1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <algorithm>
#include <cstdint>
#include <functional>
#include "port/port.h"
#include "util/autovector.h"
namespace rocksdb {
// Binary heap implementation optimized for use in multi-way merge sort.
// Comparison to std::priority_queue:
// - In libstdc++, std::priority_queue::pop() usually performs just over logN
// comparisons but never fewer.
// - std::priority_queue does not have a replace-top operation, requiring a
// pop+push. If the replacement element is the new top, this requires
// around 2logN comparisons.
// - This heap's pop() uses a "schoolbook" downheap which requires up to ~2logN
// comparisons.
// - This heap provides a replace_top() operation which requires [1, 2logN]
// comparisons. When the replacement element is also the new top, this
// takes just 1 or 2 comparisons.
//
// The last property can yield an order-of-magnitude performance improvement
// when merge-sorting real-world non-random data. If the merge operation is
// likely to take chunks of elements from the same input stream, only 1
// comparison per element is needed. In RocksDB-land, this happens when
// compacting a database where keys are not randomly distributed across L0
// files but nearby keys are likely to be in the same L0 file.
//
// The container uses the same counterintuitive ordering as
// std::priority_queue: the comparison operator is expected to provide the
// less-than relation, but top() will return the maximum.
template<typename T, typename Compare = std::less<T>>
class BinaryHeap {
public:
BinaryHeap() { }
explicit BinaryHeap(Compare cmp) : cmp_(std::move(cmp)) { }
void push(const T& value) {
data_.push_back(value);
upheap(data_.size() - 1);
}
void push(T&& value) {
data_.push_back(std::move(value));
upheap(data_.size() - 1);
}
const T& top() const {
assert(!empty());
return data_.front();
}
void replace_top(const T& value) {
assert(!empty());
data_.front() = value;
downheap(get_root());
}
void replace_top(T&& value) {
assert(!empty());
data_.front() = std::move(value);
downheap(get_root());
}
void pop() {
assert(!empty());
data_.front() = std::move(data_.back());
data_.pop_back();
if (!empty()) {
downheap(get_root());
} else {
reset_root_cmp_cache();
}
}
void swap(BinaryHeap &other) {
std::swap(cmp_, other.cmp_);
data_.swap(other.data_);
std::swap(root_cmp_cache_, other.root_cmp_cache_);
}
void clear() {
data_.clear();
reset_root_cmp_cache();
}
bool empty() const { return data_.empty(); }
size_t size() const { return data_.size(); }
void reset_root_cmp_cache() { root_cmp_cache_ = port::kMaxSizet; }
private:
static inline size_t get_root() { return 0; }
static inline size_t get_parent(size_t index) { return (index - 1) / 2; }
static inline size_t get_left(size_t index) { return 2 * index + 1; }
static inline size_t get_right(size_t index) { return 2 * index + 2; }
void upheap(size_t index) {
T v = std::move(data_[index]);
while (index > get_root()) {
const size_t parent = get_parent(index);
if (!cmp_(data_[parent], v)) {
break;
}
data_[index] = std::move(data_[parent]);
index = parent;
}
data_[index] = std::move(v);
reset_root_cmp_cache();
}
void downheap(size_t index) {
T v = std::move(data_[index]);
size_t picked_child = port::kMaxSizet;
while (1) {
const size_t left_child = get_left(index);
if (get_left(index) >= data_.size()) {
break;
}
const size_t right_child = left_child + 1;
assert(right_child == get_right(index));
picked_child = left_child;
if (index == 0 && root_cmp_cache_ < data_.size()) {
picked_child = root_cmp_cache_;
} else if (right_child < data_.size() &&
cmp_(data_[left_child], data_[right_child])) {
picked_child = right_child;
}
if (!cmp_(v, data_[picked_child])) {
break;
}
data_[index] = std::move(data_[picked_child]);
index = picked_child;
}
if (index == 0) {
// We did not change anything in the tree except for the value
// of the root node, left and right child did not change, we can
// cache that `picked_child` is the smallest child
// so next time we compare againist it directly
root_cmp_cache_ = picked_child;
} else {
// the tree changed, reset cache
reset_root_cmp_cache();
}
data_[index] = std::move(v);
}
Compare cmp_;
autovector<T> data_;
// Used to reduce number of cmp_ calls in downheap()
size_t root_cmp_cache_ = port::kMaxSizet;
};
} // namespace rocksdb
|