1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
|
/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#ifdef __FreeBSD__
#define SPDK_VFIO_ENABLED 0
#else
#include <linux/version.h>
/*
* DPDK versions before 17.11 don't provide a way to get VFIO information in the public API,
* and we can't link to internal symbols when built against shared library DPDK,
* so disable VFIO entirely in that case.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) && \
(RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3) || !defined(RTE_BUILD_SHARED_LIB))
#define SPDK_VFIO_ENABLED 1
#include <linux/vfio.h>
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
#include <rte_vfio.h>
#else
/* Internal DPDK function forward declaration */
int pci_vfio_is_enabled(void);
#endif
struct spdk_vfio_dma_map {
struct vfio_iommu_type1_dma_map map;
struct vfio_iommu_type1_dma_unmap unmap;
TAILQ_ENTRY(spdk_vfio_dma_map) tailq;
};
struct vfio_cfg {
int fd;
bool enabled;
unsigned device_ref;
TAILQ_HEAD(, spdk_vfio_dma_map) maps;
pthread_mutex_t mutex;
};
static struct vfio_cfg g_vfio = {
.fd = -1,
.enabled = false,
.device_ref = 0,
.maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps),
.mutex = PTHREAD_MUTEX_INITIALIZER
};
#else
#define SPDK_VFIO_ENABLED 0
#endif
#endif
#if DEBUG
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
struct spdk_vtophys_pci_device {
struct rte_pci_device *pci_device;
TAILQ_ENTRY(spdk_vtophys_pci_device) tailq;
uint64_t ref;
};
static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER;
static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices =
TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices);
static struct spdk_mem_map *g_vtophys_map;
#if SPDK_VFIO_ENABLED
static int
vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
dma_map = calloc(1, sizeof(*dma_map));
if (dma_map == NULL) {
return -ENOMEM;
}
dma_map->map.argsz = sizeof(dma_map->map);
dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE;
dma_map->map.vaddr = vaddr;
dma_map->map.iova = iova;
dma_map->map.size = size;
dma_map->unmap.argsz = sizeof(dma_map->unmap);
dma_map->unmap.flags = 0;
dma_map->unmap.iova = iova;
dma_map->unmap.size = size;
pthread_mutex_lock(&g_vfio.mutex);
if (g_vfio.device_ref == 0) {
/* VFIO requires at least one device (IOMMU group) to be added to
* a VFIO container before it is possible to perform any IOMMU
* operations on that container. This memory will be mapped once
* the first device (IOMMU group) is hotplugged.
*
* Since the vfio container is managed internally by DPDK, it is
* also possible that some device is already in that container, but
* it's not managed by SPDK - e.g. an NIC attached internally
* inside DPDK. We could map the memory straight away in such
* scenario, but there's no need to do it. DPDK devices clearly
* don't need our mappings and hence we defer the mapping
* unconditionally until the first SPDK-managed device is
* hotplugged.
*/
goto out_insert;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return ret;
}
out_insert:
TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
return 0;
}
static int
vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size)
{
struct spdk_vfio_dma_map *dma_map;
int ret;
pthread_mutex_lock(&g_vfio.mutex);
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
if (dma_map->map.iova == iova) {
break;
}
}
if (dma_map == NULL) {
DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova);
pthread_mutex_unlock(&g_vfio.mutex);
return -ENXIO;
}
/** don't support partial or multiple-page unmap for now */
assert(dma_map->map.size == size);
if (g_vfio.device_ref == 0) {
/* Memory is not mapped anymore, just remove it's references */
goto out_remove;
}
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
if (ret) {
DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno);
pthread_mutex_unlock(&g_vfio.mutex);
return ret;
}
out_remove:
TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq);
pthread_mutex_unlock(&g_vfio.mutex);
free(dma_map);
return 0;
}
#endif
static uint64_t
vtophys_get_paddr_memseg(uint64_t vaddr)
{
uintptr_t paddr;
struct rte_memseg *seg;
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (seg != NULL) {
paddr = seg->phys_addr;
if (paddr == RTE_BAD_IOVA) {
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
#else
struct rte_mem_config *mcfg;
uint32_t seg_idx;
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
if (vaddr >= (uintptr_t)seg->addr &&
vaddr < ((uintptr_t)seg->addr + seg->len)) {
paddr = seg->phys_addr;
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
if (paddr == RTE_BAD_IOVA) {
#else
if (paddr == RTE_BAD_PHYS_ADDR) {
#endif
return SPDK_VTOPHYS_ERROR;
}
paddr += (vaddr - (uintptr_t)seg->addr);
return paddr;
}
}
#endif
return SPDK_VTOPHYS_ERROR;
}
/* Try to get the paddr from /proc/self/pagemap */
static uint64_t
vtophys_get_paddr_pagemap(uint64_t vaddr)
{
uintptr_t paddr;
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
#define BAD_ADDR RTE_BAD_IOVA
#define VTOPHYS rte_mem_virt2iova
#else
#define BAD_ADDR RTE_BAD_PHYS_ADDR
#define VTOPHYS rte_mem_virt2phy
#endif
/*
* Note: the virt2phy/virt2iova functions have changed over time, such
* that older versions may return 0 while recent versions will never
* return 0 but RTE_BAD_PHYS_ADDR/IOVA instead. To support older and
* newer versions, check for both return values.
*/
paddr = VTOPHYS((void *)vaddr);
if (paddr == 0 || paddr == BAD_ADDR) {
/*
* The vaddr may be valid but doesn't have a backing page
* assigned yet. Touch the page to ensure a backing page
* gets assigned, then try to translate again.
*/
rte_atomic64_read((rte_atomic64_t *)vaddr);
paddr = VTOPHYS((void *)vaddr);
}
if (paddr == 0 || paddr == BAD_ADDR) {
/* Unable to get to the physical address. */
return SPDK_VTOPHYS_ERROR;
}
#undef BAD_ADDR
#undef VTOPHYS
return paddr;
}
/* Try to get the paddr from pci devices */
static uint64_t
vtophys_get_paddr_pci(uint64_t vaddr)
{
struct spdk_vtophys_pci_device *vtophys_dev;
uintptr_t paddr;
struct rte_pci_device *dev;
#if RTE_VERSION >= RTE_VERSION_NUM(16, 11, 0, 1)
struct rte_mem_resource *res;
#else
struct rte_pci_resource *res;
#endif
unsigned r;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
dev = vtophys_dev->pci_device;
for (r = 0; r < PCI_MAX_RESOURCE; r++) {
res = &dev->mem_resource[r];
if (res->phys_addr && vaddr >= (uint64_t)res->addr &&
vaddr < (uint64_t)res->addr + res->len) {
paddr = res->phys_addr + (vaddr - (uint64_t)res->addr);
DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr,
(void *)paddr);
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return paddr;
}
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
return SPDK_VTOPHYS_ERROR;
}
static int
spdk_vtophys_notify(void *cb_ctx, struct spdk_mem_map *map,
enum spdk_mem_map_notify_action action,
void *vaddr, size_t len)
{
int rc = 0, pci_phys = 0;
uint64_t paddr;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
while (len > 0) {
/* Get the physical address from the DPDK memsegs */
paddr = vtophys_get_paddr_memseg((uint64_t)vaddr);
switch (action) {
case SPDK_MEM_MAP_NOTIFY_REGISTER:
if (paddr == SPDK_VTOPHYS_ERROR) {
/* This is not an address that DPDK is managing. */
#if SPDK_VFIO_ENABLED
if (g_vfio.enabled) {
/* We'll use the virtual address as the iova. DPDK
* currently uses physical addresses as the iovas (or counts
* up from 0 if it can't get physical addresses), so
* the range of user space virtual addresses and physical
* addresses will never overlap.
*/
paddr = (uint64_t)vaddr;
rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB);
if (rc) {
return -EFAULT;
}
} else
#endif
{
/* Get the physical address from /proc/self/pagemap. */
paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
/* Get the physical address from PCI devices */
paddr = vtophys_get_paddr_pci((uint64_t)vaddr);
if (paddr == SPDK_VTOPHYS_ERROR) {
DEBUG_PRINT("could not get phys addr for %p\n", vaddr);
return -EFAULT;
}
pci_phys = 1;
}
}
}
/* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */
if (!pci_phys && (paddr & MASK_2MB)) {
DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr);
return -EINVAL;
}
rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr);
break;
case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
#if SPDK_VFIO_ENABLED
if (paddr == SPDK_VTOPHYS_ERROR) {
/*
* This is not an address that DPDK is managing. If vfio is enabled,
* we need to unmap the range from the IOMMU
*/
if (g_vfio.enabled) {
uint64_t buffer_len;
paddr = spdk_mem_map_translate(map, (uint64_t)vaddr, &buffer_len);
if (buffer_len != VALUE_2MB) {
return -EINVAL;
}
rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB);
if (rc) {
return -EFAULT;
}
}
}
#endif
rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB);
break;
default:
SPDK_UNREACHABLE();
}
if (rc != 0) {
return rc;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
return rc;
}
#if SPDK_VFIO_ENABLED
static bool
spdk_vfio_enabled(void)
{
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
return rte_vfio_is_enabled("vfio_pci");
#else
return pci_vfio_is_enabled();
#endif
}
static void
spdk_vtophys_iommu_init(void)
{
char proc_fd_path[PATH_MAX + 1];
char link_path[PATH_MAX + 1];
const char vfio_path[] = "/dev/vfio/vfio";
DIR *dir;
struct dirent *d;
if (!spdk_vfio_enabled()) {
return;
}
dir = opendir("/proc/self/fd");
if (!dir) {
DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno);
return;
}
while ((d = readdir(dir)) != NULL) {
if (d->d_type != DT_LNK) {
continue;
}
snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name);
if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) {
continue;
}
if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) {
sscanf(d->d_name, "%d", &g_vfio.fd);
break;
}
}
closedir(dir);
if (g_vfio.fd < 0) {
DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n");
return;
}
g_vfio.enabled = true;
return;
}
#endif
void
spdk_vtophys_pci_device_added(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
bool found = false;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
if (vtophys_dev->pci_device == pci_device) {
vtophys_dev->ref++;
found = true;
break;
}
}
if (!found) {
vtophys_dev = calloc(1, sizeof(*vtophys_dev));
if (vtophys_dev) {
vtophys_dev->pci_device = pci_device;
vtophys_dev->ref = 1;
TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq);
} else {
DEBUG_PRINT("Memory allocation error\n");
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if SPDK_VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
g_vfio.device_ref++;
if (g_vfio.device_ref > 1) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the first SPDK device using DPDK vfio. This means that the first
* IOMMU group might have been just been added to the DPDK vfio container.
* From this point it is certain that the memory can be mapped now.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map);
if (ret) {
DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
void
spdk_vtophys_pci_device_removed(struct rte_pci_device *pci_device)
{
struct spdk_vtophys_pci_device *vtophys_dev;
pthread_mutex_lock(&g_vtophys_pci_devices_mutex);
TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) {
if (vtophys_dev->pci_device == pci_device) {
assert(vtophys_dev->ref > 0);
if (--vtophys_dev->ref == 0) {
TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq);
free(vtophys_dev);
}
break;
}
}
pthread_mutex_unlock(&g_vtophys_pci_devices_mutex);
#if SPDK_VFIO_ENABLED
struct spdk_vfio_dma_map *dma_map;
int ret;
if (!g_vfio.enabled) {
return;
}
pthread_mutex_lock(&g_vfio.mutex);
assert(g_vfio.device_ref > 0);
g_vfio.device_ref--;
if (g_vfio.device_ref > 0) {
pthread_mutex_unlock(&g_vfio.mutex);
return;
}
/* This is the last SPDK device using DPDK vfio. If DPDK doesn't have
* any additional devices using it's vfio container, all the mappings
* will be automatically removed by the Linux vfio driver. We unmap
* the memory manually to be able to easily re-map it later regardless
* of other, external factors.
*/
TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) {
ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap);
if (ret) {
DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno);
break;
}
}
pthread_mutex_unlock(&g_vfio.mutex);
#endif
}
int
spdk_vtophys_init(void)
{
const struct spdk_mem_map_ops vtophys_map_ops = {
.notify_cb = spdk_vtophys_notify,
.are_contiguous = NULL
};
#if SPDK_VFIO_ENABLED
spdk_vtophys_iommu_init();
#endif
g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL);
if (g_vtophys_map == NULL) {
DEBUG_PRINT("vtophys map allocation failed\n");
return -1;
}
return 0;
}
uint64_t
spdk_vtophys(void *buf)
{
uint64_t vaddr, paddr_2mb;
vaddr = (uint64_t)buf;
paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, NULL);
/*
* SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR,
* we will still bitwise-or it with the buf offset below, but the result will still be
* SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being
* unaligned) we must now check the return value before addition.
*/
SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s");
if (paddr_2mb == SPDK_VTOPHYS_ERROR) {
return SPDK_VTOPHYS_ERROR;
} else {
return paddr_2mb + ((uint64_t)buf & MASK_2MB);
}
}
static int
spdk_bus_scan(void)
{
return 0;
}
static int
spdk_bus_probe(void)
{
return 0;
}
static struct rte_device *
spdk_bus_find_device(const struct rte_device *start,
rte_dev_cmp_t cmp, const void *data)
{
return NULL;
}
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
static enum rte_iova_mode
spdk_bus_get_iommu_class(void) {
/* Since we register our PCI drivers after EAL init, we have no chance
* of switching into RTE_IOVA_VA (virtual addresses as iova) iommu
* class. DPDK uses RTE_IOVA_PA by default because for some platforms
* it's the only supported mode, but then SPDK does not support those
* platforms and doesn't mind defaulting to RTE_IOVA_VA. The rte_pci bus
* will force RTE_IOVA_PA if RTE_IOVA_VA simply can not be used
* (i.e. at least one device on the system is bound to uio_pci_generic),
* so we simply return RTE_IOVA_VA here.
*/
return RTE_IOVA_VA;
}
#endif
struct rte_bus spdk_bus = {
.scan = spdk_bus_scan,
.probe = spdk_bus_probe,
.find_device = spdk_bus_find_device,
#if RTE_VERSION >= RTE_VERSION_NUM(17, 11, 0, 3)
.get_iommu_class = spdk_bus_get_iommu_class,
#endif
};
RTE_REGISTER_BUS(spdk, spdk_bus);
|