diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:39:29 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:39:29 +0000 |
commit | 8ffec2a3aba6f114784e11f89ef1d57a096ae540 (patch) | |
tree | ccebcbad06203e8241a8e7249f8e6c478a3682ea /lib/mbsstr.c | |
parent | Initial commit. (diff) | |
download | coreutils-8ffec2a3aba6f114784e11f89ef1d57a096ae540.tar.xz coreutils-8ffec2a3aba6f114784e11f89ef1d57a096ae540.zip |
Adding upstream version 8.32.upstream/8.32upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/mbsstr.c')
-rw-r--r-- | lib/mbsstr.c | 385 |
1 files changed, 385 insertions, 0 deletions
diff --git a/lib/mbsstr.c b/lib/mbsstr.c new file mode 100644 index 0000000..d0b16e3 --- /dev/null +++ b/lib/mbsstr.c @@ -0,0 +1,385 @@ +/* Searching in a string. -*- coding: utf-8 -*- + Copyright (C) 2005-2020 Free Software Foundation, Inc. + Written by Bruno Haible <bruno@clisp.org>, 2005. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <https://www.gnu.org/licenses/>. */ + +#include <config.h> + +/* Specification. */ +#include <string.h> + +#include <stdbool.h> +#include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */ +#include <stdlib.h> + +#include "malloca.h" +#include "mbuiter.h" + +/* Knuth-Morris-Pratt algorithm. */ +#define UNIT unsigned char +#define CANON_ELEMENT(c) c +#include "str-kmp.h" + +/* Knuth-Morris-Pratt algorithm. + See https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm + Return a boolean indicating success: + Return true and set *RESULTP if the search was completed. + Return false if it was aborted because not enough memory was available. */ +static bool +knuth_morris_pratt_multibyte (const char *haystack, const char *needle, + const char **resultp) +{ + size_t m = mbslen (needle); + mbchar_t *needle_mbchars; + size_t *table; + + /* Allocate room for needle_mbchars and the table. */ + void *memory = nmalloca (m, sizeof (mbchar_t) + sizeof (size_t)); + void *table_memory; + if (memory == NULL) + return false; + needle_mbchars = memory; + table_memory = needle_mbchars + m; + table = table_memory; + + /* Fill needle_mbchars. */ + { + mbui_iterator_t iter; + size_t j; + + j = 0; + for (mbui_init (iter, needle); mbui_avail (iter); mbui_advance (iter), j++) + mb_copy (&needle_mbchars[j], &mbui_cur (iter)); + } + + /* Fill the table. + For 0 < i < m: + 0 < table[i] <= i is defined such that + forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x], + and table[i] is as large as possible with this property. + This implies: + 1) For 0 < i < m: + If table[i] < i, + needle[table[i]..i-1] = needle[0..i-1-table[i]]. + 2) For 0 < i < m: + rhaystack[0..i-1] == needle[0..i-1] + and exists h, i <= h < m: rhaystack[h] != needle[h] + implies + forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1]. + table[0] remains uninitialized. */ + { + size_t i, j; + + /* i = 1: Nothing to verify for x = 0. */ + table[1] = 1; + j = 0; + + for (i = 2; i < m; i++) + { + /* Here: j = i-1 - table[i-1]. + The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold + for x < table[i-1], by induction. + Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ + mbchar_t *b = &needle_mbchars[i - 1]; + + for (;;) + { + /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x] + is known to hold for x < i-1-j. + Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ + if (mb_equal (*b, needle_mbchars[j])) + { + /* Set table[i] := i-1-j. */ + table[i] = i - ++j; + break; + } + /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds + for x = i-1-j, because + needle[i-1] != needle[j] = needle[i-1-x]. */ + if (j == 0) + { + /* The inequality holds for all possible x. */ + table[i] = i; + break; + } + /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds + for i-1-j < x < i-1-j+table[j], because for these x: + needle[x..i-2] + = needle[x-(i-1-j)..j-1] + != needle[0..j-1-(x-(i-1-j))] (by definition of table[j]) + = needle[0..i-2-x], + hence needle[x..i-1] != needle[0..i-1-x]. + Furthermore + needle[i-1-j+table[j]..i-2] + = needle[table[j]..j-1] + = needle[0..j-1-table[j]] (by definition of table[j]). */ + j = j - table[j]; + } + /* Here: j = i - table[i]. */ + } + } + + /* Search, using the table to accelerate the processing. */ + { + size_t j; + mbui_iterator_t rhaystack; + mbui_iterator_t phaystack; + + *resultp = NULL; + j = 0; + mbui_init (rhaystack, haystack); + mbui_init (phaystack, haystack); + /* Invariant: phaystack = rhaystack + j. */ + while (mbui_avail (phaystack)) + if (mb_equal (needle_mbchars[j], mbui_cur (phaystack))) + { + j++; + mbui_advance (phaystack); + if (j == m) + { + /* The entire needle has been found. */ + *resultp = mbui_cur_ptr (rhaystack); + break; + } + } + else if (j > 0) + { + /* Found a match of needle[0..j-1], mismatch at needle[j]. */ + size_t count = table[j]; + j -= count; + for (; count > 0; count--) + { + if (!mbui_avail (rhaystack)) + abort (); + mbui_advance (rhaystack); + } + } + else + { + /* Found a mismatch at needle[0] already. */ + if (!mbui_avail (rhaystack)) + abort (); + mbui_advance (rhaystack); + mbui_advance (phaystack); + } + } + + freea (memory); + return true; +} + +/* Find the first occurrence of the character string NEEDLE in the character + string HAYSTACK. Return NULL if NEEDLE is not found in HAYSTACK. */ +char * +mbsstr (const char *haystack, const char *needle) +{ + /* Be careful not to look at the entire extent of haystack or needle + until needed. This is useful because of these two cases: + - haystack may be very long, and a match of needle found early, + - needle may be very long, and not even a short initial segment of + needle may be found in haystack. */ + if (MB_CUR_MAX > 1) + { + mbui_iterator_t iter_needle; + + mbui_init (iter_needle, needle); + if (mbui_avail (iter_needle)) + { + /* Minimizing the worst-case complexity: + Let n = mbslen(haystack), m = mbslen(needle). + The naïve algorithm is O(n*m) worst-case. + The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a + memory allocation. + To achieve linear complexity and yet amortize the cost of the + memory allocation, we activate the Knuth-Morris-Pratt algorithm + only once the naïve algorithm has already run for some time; more + precisely, when + - the outer loop count is >= 10, + - the average number of comparisons per outer loop is >= 5, + - the total number of comparisons is >= m. + But we try it only once. If the memory allocation attempt failed, + we don't retry it. */ + bool try_kmp = true; + size_t outer_loop_count = 0; + size_t comparison_count = 0; + size_t last_ccount = 0; /* last comparison count */ + mbui_iterator_t iter_needle_last_ccount; /* = needle + last_ccount */ + + mbui_iterator_t iter_haystack; + + mbui_init (iter_needle_last_ccount, needle); + mbui_init (iter_haystack, haystack); + for (;; mbui_advance (iter_haystack)) + { + if (!mbui_avail (iter_haystack)) + /* No match. */ + return NULL; + + /* See whether it's advisable to use an asymptotically faster + algorithm. */ + if (try_kmp + && outer_loop_count >= 10 + && comparison_count >= 5 * outer_loop_count) + { + /* See if needle + comparison_count now reaches the end of + needle. */ + size_t count = comparison_count - last_ccount; + for (; + count > 0 && mbui_avail (iter_needle_last_ccount); + count--) + mbui_advance (iter_needle_last_ccount); + last_ccount = comparison_count; + if (!mbui_avail (iter_needle_last_ccount)) + { + /* Try the Knuth-Morris-Pratt algorithm. */ + const char *result; + bool success = + knuth_morris_pratt_multibyte (haystack, needle, + &result); + if (success) + return (char *) result; + try_kmp = false; + } + } + + outer_loop_count++; + comparison_count++; + if (mb_equal (mbui_cur (iter_haystack), mbui_cur (iter_needle))) + /* The first character matches. */ + { + mbui_iterator_t rhaystack; + mbui_iterator_t rneedle; + + memcpy (&rhaystack, &iter_haystack, sizeof (mbui_iterator_t)); + mbui_advance (rhaystack); + + mbui_init (rneedle, needle); + if (!mbui_avail (rneedle)) + abort (); + mbui_advance (rneedle); + + for (;; mbui_advance (rhaystack), mbui_advance (rneedle)) + { + if (!mbui_avail (rneedle)) + /* Found a match. */ + return (char *) mbui_cur_ptr (iter_haystack); + if (!mbui_avail (rhaystack)) + /* No match. */ + return NULL; + comparison_count++; + if (!mb_equal (mbui_cur (rhaystack), mbui_cur (rneedle))) + /* Nothing in this round. */ + break; + } + } + } + } + else + return (char *) haystack; + } + else + { + if (*needle != '\0') + { + /* Minimizing the worst-case complexity: + Let n = strlen(haystack), m = strlen(needle). + The naïve algorithm is O(n*m) worst-case. + The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a + memory allocation. + To achieve linear complexity and yet amortize the cost of the + memory allocation, we activate the Knuth-Morris-Pratt algorithm + only once the naïve algorithm has already run for some time; more + precisely, when + - the outer loop count is >= 10, + - the average number of comparisons per outer loop is >= 5, + - the total number of comparisons is >= m. + But we try it only once. If the memory allocation attempt failed, + we don't retry it. */ + bool try_kmp = true; + size_t outer_loop_count = 0; + size_t comparison_count = 0; + size_t last_ccount = 0; /* last comparison count */ + const char *needle_last_ccount = needle; /* = needle + last_ccount */ + + /* Speed up the following searches of needle by caching its first + character. */ + char b = *needle++; + + for (;; haystack++) + { + if (*haystack == '\0') + /* No match. */ + return NULL; + + /* See whether it's advisable to use an asymptotically faster + algorithm. */ + if (try_kmp + && outer_loop_count >= 10 + && comparison_count >= 5 * outer_loop_count) + { + /* See if needle + comparison_count now reaches the end of + needle. */ + if (needle_last_ccount != NULL) + { + needle_last_ccount += + strnlen (needle_last_ccount, + comparison_count - last_ccount); + if (*needle_last_ccount == '\0') + needle_last_ccount = NULL; + last_ccount = comparison_count; + } + if (needle_last_ccount == NULL) + { + /* Try the Knuth-Morris-Pratt algorithm. */ + const unsigned char *result; + bool success = + knuth_morris_pratt ((const unsigned char *) haystack, + (const unsigned char *) (needle - 1), + strlen (needle - 1), + &result); + if (success) + return (char *) result; + try_kmp = false; + } + } + + outer_loop_count++; + comparison_count++; + if (*haystack == b) + /* The first character matches. */ + { + const char *rhaystack = haystack + 1; + const char *rneedle = needle; + + for (;; rhaystack++, rneedle++) + { + if (*rneedle == '\0') + /* Found a match. */ + return (char *) haystack; + if (*rhaystack == '\0') + /* No match. */ + return NULL; + comparison_count++; + if (*rhaystack != *rneedle) + /* Nothing in this round. */ + break; + } + } + } + } + else + return (char *) haystack; + } +} |