summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_rdma.c
blob: b356e3a16e9945721557b0425d591c2abcdeb138 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
/*-
 *   BSD LICENSE
 *
 *   Copyright (c) Intel Corporation.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * NVMe over RDMA transport
 */

#include "spdk/stdinc.h"

#include <infiniband/verbs.h>
#include <rdma/rdma_cma.h>
#include <rdma/rdma_verbs.h>

#include "spdk/assert.h"
#include "spdk/log.h"
#include "spdk/trace.h"
#include "spdk/event.h"
#include "spdk/queue.h"
#include "spdk/nvme.h"
#include "spdk/nvmf_spec.h"
#include "spdk/string.h"
#include "spdk/endian.h"
#include "spdk/likely.h"

#include "nvme_internal.h"

#define NVME_RDMA_TIME_OUT_IN_MS 2000
#define NVME_RDMA_RW_BUFFER_SIZE 131072

/*
 * NVME RDMA qpair Resource Defaults
 */
#define NVME_RDMA_DEFAULT_TX_SGE		2
#define NVME_RDMA_DEFAULT_RX_SGE		1


/* Max number of NVMe-oF SGL descriptors supported by the host */
#define NVME_RDMA_MAX_SGL_DESCRIPTORS		16
struct spdk_nvmf_cmd {
	struct spdk_nvme_cmd cmd;
	struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
};

/* Mapping from virtual address to ibv_mr pointer for a protection domain */
struct spdk_nvme_rdma_mr_map {
	struct ibv_pd				*pd;
	struct spdk_mem_map			*map;
	uint64_t				ref;
	LIST_ENTRY(spdk_nvme_rdma_mr_map)	link;
};

/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
struct nvme_rdma_ctrlr {
	struct spdk_nvme_ctrlr			ctrlr;
};

/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
struct nvme_rdma_qpair {
	struct spdk_nvme_qpair			qpair;

	struct rdma_event_channel		*cm_channel;

	struct rdma_cm_id			*cm_id;

	struct ibv_cq				*cq;

	struct	spdk_nvme_rdma_req		*rdma_reqs;

	uint16_t				num_entries;

	/* Parallel arrays of response buffers + response SGLs of size num_entries */
	struct ibv_sge				*rsp_sgls;
	struct spdk_nvme_cpl			*rsps;

	struct ibv_recv_wr			*rsp_recv_wrs;

	/* Memory region describing all rsps for this qpair */
	struct ibv_mr				*rsp_mr;

	/*
	 * Array of num_entries NVMe commands registered as RDMA message buffers.
	 * Indexed by rdma_req->id.
	 */
	struct spdk_nvmf_cmd			*cmds;

	/* Memory region describing all cmds for this qpair */
	struct ibv_mr				*cmd_mr;

	struct spdk_nvme_rdma_mr_map		*mr_map;

	TAILQ_HEAD(, spdk_nvme_rdma_req)	free_reqs;
	TAILQ_HEAD(, spdk_nvme_rdma_req)	outstanding_reqs;
};

struct spdk_nvme_rdma_req {
	int					id;

	struct ibv_send_wr			send_wr;

	struct nvme_request			*req;

	struct ibv_sge				send_sgl[NVME_RDMA_DEFAULT_TX_SGE];

	TAILQ_ENTRY(spdk_nvme_rdma_req)		link;
};

static const char *rdma_cm_event_str[] = {
	"RDMA_CM_EVENT_ADDR_RESOLVED",
	"RDMA_CM_EVENT_ADDR_ERROR",
	"RDMA_CM_EVENT_ROUTE_RESOLVED",
	"RDMA_CM_EVENT_ROUTE_ERROR",
	"RDMA_CM_EVENT_CONNECT_REQUEST",
	"RDMA_CM_EVENT_CONNECT_RESPONSE",
	"RDMA_CM_EVENT_CONNECT_ERROR",
	"RDMA_CM_EVENT_UNREACHABLE",
	"RDMA_CM_EVENT_REJECTED",
	"RDMA_CM_EVENT_ESTABLISHED",
	"RDMA_CM_EVENT_DISCONNECTED",
	"RDMA_CM_EVENT_DEVICE_REMOVAL",
	"RDMA_CM_EVENT_MULTICAST_JOIN",
	"RDMA_CM_EVENT_MULTICAST_ERROR",
	"RDMA_CM_EVENT_ADDR_CHANGE",
	"RDMA_CM_EVENT_TIMEWAIT_EXIT"
};

static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;

static int nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair);

static inline struct nvme_rdma_qpair *
nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
{
	assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
	return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
}

static inline struct nvme_rdma_ctrlr *
nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
{
	assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
	return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
}

static struct spdk_nvme_rdma_req *
nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
{
	struct spdk_nvme_rdma_req *rdma_req;

	rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
	if (rdma_req) {
		TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
		TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
	}

	return rdma_req;
}

static void
nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
{
	TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
	TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
}

static void
nvme_rdma_req_complete(struct nvme_request *req,
		       struct spdk_nvme_cpl *rsp)
{
	nvme_complete_request(req, rsp);
	nvme_free_request(req);
}

static const char *
nvme_rdma_cm_event_str_get(uint32_t event)
{
	if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
		return rdma_cm_event_str[event];
	} else {
		return "Undefined";
	}
}

static struct rdma_cm_event *
nvme_rdma_get_event(struct rdma_event_channel *channel,
		    enum rdma_cm_event_type evt)
{
	struct rdma_cm_event	*event;
	int			rc;

	rc = rdma_get_cm_event(channel, &event);
	if (rc < 0) {
		SPDK_ERRLOG("Failed to get event from CM event channel. Error %d (%s)\n",
			    errno, spdk_strerror(errno));
		return NULL;
	}

	if (event->event != evt) {
		SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
			    nvme_rdma_cm_event_str_get(evt),
			    nvme_rdma_cm_event_str_get(event->event), event->event, event->status);
		rdma_ack_cm_event(event);
		return NULL;
	}

	return event;
}

static int
nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
{
	int			rc;
	struct ibv_qp_init_attr	attr;

	rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
	if (!rqpair->cq) {
		SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
		return -1;
	}

	memset(&attr, 0, sizeof(struct ibv_qp_init_attr));
	attr.qp_type		= IBV_QPT_RC;
	attr.send_cq		= rqpair->cq;
	attr.recv_cq		= rqpair->cq;
	attr.cap.max_send_wr	= rqpair->num_entries; /* SEND operations */
	attr.cap.max_recv_wr	= rqpair->num_entries; /* RECV operations */
	attr.cap.max_send_sge	= NVME_RDMA_DEFAULT_TX_SGE;
	attr.cap.max_recv_sge	= NVME_RDMA_DEFAULT_RX_SGE;

	rc = rdma_create_qp(rqpair->cm_id, NULL, &attr);
	if (rc) {
		SPDK_ERRLOG("rdma_create_qp failed\n");
		return -1;
	}

	rqpair->cm_id->context = &rqpair->qpair;

	return 0;
}

#define nvme_rdma_trace_ibv_sge(sg_list) \
	if (sg_list) { \
		SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \
			      (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
	}

static int
nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
{
	struct ibv_recv_wr *wr, *bad_wr = NULL;
	int rc;

	wr = &rqpair->rsp_recv_wrs[rsp_idx];
	nvme_rdma_trace_ibv_sge(wr->sg_list);

	rc = ibv_post_recv(rqpair->cm_id->qp, wr, &bad_wr);
	if (rc) {
		SPDK_ERRLOG("Failure posting rdma recv, rc = 0x%x\n", rc);
	}

	return rc;
}

static void
nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
{
	if (rqpair->rsp_mr && rdma_dereg_mr(rqpair->rsp_mr)) {
		SPDK_ERRLOG("Unable to de-register rsp_mr\n");
	}
	rqpair->rsp_mr = NULL;

	free(rqpair->rsps);
	rqpair->rsps = NULL;
	free(rqpair->rsp_sgls);
	rqpair->rsp_sgls = NULL;
	free(rqpair->rsp_recv_wrs);
	rqpair->rsp_recv_wrs = NULL;
}

static int
nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
{
	uint16_t i;

	rqpair->rsp_mr = NULL;
	rqpair->rsps = NULL;
	rqpair->rsp_recv_wrs = NULL;

	rqpair->rsp_sgls = calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
	if (!rqpair->rsp_sgls) {
		SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
		goto fail;
	}

	rqpair->rsp_recv_wrs = calloc(rqpair->num_entries,
				      sizeof(*rqpair->rsp_recv_wrs));
	if (!rqpair->rsp_recv_wrs) {
		SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
		goto fail;
	}

	rqpair->rsps = calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
	if (!rqpair->rsps) {
		SPDK_ERRLOG("can not allocate rdma rsps\n");
		goto fail;
	}

	rqpair->rsp_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->rsps,
				       rqpair->num_entries * sizeof(*rqpair->rsps));
	if (rqpair->rsp_mr == NULL) {
		SPDK_ERRLOG("Unable to register rsp_mr\n");
		goto fail;
	}

	for (i = 0; i < rqpair->num_entries; i++) {
		struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];

		rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
		rsp_sgl->length = sizeof(rqpair->rsps[i]);
		rsp_sgl->lkey = rqpair->rsp_mr->lkey;

		rqpair->rsp_recv_wrs[i].wr_id = i;
		rqpair->rsp_recv_wrs[i].next = NULL;
		rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
		rqpair->rsp_recv_wrs[i].num_sge = 1;

		if (nvme_rdma_post_recv(rqpair, i)) {
			SPDK_ERRLOG("Unable to post connection rx desc\n");
			goto fail;
		}
	}

	return 0;

fail:
	nvme_rdma_free_rsps(rqpair);
	return -ENOMEM;
}

static void
nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
{
	if (!rqpair->rdma_reqs) {
		return;
	}

	if (rqpair->cmd_mr && rdma_dereg_mr(rqpair->cmd_mr)) {
		SPDK_ERRLOG("Unable to de-register cmd_mr\n");
	}
	rqpair->cmd_mr = NULL;

	free(rqpair->cmds);
	rqpair->cmds = NULL;

	free(rqpair->rdma_reqs);
	rqpair->rdma_reqs = NULL;
}

static int
nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
{
	int i;

	rqpair->rdma_reqs = calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
	if (rqpair->rdma_reqs == NULL) {
		SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
		goto fail;
	}

	rqpair->cmds = calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
	if (!rqpair->cmds) {
		SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
		goto fail;
	}

	rqpair->cmd_mr = rdma_reg_msgs(rqpair->cm_id, rqpair->cmds,
				       rqpair->num_entries * sizeof(*rqpair->cmds));
	if (!rqpair->cmd_mr) {
		SPDK_ERRLOG("Unable to register cmd_mr\n");
		goto fail;
	}

	TAILQ_INIT(&rqpair->free_reqs);
	TAILQ_INIT(&rqpair->outstanding_reqs);
	for (i = 0; i < rqpair->num_entries; i++) {
		struct spdk_nvme_rdma_req	*rdma_req;
		struct spdk_nvmf_cmd		*cmd;

		rdma_req = &rqpair->rdma_reqs[i];
		cmd = &rqpair->cmds[i];

		rdma_req->id = i;

		/* The first RDMA sgl element will always point
		 * at this data structure. Depending on whether
		 * an NVMe-oF SGL is required, the length of
		 * this element may change. */
		rdma_req->send_sgl[0].addr = (uint64_t)cmd;
		rdma_req->send_sgl[0].lkey = rqpair->cmd_mr->lkey;

		rdma_req->send_wr.wr_id = (uint64_t)rdma_req;
		rdma_req->send_wr.next = NULL;
		rdma_req->send_wr.opcode = IBV_WR_SEND;
		rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
		rdma_req->send_wr.sg_list = rdma_req->send_sgl;
		rdma_req->send_wr.imm_data = 0;

		TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
	}

	return 0;

fail:
	nvme_rdma_free_reqs(rqpair);
	return -ENOMEM;
}

static int
nvme_rdma_recv(struct nvme_rdma_qpair *rqpair, uint64_t rsp_idx)
{
	struct spdk_nvme_qpair *qpair = &rqpair->qpair;
	struct spdk_nvme_rdma_req *rdma_req;
	struct spdk_nvme_cpl *rsp;
	struct nvme_request *req;

	assert(rsp_idx < rqpair->num_entries);
	rsp = &rqpair->rsps[rsp_idx];
	rdma_req = &rqpair->rdma_reqs[rsp->cid];

	req = rdma_req->req;
	nvme_rdma_req_complete(req, rsp);

	nvme_rdma_req_put(rqpair, rdma_req);
	if (nvme_rdma_post_recv(rqpair, rsp_idx)) {
		SPDK_ERRLOG("Unable to re-post rx descriptor\n");
		return -1;
	}

	if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) {
		req = STAILQ_FIRST(&qpair->queued_req);
		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
		nvme_qpair_submit_request(qpair, req);
	}

	return 0;
}

static int
nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
		       struct sockaddr *src_addr,
		       struct sockaddr *dst_addr,
		       struct rdma_event_channel *cm_channel)
{
	int ret;
	struct rdma_cm_event *event;

	ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
				NVME_RDMA_TIME_OUT_IN_MS);
	if (ret) {
		SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
		return ret;
	}

	event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
	if (event == NULL) {
		SPDK_ERRLOG("RDMA address resolution error\n");
		return -1;
	}
	rdma_ack_cm_event(event);

	ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
	if (ret) {
		SPDK_ERRLOG("rdma_resolve_route\n");
		return ret;
	}

	event = nvme_rdma_get_event(cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
	if (event == NULL) {
		SPDK_ERRLOG("RDMA route resolution error\n");
		return -1;
	}
	rdma_ack_cm_event(event);

	return 0;
}

static int
nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
{
	struct rdma_conn_param				param = {};
	struct spdk_nvmf_rdma_request_private_data	request_data = {};
	struct spdk_nvmf_rdma_accept_private_data	*accept_data;
	struct ibv_device_attr				attr;
	int						ret;
	struct rdma_cm_event				*event;
	struct spdk_nvme_ctrlr				*ctrlr;

	ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
	if (ret != 0) {
		SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
		return ret;
	}

	param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);

	ctrlr = rqpair->qpair.ctrlr;
	if (!ctrlr) {
		return -1;
	}

	request_data.qid = rqpair->qpair.id;
	request_data.hrqsize = rqpair->num_entries;
	request_data.hsqsize = rqpair->num_entries - 1;
	request_data.cntlid = ctrlr->cntlid;

	param.private_data = &request_data;
	param.private_data_len = sizeof(request_data);
	param.retry_count = 7;
	param.rnr_retry_count = 7;

	ret = rdma_connect(rqpair->cm_id, &param);
	if (ret) {
		SPDK_ERRLOG("nvme rdma connect error\n");
		return ret;
	}

	event = nvme_rdma_get_event(rqpair->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
	if (event == NULL) {
		SPDK_ERRLOG("RDMA connect error\n");
		return -1;
	}

	accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
	if (accept_data == NULL) {
		rdma_ack_cm_event(event);
		SPDK_ERRLOG("NVMe-oF target did not return accept data\n");
		return -1;
	}

	SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n",
		      rqpair->num_entries, accept_data->crqsize);

	rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);

	rdma_ack_cm_event(event);

	return 0;
}

static int
nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
{
	struct addrinfo *res;
	struct addrinfo hints;
	int ret;

	memset(&hints, 0, sizeof(hints));
	hints.ai_family = family;
	hints.ai_socktype = SOCK_STREAM;
	hints.ai_protocol = 0;

	ret = getaddrinfo(addr, service, &hints, &res);
	if (ret) {
		SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
		return ret;
	}

	if (res->ai_addrlen > sizeof(*sa)) {
		SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
		ret = EINVAL;
	} else {
		memcpy(sa, res->ai_addr, res->ai_addrlen);
	}

	freeaddrinfo(res);
	return ret;
}

static int
nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
			enum spdk_mem_map_notify_action action,
			void *vaddr, size_t size)
{
	struct ibv_pd *pd = cb_ctx;
	struct ibv_mr *mr;
	int rc;

	switch (action) {
	case SPDK_MEM_MAP_NOTIFY_REGISTER:
		mr = ibv_reg_mr(pd, vaddr, size,
				IBV_ACCESS_LOCAL_WRITE |
				IBV_ACCESS_REMOTE_READ |
				IBV_ACCESS_REMOTE_WRITE);
		if (mr == NULL) {
			SPDK_ERRLOG("ibv_reg_mr() failed\n");
			return -EFAULT;
		} else {
			rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
		}
		break;
	case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
		mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
		rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
		if (mr) {
			ibv_dereg_mr(mr);
		}
		break;
	default:
		SPDK_UNREACHABLE();
	}

	return rc;
}

static int
nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
{
	struct ibv_pd *pd = rqpair->cm_id->qp->pd;
	struct spdk_nvme_rdma_mr_map *mr_map;
	const struct spdk_mem_map_ops nvme_rdma_map_ops = {
		.notify_cb = nvme_rdma_mr_map_notify,
		.are_contiguous = NULL
	};

	pthread_mutex_lock(&g_rdma_mr_maps_mutex);

	/* Look up existing mem map registration for this pd */
	LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
		if (mr_map->pd == pd) {
			mr_map->ref++;
			rqpair->mr_map = mr_map;
			pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
			return 0;
		}
	}

	mr_map = calloc(1, sizeof(*mr_map));
	if (mr_map == NULL) {
		SPDK_ERRLOG("calloc() failed\n");
		pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
		return -1;
	}

	mr_map->ref = 1;
	mr_map->pd = pd;
	mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd);
	if (mr_map->map == NULL) {
		SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
		free(mr_map);
		pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
		return -1;
	}

	rqpair->mr_map = mr_map;
	LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);

	pthread_mutex_unlock(&g_rdma_mr_maps_mutex);

	return 0;
}

static void
nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
{
	struct spdk_nvme_rdma_mr_map *mr_map;

	mr_map = rqpair->mr_map;
	rqpair->mr_map = NULL;

	if (mr_map == NULL) {
		return;
	}

	pthread_mutex_lock(&g_rdma_mr_maps_mutex);

	assert(mr_map->ref > 0);
	mr_map->ref--;
	if (mr_map->ref == 0) {
		LIST_REMOVE(mr_map, link);
		spdk_mem_map_free(&mr_map->map);
		free(mr_map);
	}

	pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
}

static int
nvme_rdma_qpair_connect(struct nvme_rdma_qpair *rqpair)
{
	struct sockaddr_storage dst_addr;
	struct sockaddr_storage src_addr;
	bool src_addr_specified;
	int rc;
	struct spdk_nvme_ctrlr *ctrlr;
	int family;

	rqpair->cm_channel = rdma_create_event_channel();
	if (rqpair->cm_channel == NULL) {
		SPDK_ERRLOG("rdma_create_event_channel() failed\n");
		return -1;
	}

	ctrlr = rqpair->qpair.ctrlr;

	switch (ctrlr->trid.adrfam) {
	case SPDK_NVMF_ADRFAM_IPV4:
		family = AF_INET;
		break;
	case SPDK_NVMF_ADRFAM_IPV6:
		family = AF_INET6;
		break;
	default:
		SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
		return -1;
	}

	SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);

	memset(&dst_addr, 0, sizeof(dst_addr));

	SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
	rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
	if (rc != 0) {
		SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
		return -1;
	}

	if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
		memset(&src_addr, 0, sizeof(src_addr));
		rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
		if (rc != 0) {
			SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
			return -1;
		}
		src_addr_specified = true;
	} else {
		src_addr_specified = false;
	}

	rc = rdma_create_id(rqpair->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
	if (rc < 0) {
		SPDK_ERRLOG("rdma_create_id() failed\n");
		return -1;
	}

	rc = nvme_rdma_resolve_addr(rqpair,
				    src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
				    (struct sockaddr *)&dst_addr, rqpair->cm_channel);
	if (rc < 0) {
		SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
		return -1;
	}

	rc = nvme_rdma_qpair_init(rqpair);
	if (rc < 0) {
		SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
		return -1;
	}

	rc = nvme_rdma_connect(rqpair);
	if (rc != 0) {
		SPDK_ERRLOG("Unable to connect the rqpair\n");
		return -1;
	}

	rc = nvme_rdma_alloc_reqs(rqpair);
	SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
	if (rc) {
		SPDK_ERRLOG("Unable to allocate rqpair  RDMA requests\n");
		return -1;
	}
	SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n");

	rc = nvme_rdma_alloc_rsps(rqpair);
	SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
	if (rc < 0) {
		SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
		return -1;
	}
	SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n");

	rc = nvme_rdma_register_mem(rqpair);
	if (rc < 0) {
		SPDK_ERRLOG("Unable to register memory for RDMA\n");
		return -1;
	}

	rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
	if (rc < 0) {
		SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
		return -1;
	}

	return 0;
}

/*
 * Build SGL describing empty payload.
 */
static int
nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
{
	struct nvme_request *req = rdma_req->req;

	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;

	/* The first element of this SGL is pointing at an
	 * spdk_nvmf_cmd object. For this particular command,
	 * we only need the first 64 bytes corresponding to
	 * the NVMe command. */
	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);

	/* The RDMA SGL needs one element describing the NVMe command. */
	rdma_req->send_wr.num_sge = 1;

	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
	req->cmd.dptr.sgl1.keyed.length = 0;
	req->cmd.dptr.sgl1.keyed.key = 0;
	req->cmd.dptr.sgl1.address = 0;

	return 0;
}

/*
 * Build inline SGL describing contiguous payload buffer.
 */
static int
nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
				      struct spdk_nvme_rdma_req *rdma_req)
{
	struct nvme_request *req = rdma_req->req;
	struct ibv_mr *mr;
	void *payload;
	uint64_t requested_size;

	payload = req->payload.contig_or_cb_arg + req->payload_offset;
	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);

	requested_size = req->payload_size;
	mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map,
			(uint64_t)payload, &requested_size);

	if (mr == NULL || requested_size < req->payload_size) {
		return -EINVAL;
	}

	/* The first element of this SGL is pointing at an
	 * spdk_nvmf_cmd object. For this particular command,
	 * we only need the first 64 bytes corresponding to
	 * the NVMe command. */
	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);

	rdma_req->send_sgl[1].addr = (uint64_t)payload;
	rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
	rdma_req->send_sgl[1].lkey = mr->lkey;

	/* The RDMA SGL contains two elements. The first describes
	 * the NVMe command and the second describes the data
	 * payload. */
	rdma_req->send_wr.num_sge = 2;

	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
	/* Inline only supported for icdoff == 0 currently.  This function will
	 * not get called for controllers with other values. */
	req->cmd.dptr.sgl1.address = (uint64_t)0;

	return 0;
}

/*
 * Build SGL describing contiguous payload buffer.
 */
static int
nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
			       struct spdk_nvme_rdma_req *rdma_req)
{
	struct nvme_request *req = rdma_req->req;
	void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
	struct ibv_mr *mr;
	uint64_t requested_size;

	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);

	requested_size = req->payload_size;
	mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)payload,
			&requested_size);
	if (mr == NULL || requested_size < req->payload_size) {
		return -1;
	}

	/* The first element of this SGL is pointing at an
	 * spdk_nvmf_cmd object. For this particular command,
	 * we only need the first 64 bytes corresponding to
	 * the NVMe command. */
	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);

	/* The RDMA SGL needs one element describing the NVMe command. */
	rdma_req->send_wr.num_sge = 1;

	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
	req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
	req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
	req->cmd.dptr.sgl1.keyed.length = req->payload_size;
	req->cmd.dptr.sgl1.keyed.key = mr->rkey;
	req->cmd.dptr.sgl1.address = (uint64_t)payload;

	return 0;
}

/*
 * Build SGL describing scattered payload buffer.
 */
static int
nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
			    struct spdk_nvme_rdma_req *rdma_req)
{
	struct nvme_request *req = rdma_req->req;
	struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
	struct ibv_mr *mr = NULL;
	void *virt_addr;
	uint64_t remaining_size, mr_length;
	uint32_t sge_length;
	int rc, max_num_sgl, num_sgl_desc;

	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
	assert(req->payload.reset_sgl_fn != NULL);
	assert(req->payload.next_sge_fn != NULL);
	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);

	max_num_sgl = req->qpair->ctrlr->max_sges;

	remaining_size = req->payload_size;
	num_sgl_desc = 0;
	do {
		rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
		if (rc) {
			return -1;
		}

		sge_length = spdk_min(remaining_size, sge_length);
		mr_length = sge_length;

		mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr,
				&mr_length);

		if (mr == NULL || mr_length < sge_length) {
			return -1;
		}

		cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
		cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
		cmd->sgl[num_sgl_desc].keyed.length = sge_length;
		cmd->sgl[num_sgl_desc].keyed.key = mr->rkey;
		cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;

		remaining_size -= sge_length;
		num_sgl_desc++;
	} while (remaining_size > 0 && num_sgl_desc < max_num_sgl);


	/* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
	if (remaining_size > 0) {
		return -1;
	}

	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;

	/* The RDMA SGL needs one element describing some portion
	 * of the spdk_nvmf_cmd structure. */
	rdma_req->send_wr.num_sge = 1;

	/*
	 * If only one SGL descriptor is required, it can be embedded directly in the command
	 * as a data block descriptor.
	 */
	if (num_sgl_desc == 1) {
		/* The first element of this SGL is pointing at an
		 * spdk_nvmf_cmd object. For this particular command,
		 * we only need the first 64 bytes corresponding to
		 * the NVMe command. */
		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);

		req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
		req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
		req->cmd.dptr.sgl1.keyed.length = req->payload_size;
		req->cmd.dptr.sgl1.keyed.key = mr->rkey;
		req->cmd.dptr.sgl1.address = rqpair->cmds[rdma_req->id].sgl[0].address;
	} else {
		/*
		 * Otherwise, The SGL descriptor embedded in the command must point to the list of
		 * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
		 */
		rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct
					       spdk_nvme_sgl_descriptor) * num_sgl_desc;

		req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
		req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
		req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor);
		req->cmd.dptr.sgl1.address = (uint64_t)0;
	}

	return 0;
}

/*
 * Build inline SGL describing sgl payload buffer.
 */
static int
nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
				   struct spdk_nvme_rdma_req *rdma_req)
{
	struct nvme_request *req = rdma_req->req;
	struct ibv_mr *mr;
	uint32_t length;
	uint64_t requested_size;
	void *virt_addr;
	int rc;

	assert(req->payload_size != 0);
	assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
	assert(req->payload.reset_sgl_fn != NULL);
	assert(req->payload.next_sge_fn != NULL);
	req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);

	/* TODO: for now, we only support a single SGL entry */
	rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
	if (rc) {
		return -1;
	}

	if (length < req->payload_size) {
		SPDK_ERRLOG("multi-element SGL currently not supported for RDMA\n");
		return -1;
	}

	requested_size = req->payload_size;
	mr = (struct ibv_mr *)spdk_mem_map_translate(rqpair->mr_map->map, (uint64_t)virt_addr,
			&requested_size);
	if (mr == NULL || requested_size < req->payload_size) {
		return -1;
	}

	/* The first element of this SGL is pointing at an
	 * spdk_nvmf_cmd object. For this particular command,
	 * we only need the first 64 bytes corresponding to
	 * the NVMe command. */
	rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);

	rdma_req->send_sgl[1].addr = (uint64_t)virt_addr;
	rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
	rdma_req->send_sgl[1].lkey = mr->lkey;

	/* The RDMA SGL contains two elements. The first describes
	 * the NVMe command and the second describes the data
	 * payload. */
	rdma_req->send_wr.num_sge = 2;

	req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
	req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
	req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
	req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
	/* Inline only supported for icdoff == 0 currently.  This function will
	 * not get called for controllers with other values. */
	req->cmd.dptr.sgl1.address = (uint64_t)0;

	return 0;
}

static inline unsigned int
nvme_rdma_icdsz_bytes(struct spdk_nvme_ctrlr *ctrlr)
{
	return (ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd));
}

static int
nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
		   struct spdk_nvme_rdma_req *rdma_req)
{
	struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
	int rc;

	rdma_req->req = req;
	req->cmd.cid = rdma_req->id;

	if (req->payload_size == 0) {
		rc = nvme_rdma_build_null_request(rdma_req);
	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG) {
		/*
		 * Check if icdoff is non zero, to avoid interop conflicts with
		 * targets with non-zero icdoff.  Both SPDK and the Linux kernel
		 * targets use icdoff = 0.  For targets with non-zero icdoff, we
		 * will currently just not use inline data for now.
		 */
		if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
		    req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
		    (ctrlr->cdata.nvmf_specific.icdoff == 0)) {
			rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
		} else {
			rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
		}
	} else if (nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL) {
		if (req->cmd.opc == SPDK_NVME_OPC_WRITE &&
		    req->payload_size <= nvme_rdma_icdsz_bytes(ctrlr) &&
		    ctrlr->cdata.nvmf_specific.icdoff == 0) {
			rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
		} else {
			rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
		}
	} else {
		rc = -1;
	}

	if (rc) {
		return rc;
	}

	memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
	return 0;
}

static struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
			     uint16_t qid, uint32_t qsize,
			     enum spdk_nvme_qprio qprio,
			     uint32_t num_requests)
{
	struct nvme_rdma_qpair *rqpair;
	struct spdk_nvme_qpair *qpair;
	int rc;

	rqpair = calloc(1, sizeof(struct nvme_rdma_qpair));
	if (!rqpair) {
		SPDK_ERRLOG("failed to get create rqpair\n");
		return NULL;
	}

	rqpair->num_entries = qsize;

	qpair = &rqpair->qpair;

	rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
	if (rc != 0) {
		return NULL;
	}

	rc = nvme_rdma_qpair_connect(rqpair);
	if (rc < 0) {
		nvme_rdma_qpair_destroy(qpair);
		return NULL;
	}

	return qpair;
}

static int
nvme_rdma_qpair_destroy(struct spdk_nvme_qpair *qpair)
{
	struct nvme_rdma_qpair *rqpair;

	if (!qpair) {
		return -1;
	}
	nvme_qpair_deinit(qpair);

	rqpair = nvme_rdma_qpair(qpair);

	nvme_rdma_unregister_mem(rqpair);
	nvme_rdma_free_reqs(rqpair);
	nvme_rdma_free_rsps(rqpair);

	if (rqpair->cm_id) {
		if (rqpair->cm_id->qp) {
			rdma_destroy_qp(rqpair->cm_id);
		}
		rdma_destroy_id(rqpair->cm_id);
	}

	if (rqpair->cq) {
		ibv_destroy_cq(rqpair->cq);
	}

	if (rqpair->cm_channel) {
		rdma_destroy_event_channel(rqpair->cm_channel);
	}

	free(rqpair);

	return 0;
}

struct spdk_nvme_qpair *
nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
				const struct spdk_nvme_io_qpair_opts *opts)
{
	return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
					    opts->io_queue_requests);
}

int
nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
{
	/* do nothing here */
	return 0;
}

/* This function must only be called while holding g_spdk_nvme_driver->lock */
int
nvme_rdma_ctrlr_scan(const struct spdk_nvme_transport_id *discovery_trid,
		     void *cb_ctx,
		     spdk_nvme_probe_cb probe_cb,
		     spdk_nvme_remove_cb remove_cb,
		     bool direct_connect)
{
	struct spdk_nvme_ctrlr_opts discovery_opts;
	struct spdk_nvme_ctrlr *discovery_ctrlr;
	union spdk_nvme_cc_register cc;
	int rc;
	struct nvme_completion_poll_status status;

	if (strcmp(discovery_trid->subnqn, SPDK_NVMF_DISCOVERY_NQN) != 0) {
		/* It is not a discovery_ctrlr info and try to directly connect it */
		rc = nvme_ctrlr_probe(discovery_trid, NULL, probe_cb, cb_ctx);
		return rc;
	}

	spdk_nvme_ctrlr_get_default_ctrlr_opts(&discovery_opts, sizeof(discovery_opts));
	/* For discovery_ctrlr set the timeout to 0 */
	discovery_opts.keep_alive_timeout_ms = 0;

	discovery_ctrlr = nvme_rdma_ctrlr_construct(discovery_trid, &discovery_opts, NULL);
	if (discovery_ctrlr == NULL) {
		return -1;
	}

	/* TODO: this should be using the normal NVMe controller initialization process */
	cc.raw = 0;
	cc.bits.en = 1;
	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
	rc = nvme_transport_ctrlr_set_reg_4(discovery_ctrlr, offsetof(struct spdk_nvme_registers, cc.raw),
					    cc.raw);
	if (rc < 0) {
		SPDK_ERRLOG("Failed to set cc\n");
		nvme_ctrlr_destruct(discovery_ctrlr);
		return -1;
	}

	/* get the cdata info */
	rc = nvme_ctrlr_cmd_identify(discovery_ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0,
				     &discovery_ctrlr->cdata, sizeof(discovery_ctrlr->cdata),
				     nvme_completion_poll_cb, &status);
	if (rc != 0) {
		SPDK_ERRLOG("Failed to identify cdata\n");
		return rc;
	}

	if (spdk_nvme_wait_for_completion(discovery_ctrlr->adminq, &status)) {
		SPDK_ERRLOG("nvme_identify_controller failed!\n");
		return -ENXIO;
	}

	/* Direct attach through spdk_nvme_connect() API */
	if (direct_connect == true) {
		/* Set the ready state to skip the normal init process */
		discovery_ctrlr->state = NVME_CTRLR_STATE_READY;
		nvme_ctrlr_connected(discovery_ctrlr);
		nvme_ctrlr_add_process(discovery_ctrlr, 0);
		return 0;
	}

	rc = nvme_fabric_ctrlr_discover(discovery_ctrlr, cb_ctx, probe_cb);
	nvme_ctrlr_destruct(discovery_ctrlr);
	return rc;
}

struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
		const struct spdk_nvme_ctrlr_opts *opts,
		void *devhandle)
{
	struct nvme_rdma_ctrlr *rctrlr;
	union spdk_nvme_cap_register cap;
	union spdk_nvme_vs_register vs;
	int rc;

	rctrlr = calloc(1, sizeof(struct nvme_rdma_ctrlr));
	if (rctrlr == NULL) {
		SPDK_ERRLOG("could not allocate ctrlr\n");
		return NULL;
	}

	rctrlr->ctrlr.trid.trtype = SPDK_NVME_TRANSPORT_RDMA;
	rctrlr->ctrlr.opts = *opts;
	memcpy(&rctrlr->ctrlr.trid, trid, sizeof(rctrlr->ctrlr.trid));

	rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
	if (rc != 0) {
		free(rctrlr);
		return NULL;
	}

	rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
			       SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES, 0, SPDK_NVMF_MIN_ADMIN_QUEUE_ENTRIES);
	if (!rctrlr->ctrlr.adminq) {
		SPDK_ERRLOG("failed to create admin qpair\n");
		nvme_rdma_ctrlr_destruct(&rctrlr->ctrlr);
		return NULL;
	}

	if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
		SPDK_ERRLOG("get_cap() failed\n");
		nvme_ctrlr_destruct(&rctrlr->ctrlr);
		return NULL;
	}

	if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
		SPDK_ERRLOG("get_vs() failed\n");
		nvme_ctrlr_destruct(&rctrlr->ctrlr);
		return NULL;
	}

	if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
		SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
		nvme_ctrlr_destruct(&rctrlr->ctrlr);
		return NULL;
	}

	nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);

	SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n");
	return &rctrlr->ctrlr;
}

int
nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
{
	struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);

	if (ctrlr->adminq) {
		nvme_rdma_qpair_destroy(ctrlr->adminq);
	}

	nvme_ctrlr_destruct_finish(ctrlr);

	free(rctrlr);

	return 0;
}

int
nvme_rdma_ctrlr_set_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t value)
{
	return nvme_fabric_ctrlr_set_reg_4(ctrlr, offset, value);
}

int
nvme_rdma_ctrlr_set_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t value)
{
	return nvme_fabric_ctrlr_set_reg_8(ctrlr, offset, value);
}

int
nvme_rdma_ctrlr_get_reg_4(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint32_t *value)
{
	return nvme_fabric_ctrlr_get_reg_4(ctrlr, offset, value);
}

int
nvme_rdma_ctrlr_get_reg_8(struct spdk_nvme_ctrlr *ctrlr, uint32_t offset, uint64_t *value)
{
	return nvme_fabric_ctrlr_get_reg_8(ctrlr, offset, value);
}

int
nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
			       struct nvme_request *req)
{
	struct nvme_rdma_qpair *rqpair;
	struct spdk_nvme_rdma_req *rdma_req;
	struct ibv_send_wr *wr, *bad_wr = NULL;
	int rc;

	rqpair = nvme_rdma_qpair(qpair);
	assert(rqpair != NULL);
	assert(req != NULL);

	rdma_req = nvme_rdma_req_get(rqpair);
	if (!rdma_req) {
		/*
		 * No rdma_req is available.  Queue the request to be processed later.
		 */
		STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
		return 0;
	}

	if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
		SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
		nvme_rdma_req_put(rqpair, rdma_req);
		return -1;
	}

	req->timed_out = false;
	if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
		req->submit_tick = spdk_get_ticks();
	} else {
		req->submit_tick = 0;
	}

	wr = &rdma_req->send_wr;

	nvme_rdma_trace_ibv_sge(wr->sg_list);

	rc = ibv_post_send(rqpair->cm_id->qp, wr, &bad_wr);
	if (rc) {
		SPDK_ERRLOG("Failure posting rdma send for NVMf completion: %d (%s)\n", rc, spdk_strerror(rc));
	}

	return rc;
}

int
nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
	return nvme_rdma_qpair_destroy(qpair);
}

int
nvme_rdma_ctrlr_reinit_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
{
	return nvme_rdma_qpair_connect(nvme_rdma_qpair(qpair));
}

int
nvme_rdma_qpair_enable(struct spdk_nvme_qpair *qpair)
{
	/* Currently, doing nothing here */
	return 0;
}

int
nvme_rdma_qpair_disable(struct spdk_nvme_qpair *qpair)
{
	/* Currently, doing nothing here */
	return 0;
}

int
nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
{
	/* Currently, doing nothing here */
	return 0;
}

int
nvme_rdma_qpair_fail(struct spdk_nvme_qpair *qpair)
{
	/* Currently, doing nothing here */
	return 0;
}

static void
nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
{
	uint64_t t02;
	struct spdk_nvme_rdma_req *rdma_req, *tmp;
	struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
	struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
	struct spdk_nvme_ctrlr_process *active_proc;

	/* Don't check timeouts during controller initialization. */
	if (ctrlr->state != NVME_CTRLR_STATE_READY) {
		return;
	}

	if (nvme_qpair_is_admin_queue(qpair)) {
		active_proc = spdk_nvme_ctrlr_get_current_process(ctrlr);
	} else {
		active_proc = qpair->active_proc;
	}

	/* Only check timeouts if the current process has a timeout callback. */
	if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
		return;
	}

	t02 = spdk_get_ticks();
	TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
		assert(rdma_req->req != NULL);

		if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
			/*
			 * The requests are in order, so as soon as one has not timed out,
			 * stop iterating.
			 */
			break;
		}
	}
}

#define MAX_COMPLETIONS_PER_POLL 128

int
nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
				    uint32_t max_completions)
{
	struct nvme_rdma_qpair	*rqpair = nvme_rdma_qpair(qpair);
	struct ibv_wc		wc[MAX_COMPLETIONS_PER_POLL];
	int			i, rc, batch_size;
	uint32_t		reaped;
	struct ibv_cq		*cq;

	if (max_completions == 0) {
		max_completions = rqpair->num_entries;
	} else {
		max_completions = spdk_min(max_completions, rqpair->num_entries);
	}

	cq = rqpair->cq;

	reaped = 0;
	do {
		batch_size = spdk_min((max_completions - reaped),
				      MAX_COMPLETIONS_PER_POLL);
		rc = ibv_poll_cq(cq, batch_size, wc);
		if (rc < 0) {
			SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
				    errno, spdk_strerror(errno));
			return -1;
		} else if (rc == 0) {
			/* Ran out of completions */
			break;
		}

		for (i = 0; i < rc; i++) {
			if (wc[i].status) {
				SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
					    qpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
				return -1;
			}

			switch (wc[i].opcode) {
			case IBV_WC_RECV:
				SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n");

				reaped++;

				if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
					SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
					return -1;
				}

				if (nvme_rdma_recv(rqpair, wc[i].wr_id)) {
					SPDK_ERRLOG("nvme_rdma_recv processing failure\n");
					return -1;
				}
				break;

			case IBV_WC_SEND:
				break;

			default:
				SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", wc[i].opcode);
				return -1;
			}
		}
	} while (reaped < max_completions);

	if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
		nvme_rdma_qpair_check_timeout(qpair);
	}

	return reaped;
}

uint32_t
nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
{
	/* Todo, which should get from the NVMF target */
	return NVME_RDMA_RW_BUFFER_SIZE;
}

uint16_t
nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
{
	return spdk_min(ctrlr->cdata.nvmf_specific.msdbd, NVME_RDMA_MAX_SGL_DESCRIPTORS);
}

void *
nvme_rdma_ctrlr_alloc_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, size_t size)
{
	return NULL;
}

int
nvme_rdma_ctrlr_free_cmb_io_buffer(struct spdk_nvme_ctrlr *ctrlr, void *buf, size_t size)
{
	return 0;
}