

    PERF_TIMER_STOP(write_pre_and_post_process_time);

    if (w.status.ok() && !write_options.disableWAL) {
      PERF_TIMER_GUARD(write_wal_time);
      stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1);
      RecordTick(stats_, WRITE_DONE_BY_SELF, 1);
      if (wal_write_group.size > 1) {
        stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER,
                          wal_write_group.size - 1);
        RecordTick(stats_, WRITE_DONE_BY_OTHER, wal_write_group.size - 1);
      }
      w.status = WriteToWAL(wal_write_group, log_writer, log_used,
                            need_log_sync, need_log_dir_sync, current_sequence);
    }

    if (!w.CallbackFailed()) {
      WriteStatusCheck(w.status);
    }

    if (need_log_sync) {
      mutex_.Lock();
      MarkLogsSynced(logfile_number_, need_log_dir_sync, w.status);
      mutex_.Unlock();
    }

    write_thread_.ExitAsBatchGroupLeader(wal_write_group, w.status);
  }

  WriteThread::WriteGroup memtable_write_group;
  if (w.state == WriteThread::STATE_MEMTABLE_WRITER_LEADER) {
    PERF_TIMER_GUARD(write_memtable_time);
    assert(w.ShouldWriteToMemtable());
    write_thread_.EnterAsMemTableWriter(&w, &memtable_write_group);
    if (memtable_write_group.size > 1 &&
        immutable_db_options_.allow_concurrent_memtable_write) {
      write_thread_.LaunchParallelMemTableWriters(&memtable_write_group);
    } else {
      memtable_write_group.status = WriteBatchInternal::InsertInto(
          memtable_write_group, w.sequence, column_family_memtables_.get(),
          &flush_scheduler_, write_options.ignore_missing_column_families,
          0 /*log_number*/, this, false /*concurrent_memtable_writes*/,
          seq_per_batch_, batch_per_txn_);
      versions_->SetLastSequence(memtable_write_group.last_sequence);
      write_thread_.ExitAsMemTableWriter(&w, memtable_write_group);
    }
  }

  if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
    assert(w.ShouldWriteToMemtable());
    ColumnFamilyMemTablesImpl column_family_memtables(
        versions_->GetColumnFamilySet());
    w.status = WriteBatchInternal::InsertInto(
        &w, w.sequence, &column_family_memtables, &flush_scheduler_,
        write_options.ignore_missing_column_families, 0 /*log_number*/, this,
        true /*concurrent_memtable_writes*/);
    if (write_thread_.CompleteParallelMemTableWriter(&w)) {
      MemTableInsertStatusCheck(w.status);
      versions_->SetLastSequence(w.write_group->last_sequence);
      write_thread_.ExitAsMemTableWriter(&w, *w.write_group);
    }
  }
  if (seq_used != nullptr) {
    *seq_used = w.sequence;
  }

  assert(w.state == WriteThread::STATE_COMPLETED);
  return w.FinalStatus();
}

// The 2nd write queue. If enabled it will be used only for WAL-only writes.
// This is the only queue that updates LastPublishedSequence which is only
// applicable in a two-queue setting.
Status DBImpl::WriteImplWALOnly(const WriteOptions& write_options,
                                WriteBatch* my_batch, WriteCallback* callback,
                                uint64_t* log_used, uint64_t log_ref,
                                uint64_t* seq_used, size_t batch_cnt,
                                PreReleaseCallback* pre_release_callback) {
  Status status;
  PERF_TIMER_GUARD(write_pre_and_post_process_time);
  WriteThread::Writer w(write_options, my_batch, callback, log_ref,
                        true /* disable_memtable */, batch_cnt,
                        pre_release_callback);
  RecordTick(stats_, WRITE_WITH_WAL);
  StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);

  nonmem_write_thread_.JoinBatchGroup(&w);
  assert(w.state != WriteThread::STATE_PARALLEL_MEMTABLE_WRITER);
  if (w.state == WriteThread::STATE_COMPLETED) {
    if (log_used != nullptr) {
      *log_used = w.log_used;
    }
    if (seq_used != nullptr) {
      *seq_used = w.sequence;
    }
    return w.FinalStatus();
  }
  // else we are the leader of the write batch group
  assert(w.state == WriteThread::STATE_GROUP_LEADER);
  WriteThread::WriteGroup write_group;
  uint64_t last_sequence;
  nonmem_write_thread_.EnterAsBatchGroupLeader(&w, &write_group);
  // Note: no need to update last_batch_group_size_ here since the batch writes
  // to WAL only

  size_t total_byte_size = 0;
  for (auto* writer : write_group) {
    if (writer->CheckCallback(this)) {
      total_byte_size = WriteBatchInternal::AppendedByteSize(
          total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
    }
  }

  const bool concurrent_update = true;
  // Update stats while we are an exclusive group leader, so we know
  // that nobody else can be writing to these particular stats.
  // We're optimistic, updating the stats before we successfully
  // commit.  That lets us release our leader status early.
  auto stats = default_cf_internal_stats_;
  stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size,
                    concurrent_update);
  RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
  stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1, concurrent_update);
  RecordTick(stats_, WRITE_DONE_BY_SELF);
  auto write_done_by_other = write_group.size - 1;
  if (write_done_by_other > 0) {
    stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER, write_done_by_other,
                      concurrent_update);
    RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
  }
  RecordInHistogram(stats_, BYTES_PER_WRITE, total_byte_size);

  PERF_TIMER_STOP(write_pre_and_post_process_time);

  PERF_TIMER_GUARD(write_wal_time);
  // LastAllocatedSequence is increased inside WriteToWAL under
  // wal_write_mutex_ to ensure ordered events in WAL
  size_t seq_inc = 0 /* total_count */;
  if (seq_per_batch_) {
    size_t total_batch_cnt = 0;
    for (auto* writer : write_group) {
      assert(writer->batch_cnt);
      total_batch_cnt += writer->batch_cnt;
    }
    seq_inc = total_batch_cnt;
  }
  if (!write_options.disableWAL) {
    status =
        ConcurrentWriteToWAL(write_group, log_used, &last_sequence, seq_inc);
  } else {
    // Otherwise we inc seq number to do solely the seq allocation
    last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
  }
  auto curr_seq = last_sequence + 1;
  for (auto* writer : write_group) {
    if (writer->CallbackFailed()) {
      continue;
    }
    writer->sequence = curr_seq;
    if (seq_per_batch_) {
      assert(writer->batch_cnt);
      curr_seq += writer->batch_cnt;
    }
    // else seq advances only by memtable writes
  }
  if (status.ok() && write_options.sync) {
    assert(!write_options.disableWAL);
    // Requesting sync with two_write_queues_ is expected to be very rare. We
    // hance provide a simple implementation that is not necessarily efficient.
    if (manual_wal_flush_) {
      status = FlushWAL(true);
    } else {
      status = SyncWAL();
    }
  }
  PERF_TIMER_START(write_pre_and_post_process_time);

  if (!w.CallbackFailed()) {
    WriteStatusCheck(status);
  }
  if (status.ok()) {
    for (auto* writer : write_group) {
      if (!writer->CallbackFailed() && writer->pre_release_callback) {
        assert(writer->sequence != kMaxSequenceNumber);
        const bool DISABLE_MEMTABLE = true;
        Status ws = writer->pre_release_callback->Callback(
            writer->sequence, DISABLE_MEMTABLE, writer->log_used);
        if (!ws.ok()) {
          status = ws;
          break;
        }
      }
    }
  }
  nonmem_write_thread_.ExitAsBatchGroupLeader(write_group, status);
  if (status.ok()) {
    status = w.FinalStatus();
  }
  if (seq_used != nullptr) {
    *seq_used = w.sequence;
  }
  return status;
}

void DBImpl::WriteStatusCheck(const Status& status) {
  // Is setting bg_error_ enough here?  This will at least stop
  // compaction and fail any further writes.
  if (immutable_db_options_.paranoid_checks && !status.ok() &&
      !status.IsBusy() && !status.IsIncomplete()) {
    mutex_.Lock();
    error_handler_.SetBGError(status, BackgroundErrorReason::kWriteCallback);
    mutex_.Unlock();
  }
}

void DBImpl::MemTableInsertStatusCheck(const Status& status) {
  // A non-OK status here indicates that the state implied by the
  // WAL has diverged from the in-memory state.  This could be
  // because of a corrupt write_batch (very bad), or because the
  // client specified an invalid column family and didn't specify
  // ignore_missing_column_families.
  if (!status.ok()) {
    mutex_.Lock();
    assert(!error_handler_.IsBGWorkStopped());
    error_handler_.SetBGError(status, BackgroundErrorReason::kMemTable);
    mutex_.Unlock();
  }
}

Status DBImpl::PreprocessWrite(const WriteOptions& write_options,
                               bool* need_log_sync,
                               WriteContext* write_context) {
  mutex_.AssertHeld();
  assert(write_context != nullptr && need_log_sync != nullptr);
  Status status;

  if (error_handler_.IsDBStopped()) {
    status = error_handler_.GetBGError();
  }

  PERF_TIMER_GUARD(write_scheduling_flushes_compactions_time);

  assert(!single_column_family_mode_ ||
         versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1);
  if (UNLIKELY(status.ok() && !single_column_family_mode_ &&
               total_log_size_ > GetMaxTotalWalSize())) {
    status = SwitchWAL(write_context);
  }

  if (UNLIKELY(status.ok() && write_buffer_manager_->ShouldFlush())) {
    // Before a new memtable is added in SwitchMemtable(),
    // write_buffer_manager_->ShouldFlush() will keep returning true. If another
    // thread is writing to another DB with the same write buffer, they may also
    // be flushed. We may end up with flushing much more DBs than needed. It's
    // suboptimal but still correct.
    status = HandleWriteBufferFull(write_context);
  }

  if (UNLIKELY(status.ok() && !flush_scheduler_.Empty())) {
    status = ScheduleFlushes(write_context);
  }

  PERF_TIMER_STOP(write_scheduling_flushes_compactions_time);
  PERF_TIMER_GUARD(write_pre_and_post_process_time);

  if (UNLIKELY(status.ok() && (write_controller_.IsStopped() ||
                               write_controller_.NeedsDelay()))) {
    PERF_TIMER_STOP(write_pre_and_post_process_time);
    PERF_TIMER_GUARD(write_delay_time);
    // We don't know size of curent batch so that we always use the size
    // for previous one. It might create a fairness issue that expiration
    // might happen for smaller writes but larger writes can go through.
    // Can optimize it if it is an issue.
    status = DelayWrite(last_batch_group_size_, write_options);
    PERF_TIMER_START(write_pre_and_post_process_time);
  }

  if (status.ok() && *need_log_sync) {
    // Wait until the parallel syncs are finished. Any sync process has to sync
    // the front log too so it is enough to check the status of front()
    // We do a while loop since log_sync_cv_ is signalled when any sync is
    // finished
    // Note: there does not seem to be a reason to wait for parallel sync at
    // this early step but it is not important since parallel sync (SyncWAL) and
    // need_log_sync are usually not used together.
    while (logs_.front().getting_synced) {
      log_sync_cv_.Wait();
    }
    for (auto& log : logs_) {
      assert(!log.getting_synced);
      // This is just to prevent the logs to be synced by a parallel SyncWAL
      // call. We will do the actual syncing later after we will write to the
      // WAL.
      // Note: there does not seem to be a reason to set this early before we
      // actually write to the WAL
      log.getting_synced = true;
    }
  } else {
    *need_log_sync = false;
  }

  return status;
}

WriteBatch* DBImpl::MergeBatch(const WriteThread::WriteGroup& write_group,
                               WriteBatch* tmp_batch, size_t* write_with_wal,
                               WriteBatch** to_be_cached_state) {
  assert(write_with_wal != nullptr);
  assert(tmp_batch != nullptr);
  assert(*to_be_cached_state == nullptr);
  WriteBatch* merged_batch = nullptr;
  *write_with_wal = 0;
  auto* leader = write_group.leader;
  assert(!leader->disable_wal);  // Same holds for all in the batch group
  if (write_group.size == 1 && !leader->CallbackFailed() &&
      leader->batch->GetWalTerminationPoint().is_cleared()) {
    // we simply write the first WriteBatch to WAL if the group only
    // contains one batch, that batch should be written to the WAL,
    // and the batch is not wanting to be truncated
    merged_batch = leader->batch;
    if (WriteBatchInternal::IsLatestPersistentState(merged_batch)) {
      *to_be_cached_state = merged_batch;
    }
    *write_with_wal = 1;
  } else {
    // WAL needs all of the batches flattened into a single batch.
    // We could avoid copying here with an iov-like AddRecord
    // interface
    merged_batch = tmp_batch;
    for (auto writer : write_group) {
      if (!writer->CallbackFailed()) {
        WriteBatchInternal::Append(merged_batch, writer->batch,
                                   /*WAL_only*/ true);
        if (WriteBatchInternal::IsLatestPersistentState(writer->batch)) {
          // We only need to cache the last of such write batch
          *to_be_cached_state = writer->batch;
        }
        (*write_with_wal)++;
      }
    }
  }
  return merged_batch;
}

// When two_write_queues_ is disabled, this function is called from the only
// write thread. Otherwise this must be called holding log_write_mutex_.
Status DBImpl::WriteToWAL(const WriteBatch& merged_batch,
                          log::Writer* log_writer, uint64_t* log_used,
                          uint64_t* log_size) {
  assert(log_size != nullptr);
  Slice log_entry = WriteBatchInternal::Contents(&merged_batch);
  *log_size = log_entry.size();
  // When two_write_queues_ WriteToWAL has to be protected from concurretn calls
  // from the two queues anyway and log_write_mutex_ is already held. Otherwise
  // if manual_wal_flush_ is enabled we need to protect log_writer->AddRecord
  // from possible concurrent calls via the FlushWAL by the application.
  const bool needs_locking = manual_wal_flush_ && !two_write_queues_;
  // Due to performance cocerns of missed branch prediction penalize the new
  // manual_wal_flush_ feature (by UNLIKELY) instead of the more common case
  // when we do not need any locking.
  if (UNLIKELY(needs_locking)) {
    log_write_mutex_.Lock();
  }
  Status status = log_writer->AddRecord(log_entry);
  if (UNLIKELY(needs_locking)) {
    log_write_mutex_.Unlock();
  }
  if (log_used != nullptr) {
    *log_used = logfile_number_;
  }
  total_log_size_ += log_entry.size();
  // TODO(myabandeh): it might be unsafe to access alive_log_files_.back() here
  // since alive_log_files_ might be modified concurrently
  alive_log_files_.back().AddSize(log_entry.size());
  log_empty_ = false;
  return status;
}

Status DBImpl::WriteToWAL(const WriteThread::WriteGroup& write_group,
                          log::Writer* log_writer, uint64_t* log_used,
                          bool need_log_sync, bool need_log_dir_sync,
                          SequenceNumber sequence) {
  Status status;

  assert(!write_group.leader->disable_wal);
  // Same holds for all in the batch group
  size_t write_with_wal = 0;
  WriteBatch* to_be_cached_state = nullptr;
  WriteBatch* merged_batch = MergeBatch(write_group, &tmp_batch_,
                                        &write_with_wal, &to_be_cached_state);
  if (merged_batch == write_group.leader->batch) {
    write_group.leader->log_used = logfile_number_;
  } else if (write_with_wal > 1) {
    for (auto writer : write_group) {
      writer->log_used = logfile_number_;
    }
  }

  WriteBatchInternal::SetSequence(merged_batch, sequence);

  uint64_t log_size;
  status = WriteToWAL(*merged_batch, log_writer, log_used, &log_size);
  if (to_be_cached_state) {
    cached_recoverable_state_ = *to_be_cached_state;
    cached_recoverable_state_empty_ = false;
  }

  if (status.ok() && need_log_sync) {
    StopWatch sw(env_, stats_, WAL_FILE_SYNC_MICROS);
    // It's safe to access logs_ with unlocked mutex_ here because:
    //  - we've set getting_synced=true for all logs,
    //    so other threads won't pop from logs_ while we're here,
    //  - only writer thread can push to logs_, and we're in
    //    writer thread, so no one will push to logs_,
    //  - as long as other threads don't modify it, it's safe to read
    //    from std::deque from multiple threads concurrently.
    for (auto& log : logs_) {
      status = log.writer->file()->Sync(immutable_db_options_.use_fsync);
      if (!status.ok()) {
        break;
      }
    }
    if (status.ok() && need_log_dir_sync) {
      // We only sync WAL directory the first time WAL syncing is
      // requested, so that in case users never turn on WAL sync,
      // we can avoid the disk I/O in the write code path.
      status = directories_.GetWalDir()->Fsync();
    }
  }

  if (merged_batch == &tmp_batch_) {
    tmp_batch_.Clear();
  }
  if (status.ok()) {
    auto stats = default_cf_internal_stats_;
    if (need_log_sync) {
      stats->AddDBStats(InternalStats::WAL_FILE_SYNCED, 1);
      RecordTick(stats_, WAL_FILE_SYNCED);
    }
    stats->AddDBStats(InternalStats::WAL_FILE_BYTES, log_size);
    RecordTick(stats_, WAL_FILE_BYTES, log_size);
    stats->AddDBStats(InternalStats::WRITE_WITH_WAL, write_with_wal);
    RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
  }
  return status;
}

Status DBImpl::ConcurrentWriteToWAL(const WriteThread::WriteGroup& write_group,
                                    uint64_t* log_used,
                                    SequenceNumber* last_sequence,
                                    size_t seq_inc) {
  Status status;

  assert(!write_group.leader->disable_wal);
  // Same holds for all in the batch group
  WriteBatch tmp_batch;
  size_t write_with_wal = 0;
  WriteBatch* to_be_cached_state = nullptr;
  WriteBatch* merged_batch =
      MergeBatch(write_group, &tmp_batch, &write_with_wal, &to_be_cached_state);

  // We need to lock log_write_mutex_ since logs_ and alive_log_files might be
  // pushed back concurrently
  log_write_mutex_.Lock();
  if (merged_batch == write_group.leader->batch) {
    write_group.leader->log_used = logfile_number_;
  } else if (write_with_wal > 1) {
    for (auto writer : write_group) {
      writer->log_used = logfile_number_;
    }
  }
  *last_sequence = versions_->FetchAddLastAllocatedSequence(seq_inc);
  auto sequence = *last_sequence + 1;
  WriteBatchInternal::SetSequence(merged_batch, sequence);

  log::Writer* log_writer = logs_.back().writer;
  uint64_t log_size;
  status = WriteToWAL(*merged_batch, log_writer, log_used, &log_size);
  if (to_be_cached_state) {
    cached_recoverable_state_ = *to_be_cached_state;
    cached_recoverable_state_empty_ = false;
  }
  log_write_mutex_.Unlock();

  if (status.ok()) {
    const bool concurrent = true;
    auto stats = default_cf_internal_stats_;
    stats->AddDBStats(InternalStats::WAL_FILE_BYTES, log_size, concurrent);
    RecordTick(stats_, WAL_FILE_BYTES, log_size);
    stats->AddDBStats(InternalStats::WRITE_WITH_WAL, write_with_wal,
                      concurrent);
    RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
  }
  return status;
}

Status DBImpl::WriteRecoverableState() {
  mutex_.AssertHeld();
  if (!cached_recoverable_state_empty_) {
    bool dont_care_bool;
    SequenceNumber next_seq;
    if (two_write_queues_) {
      log_write_mutex_.Lock();
    }
    SequenceNumber seq;
    if (two_write_queues_) {
      seq = versions_->FetchAddLastAllocatedSequence(0);
    } else {
      seq = versions_->LastSequence();
    }
    WriteBatchInternal::SetSequence(&cached_recoverable_state_, seq + 1);
    auto status = WriteBatchInternal::InsertInto(
        &cached_recoverable_state_, column_family_memtables_.get(),
        &flush_scheduler_, true, 0 /*recovery_log_number*/, this,
        false /* concurrent_memtable_writes */, &next_seq, &dont_care_bool,
        seq_per_batch_);
    auto last_seq = next_seq - 1;
    if (two_write_queues_) {
      versions_->FetchAddLastAllocatedSequence(last_seq - seq);
      versions_->SetLastPublishedSequence(last_seq);
    }
    versions_->SetLastSequence(last_seq);
    if (two_write_queues_) {
      log_write_mutex_.Unlock();
    }
    if (status.ok() && recoverable_state_pre_release_callback_) {
      const bool DISABLE_MEMTABLE = true;
      for (uint64_t sub_batch_seq = seq + 1;
           sub_batch_seq < next_seq && status.ok(); sub_batch_seq++) {
        uint64_t const no_log_num = 0;
        status = recoverable_state_pre_release_callback_->Callback(
            sub_batch_seq, !DISABLE_MEMTABLE, no_log_num);
      }
    }
    if (status.ok()) {
      cached_recoverable_state_.Clear();
      cached_recoverable_state_empty_ = true;
    }
    return status;
  }
  return Status::OK();
}

void DBImpl::SelectColumnFamiliesForAtomicFlush(
    autovector<ColumnFamilyData*>* cfds) {
  for (ColumnFamilyData* cfd : *versions_->GetColumnFamilySet()) {
    if (cfd->IsDropped()) {
      continue;
    }
    if (cfd->imm()->NumNotFlushed() != 0 || !cfd->mem()->IsEmpty() ||
        !cached_recoverable_state_empty_.load()) {
      cfds->push_back(cfd);
    }
  }
}

// Assign sequence number for atomic flush.
void DBImpl::AssignAtomicFlushSeq(const autovector<ColumnFamilyData*>& cfds) {
  assert(immutable_db_options_.atomic_flush);
  auto seq = versions_->LastSequence();
  for (auto cfd : cfds) {
    cfd->imm()->AssignAtomicFlushSeq(seq);
  }
}

Status DBImpl::SwitchWAL(WriteContext* write_context) {
  mutex_.AssertHeld();
  assert(write_context != nullptr);
  Status status;

  if (alive_log_files_.begin()->getting_flushed) {
    return status;
  }

  auto oldest_alive_log = alive_log_files_.begin()->number;
  bool flush_wont_release_oldest_log = false;
  if (allow_2pc()) {
    auto oldest_log_with_uncommitted_prep =
        logs_with_prep_tracker_.FindMinLogContainingOutstandingPrep();

    assert(oldest_log_with_uncommitted_prep == 0 ||
           oldest_log_with_uncommitted_prep >= oldest_alive_log);
    if (oldest_log_with_uncommitted_prep > 0 &&
        oldest_log_with_uncommitted_prep == oldest_alive_log) {
      if (unable_to_release_oldest_log_) {
        // we already attempted to flush all column families dependent on
        // the oldest alive log but the log still contained uncommitted
        // transactions so there is still nothing that we can do.
        return status;
      } else {
        ROCKS_LOG_WARN(
            immutable_db_options_.info_log,
            "Unable to release oldest log due to uncommitted transaction");
        unable_to_release_oldest_log_ = true;
        flush_wont_release_oldest_log = true;
      }
    }
  }
  if (!flush_wont_release_oldest_log) {
    // we only mark this log as getting flushed if we have successfully
    // flushed all data in this log. If this log contains outstanding prepared
    // transactions then we cannot flush this log until those transactions are
    // commited.
    unable_to_release_oldest_log_ = false;
    alive_log_files_.begin()->getting_flushed = true;
  }

  ROCKS_LOG_INFO(
      immutable_db_options_.info_log,
      "Flushing all column families with data in WAL number %" PRIu64
      ". Total log size is %" PRIu64 " while max_total_wal_size is %" PRIu64,
      oldest_alive_log, total_log_size_.load(), GetMaxTotalWalSize());
  // no need to refcount because drop is happening in write thread, so can't
  // happen while we're in the write thread
  autovector<ColumnFamilyData*> cfds;
  if (immutable_db_options_.atomic_flush) {
    SelectColumnFamiliesForAtomicFlush(&cfds);
  } else {
    for (auto cfd : *versions_->GetColumnFamilySet()) {
      if (cfd->IsDropped()) {
        continue;
      }
      if (cfd->OldestLogToKeep() <= oldest_alive_log) {
        cfds.push_back(cfd);
      }
    }
  }
  for (const auto cfd : cfds) {
    cfd->Ref();
    status = SwitchMemtable(cfd, write_context);
    cfd->Unref();
    if (!status.ok()) {
      break;
    }
  }
  if (status.ok()) {
    if (immutable_db_options_.atomic_flush) {
      AssignAtomicFlushSeq(cfds);
    }
    for (auto cfd : cfds) {
      cfd->imm()->FlushRequested();
    }
    FlushRequest flush_req;
    GenerateFlushRequest(cfds, &flush_req);
    SchedulePendingFlush(flush_req, FlushReason::kWriteBufferManager);
    MaybeScheduleFlushOrCompaction();
  }
  return status;
}

Status DBImpl::HandleWriteBufferFull(WriteContext* write_context) {
  mutex_.AssertHeld();
  assert(write_context != nullptr);
  Status status;

  // Before a new memtable is added in SwitchMemtable(),
  // write_buffer_manager_->ShouldFlush() will keep returning true. If another
  // thread is writing to another DB with the same write buffer, they may also
  // be flushed. We may end up with flushing much more DBs than needed. It's
  // suboptimal but still correct.
  ROCKS_LOG_INFO(
      immutable_db_options_.info_log,
      "Flushing column family with largest mem table size. Write buffer is "
      "using %" ROCKSDB_PRIszt " bytes out of a total of %" ROCKSDB_PRIszt ".",
      write_buffer_manager_->memory_usage(),
      write_buffer_manager_->buffer_size());
  // no need to refcount because drop is happening in write thread, so can't
  // happen while we're in the write thread
  autovector<ColumnFamilyData*> cfds;
  if (immutable_db_options_.atomic_flush) {
    SelectColumnFamiliesForAtomicFlush(&cfds);
  } else {
    ColumnFamilyData* cfd_picked = nullptr;
    SequenceNumber seq_num_for_cf_picked = kMaxSequenceNumber;

    for (auto cfd : *versions_->GetColumnFamilySet()) {
      if (cfd->IsDropped()) {
        continue;
      }
      if (!cfd->mem()->IsEmpty()) {
        // We only consider active mem table, hoping immutable memtable is
        // already in the process of flushing.
        uint64_t seq = cfd->mem()->GetCreationSeq();
        if (cfd_picked == nullptr || seq < seq_num_for_cf_picked) {
          cfd_picked = cfd;
          seq_num_for_cf_picked = seq;
        }
      }
    }
    if (cfd_picked != nullptr) {
      cfds.push_back(cfd_picked);
    }
  }

  for (const auto cfd : cfds) {
    if (cfd->mem()->IsEmpty()) {
      continue;
    }
    cfd->Ref();
    status = SwitchMemtable(cfd, write_context);
    cfd->Unref();
    if (!status.ok()) {
      break;
    }
  }
  if (status.ok()) {
    if (immutable_db_options_.atomic_flush) {
      AssignAtomicFlushSeq(cfds);
    }
    for (const auto cfd : cfds) {
      cfd->imm()->FlushRequested();
    }
    FlushRequest flush_req;
    GenerateFlushRequest(cfds, &flush_req);
    SchedulePendingFlush(flush_req, FlushReason::kWriteBufferFull);
    MaybeScheduleFlushOrCompaction();
  }
  return status;
}

uint64_t DBImpl::GetMaxTotalWalSize() const {
  mutex_.AssertHeld();
  return mutable_db_options_.max_total_wal_size == 0
             ? 4 * max_total_in_memory_state_
             : mutable_db_options_.max_total_wal_size;
}

// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::DelayWrite(uint64_t num_bytes,
                          const WriteOptions& write_options) {
  uint64_t time_delayed = 0;
  bool delayed = false;
  {
    StopWatch sw(env_, stats_, WRITE_STALL, &time_delayed);
    uint64_t delay = write_controller_.GetDelay(env_, num_bytes);
    if (delay > 0) {
      if (write_options.no_slowdown) {
        return Status::Incomplete("Write stall");
      }
      TEST_SYNC_POINT("DBImpl::DelayWrite:Sleep");

      // Notify write_thread_ about the stall so it can setup a barrier and
      // fail any pending writers with no_slowdown
      write_thread_.BeginWriteStall();
      TEST_SYNC_POINT("DBImpl::DelayWrite:BeginWriteStallDone");
      mutex_.Unlock();
      // We will delay the write until we have slept for delay ms or
      // we don't need a delay anymore
      const uint64_t kDelayInterval = 1000;
      uint64_t stall_end = sw.start_time() + delay;
      while (write_controller_.NeedsDelay()) {
        if (env_->NowMicros() >= stall_end) {
          // We already delayed this write `delay` microseconds
          break;
        }

        delayed = true;
        // Sleep for 0.001 seconds
        env_->SleepForMicroseconds(kDelayInterval);
      }
      mutex_.Lock();
      write_thread_.EndWriteStall();
    }

    // Don't wait if there's a background error, even if its a soft error. We
    // might wait here indefinitely as the background compaction may never
    // finish successfully, resulting in the stall condition lasting
    // indefinitely
    while (error_handler_.GetBGError().ok() && write_controller_.IsStopped()) {
      if (write_options.no_slowdown) {
        return Status::Incomplete("Write stall");
      }
      delayed = true;

      // Notify write_thread_ about the stall so it can setup a barrier and
      // fail any pending writers with no_slowdown
      write_thread_.BeginWriteStall();
      TEST_SYNC_POINT("DBImpl::DelayWrite:Wait");
      bg_cv_.Wait();
      write_thread_.EndWriteStall();
    }
  }
  assert(!delayed || !write_options.no_slowdown);
  if (delayed) {
    default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_STALL_MICROS,
                                           time_delayed);
    RecordTick(stats_, STALL_MICROS, time_delayed);
  }

  // If DB is not in read-only mode and write_controller is not stopping
  // writes, we can ignore any background errors and allow the write to
  // proceed
  Status s;
  if (write_controller_.IsStopped()) {
    // If writes are still stopped, it means we bailed due to a background
    // error
    s = Status::Incomplete(error_handler_.GetBGError().ToString());
  }
  if (error_handler_.IsDBStopped()) {
    s = error_handler_.GetBGError();
  }
  return s;
}

Status DBImpl::ThrottleLowPriWritesIfNeeded(const WriteOptions& write_options,
                                            WriteBatch* my_batch) {
  assert(write_options.low_pri);
  // This is called outside the DB mutex. Although it is safe to make the call,
  // the consistency condition is not guaranteed to hold. It's OK to live with
  // it in this case.
  // If we need to speed compaction, it means the compaction is left behind
  // and we start to limit low pri writes to a limit.
  if (write_controller_.NeedSpeedupCompaction()) {
    if (allow_2pc() && (my_batch->HasCommit() || my_batch->HasRollback())) {
      // For 2PC, we only rate limit prepare, not commit.
      return Status::OK();
    }
    if (write_options.no_slowdown) {
      return Status::Incomplete();
    } else {
      assert(my_batch != nullptr);
      // Rate limit those writes. The reason that we don't completely wait
      // is that in case the write is heavy, low pri writes may never have
      // a chance to run. Now we guarantee we are still slowly making
      // progress.
      PERF_TIMER_GUARD(write_delay_time);
      write_controller_.low_pri_rate_limiter()->Request(
          my_batch->GetDataSize(), Env::IO_HIGH, nullptr /* stats */,
          RateLimiter::OpType::kWrite);
    }
  }
  return Status::OK();
}

Status DBImpl::ScheduleFlushes(WriteContext* context) {
  autovector<ColumnFamilyData*> cfds;
  if (immutable_db_options_.atomic_flush) {
    SelectColumnFamiliesForAtomicFlush(&cfds);
    for (auto cfd : cfds) {
      cfd->Ref();
    }
    flush_scheduler_.Clear();
  } else {
    ColumnFamilyData* tmp_cfd;
    while ((tmp_cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
      cfds.push_back(tmp_cfd);
    }
  }
  Status status;
  for (auto& cfd : cfds) {
    if (!cfd->mem()->IsEmpty()) {
      status = SwitchMemtable(cfd, context);
    }
    if (cfd->Unref()) {
      delete cfd;
      cfd = nullptr;
    }
    if (!status.ok()) {
      break;
    }
  }
  if (status.ok()) {
    if (immutable_db_options_.atomic_flush) {
      AssignAtomicFlushSeq(cfds);
    }
    FlushRequest flush_req;
    GenerateFlushRequest(cfds, &flush_req);
    SchedulePendingFlush(flush_req, FlushReason::kWriteBufferFull);
    MaybeScheduleFlushOrCompaction();
  }
  return status;
}

#ifndef ROCKSDB_LITE
void DBImpl::NotifyOnMemTableSealed(ColumnFamilyData* /*cfd*/,
                                    const MemTableInfo& mem_table_info) {
  if (immutable_db_options_.listeners.size() == 0U) {
    return;
  }
  if (shutting_down_.load(std::memory_order_acquire)) {
    return;
  }

  for (auto listener : immutable_db_options_.listeners) {
    listener->OnMemTableSealed(mem_table_info);
  }
}
#endif  // ROCKSDB_LITE

// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::SwitchMemtable(ColumnFamilyData* cfd, WriteContext* context) {
  mutex_.AssertHeld();
  WriteThread::Writer nonmem_w;
  if (two_write_queues_) {
    // SwitchMemtable is a rare event. To simply the reasoning, we make sure
    // that there is no concurrent thread writing to WAL.
    nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
  }

  std::unique_ptr<WritableFile> lfile;
  log::Writer* new_log = nullptr;
  MemTable* new_mem = nullptr;

  // Recoverable state is persisted in WAL. After memtable switch, WAL might
  // be deleted, so we write the state to memtable to be persisted as well.
  Status s = WriteRecoverableState();
  if (!s.ok()) {
    return s;
  }

  // In case of pipelined write is enabled, wait for all pending memtable
  // writers.
  if (immutable_db_options_.enable_pipelined_write) {
    // Memtable writers may call DB::Get in case max_successive_merges > 0,
    // which may lock mutex. Unlocking mutex here to avoid deadlock.
    mutex_.Unlock();
    write_thread_.WaitForMemTableWriters();
    mutex_.Lock();
  }

  // Attempt to switch to a new memtable and trigger flush of old.
  // Do this without holding the dbmutex lock.
  assert(versions_->prev_log_number() == 0);
  if (two_write_queues_) {
    log_write_mutex_.Lock();
  }
  bool creating_new_log = !log_empty_;
  if (two_write_queues_) {
    log_write_mutex_.Unlock();
  }
  uint64_t recycle_log_number = 0;
  if (creating_new_log && immutable_db_options_.recycle_log_file_num &&
      !log_recycle_files_.empty()) {
    recycle_log_number = log_recycle_files_.front();
    log_recycle_files_.pop_front();
  }
  uint64_t new_log_number =
      creating_new_log ? versions_->NewFileNumber() : logfile_number_;
  const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions();

  // Set memtable_info for memtable sealed callback
#ifndef ROCKSDB_LITE
  MemTableInfo memtable_info;
  memtable_info.cf_name = cfd->GetName();
  memtable_info.first_seqno = cfd->mem()->GetFirstSequenceNumber();
  memtable_info.earliest_seqno = cfd->mem()->GetEarliestSequenceNumber();
  memtable_info.num_entries = cfd->mem()->num_entries();
  memtable_info.num_deletes = cfd->mem()->num_deletes();
#endif  // ROCKSDB_LITE
  // Log this later after lock release. It may be outdated, e.g., if background
  // flush happens before logging, but that should be ok.
  int num_imm_unflushed = cfd->imm()->NumNotFlushed();
  DBOptions db_options =
      BuildDBOptions(immutable_db_options_, mutable_db_options_);
  const auto preallocate_block_size =
      GetWalPreallocateBlockSize(mutable_cf_options.write_buffer_size);
  auto write_hint = CalculateWALWriteHint();
  mutex_.Unlock();
  {
    std::string log_fname =
        LogFileName(immutable_db_options_.wal_dir, new_log_number);
    if (creating_new_log) {
      EnvOptions opt_env_opt =
          env_->OptimizeForLogWrite(env_options_, db_options);
      if (recycle_log_number) {
        ROCKS_LOG_INFO(immutable_db_options_.info_log,
                       "reusing log %" PRIu64 " from recycle list\n",
                       recycle_log_number);
        std::string old_log_fname =
            LogFileName(immutable_db_options_.wal_dir, recycle_log_number);
        s = env_->ReuseWritableFile(log_fname, old_log_fname, &lfile,
                                    opt_env_opt);
      } else {
        s = NewWritableFile(env_, log_fname, &lfile, opt_env_opt);
      }
      if (s.ok()) {
        // Our final size should be less than write_buffer_size
        // (compression, etc) but err on the side of caution.

        // use preallocate_block_size instead
        // of calling GetWalPreallocateBlockSize()
        lfile->SetPreallocationBlockSize(preallocate_block_size);
        lfile->SetWriteLifeTimeHint(write_hint);
        std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
            std::move(lfile), log_fname, opt_env_opt, env_, nullptr /* stats */,
            immutable_db_options_.listeners));
        new_log = new log::Writer(
            std::move(file_writer), new_log_number,
            immutable_db_options_.recycle_log_file_num > 0, manual_wal_flush_);
      }
    }

    if (s.ok()) {
      SequenceNumber seq = versions_->LastSequence();
      new_mem = cfd->ConstructNewMemtable(mutable_cf_options, seq);
      context->superversion_context.NewSuperVersion();
    }
  }
  ROCKS_LOG_INFO(immutable_db_options_.info_log,
                 "[%s] New memtable created with log file: #%" PRIu64
                 ". Immutable memtables: %d.\n",
                 cfd->GetName().c_str(), new_log_number, num_imm_unflushed);
  mutex_.Lock();
  if (s.ok() && creating_new_log) {
    log_write_mutex_.Lock();
    assert(new_log != nullptr);
    if (!logs_.empty()) {
      // Alway flush the buffer of the last log before switching to a new one
      log::Writer* cur_log_writer = logs_.back().writer;
      s = cur_log_writer->WriteBuffer();
      if (!s.ok()) {
        ROCKS_LOG_WARN(immutable_db_options_.info_log,
                       "[%s] Failed to switch from #%" PRIu64 " to #%" PRIu64
                       "  WAL file\n",
                       cfd->GetName().c_str(), cur_log_writer->get_log_number(),
                       new_log_number);
      }
    }
    if (s.ok()) {
      logfile_number_ = new_log_number;
      log_empty_ = true;
      log_dir_synced_ = false;
      logs_.emplace_back(logfile_number_, new_log);
      alive_log_files_.push_back(LogFileNumberSize(logfile_number_));
    }
    log_write_mutex_.Unlock();
  }

  if (!s.ok()) {
    // how do we fail if we're not creating new log?
    assert(creating_new_log);
    if (new_mem) {
      delete new_mem;
    }
    if (new_log) {
      delete new_log;
    }
    SuperVersion* new_superversion =
        context->superversion_context.new_superversion.release();
    if (new_superversion != nullptr) {
      delete new_superversion;
    }
    // We may have lost data from the WritableFileBuffer in-memory buffer for
    // the current log, so treat it as a fatal error and set bg_error
    error_handler_.SetBGError(s, BackgroundErrorReason::kMemTable);
    // Read back bg_error in order to get the right severity
    s = error_handler_.GetBGError();

    if (two_write_queues_) {
      nonmem_write_thread_.ExitUnbatched(&nonmem_w);
    }
    return s;
  }

  for (auto loop_cfd : *versions_->GetColumnFamilySet()) {
    // all this is just optimization to delete logs that
    // are no longer needed -- if CF is empty, that means it
    // doesn't need that particular log to stay alive, so we just
    // advance the log number. no need to persist this in the manifest
    if (loop_cfd->mem()->GetFirstSequenceNumber() == 0 &&
        loop_cfd->imm()->NumNotFlushed() == 0) {
      if (creating_new_log) {
        loop_cfd->SetLogNumber(logfile_number_);
      }
      loop_cfd->mem()->SetCreationSeq(versions_->LastSequence());
    }
  }

  cfd->mem()->SetNextLogNumber(logfile_number_);
  cfd->imm()->Add(cfd->mem(), &context->memtables_to_free_);
  new_mem->Ref();
  cfd->SetMemtable(new_mem);
  InstallSuperVersionAndScheduleWork(cfd, &context->superversion_context,
                                     mutable_cf_options);
#ifndef ROCKSDB_LITE
  mutex_.Unlock();
  // Notify client that memtable is sealed, now that we have successfully
  // installed a new memtable
  NotifyOnMemTableSealed(cfd, memtable_info);
  mutex_.Lock();
#endif  // ROCKSDB_LITE
  if (two_write_queues_) {
    nonmem_write_thread_.ExitUnbatched(&nonmem_w);
  }
  return s;
}

size_t DBImpl::GetWalPreallocateBlockSize(uint64_t write_buffer_size) const {
  mutex_.AssertHeld();
  size_t bsize =
      static_cast<size_t>(write_buffer_size / 10 + write_buffer_size);
  // Some users might set very high write_buffer_size and rely on
  // max_total_wal_size or other parameters to control the WAL size.
  if (mutable_db_options_.max_total_wal_size > 0) {
    bsize = std::min<size_t>(
        bsize, static_cast<size_t>(mutable_db_options_.max_total_wal_size));
  }
  if (immutable_db_options_.db_write_buffer_size > 0) {
    bsize = std::min<size_t>(bsize, immutable_db_options_.db_write_buffer_size);
  }
  if (immutable_db_options_.write_buffer_manager &&
      immutable_db_options_.write_buffer_manager->enabled()) {
    bsize = std::min<size_t>(
        bsize, immutable_db_options_.write_buffer_manager->buffer_size());
  }

  return bsize;
}

// Default implementations of convenience methods that subclasses of DB
// can call if they wish
Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family,
               const Slice& key, const Slice& value) {
  // Pre-allocate size of write batch conservatively.
  // 8 bytes are taken by header, 4 bytes for count, 1 byte for type,
  // and we allocate 11 extra bytes for key length, as well as value length.
  WriteBatch batch(key.size() + value.size() + 24);
  Status s = batch.Put(column_family, key, value);
  if (!s.ok()) {
    return s;
  }
  return Write(opt, &batch);
}

Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family,
                  const Slice& key) {
  WriteBatch batch;
  batch.Delete(column_family, key);
  return Write(opt, &batch);
}

Status DB::SingleDelete(const WriteOptions& opt,
                        ColumnFamilyHandle* column_family, const Slice& key) {
  WriteBatch batch;
  batch.SingleDelete(column_family, key);
  return Write(opt, &batch);
}

Status DB::DeleteRange(const WriteOptions& opt,
                       ColumnFamilyHandle* column_family,
                       const Slice& begin_key, const Slice& end_key) {
  WriteBatch batch;
  batch.DeleteRange(column_family, begin_key, end_key);
  return Write(opt, &batch);
}

Status DB::Merge(const WriteOptions& opt, ColumnFamilyHandle* column_family,
                 const Slice& key, const Slice& value) {
  WriteBatch batch;
  Status s = batch.Merge(column_family, key, value);
  if (!s.ok()) {
    return s;
  }
  return Write(opt, &batch);
}
}  // namespace rocksdb