diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:39:29 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:39:29 +0000 |
commit | 8ffec2a3aba6f114784e11f89ef1d57a096ae540 (patch) | |
tree | ccebcbad06203e8241a8e7249f8e6c478a3682ea /lib/sha512.c | |
parent | Initial commit. (diff) | |
download | coreutils-upstream.tar.xz coreutils-upstream.zip |
Adding upstream version 8.32.upstream/8.32upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | lib/sha512.c | 588 |
1 files changed, 588 insertions, 0 deletions
diff --git a/lib/sha512.c b/lib/sha512.c new file mode 100644 index 0000000..518e336 --- /dev/null +++ b/lib/sha512.c @@ -0,0 +1,588 @@ +/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or + memory blocks according to the NIST specification FIPS-180-2. + + Copyright (C) 2005-2006, 2008-2020 Free Software Foundation, Inc. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <https://www.gnu.org/licenses/>. */ + +/* Written by David Madore, considerably copypasting from + Scott G. Miller's sha1.c +*/ + +#include <config.h> + +#if HAVE_OPENSSL_SHA512 +# define GL_OPENSSL_INLINE _GL_EXTERN_INLINE +#endif +#include "sha512.h" + +#include <stdalign.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +#if USE_UNLOCKED_IO +# include "unlocked-io.h" +#endif + +#include <byteswap.h> +#ifdef WORDS_BIGENDIAN +# define SWAP(n) (n) +#else +# define SWAP(n) bswap_64 (n) +#endif + +#define BLOCKSIZE 32768 +#if BLOCKSIZE % 128 != 0 +# error "invalid BLOCKSIZE" +#endif + +#if ! HAVE_OPENSSL_SHA512 +/* This array contains the bytes used to pad the buffer to the next + 128-byte boundary. */ +static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ }; + + +/* + Takes a pointer to a 512 bit block of data (eight 64 bit ints) and + initializes it to the start constants of the SHA512 algorithm. This + must be called before using hash in the call to sha512_hash +*/ +void +sha512_init_ctx (struct sha512_ctx *ctx) +{ + ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908); + ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b); + ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b); + ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1); + ctx->state[4] = u64hilo (0x510e527f, 0xade682d1); + ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f); + ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b); + ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179); + + ctx->total[0] = ctx->total[1] = u64lo (0); + ctx->buflen = 0; +} + +void +sha384_init_ctx (struct sha512_ctx *ctx) +{ + ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8); + ctx->state[1] = u64hilo (0x629a292a, 0x367cd507); + ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17); + ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939); + ctx->state[4] = u64hilo (0x67332667, 0xffc00b31); + ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511); + ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7); + ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4); + + ctx->total[0] = ctx->total[1] = u64lo (0); + ctx->buflen = 0; +} + +/* Copy the value from V into the memory location pointed to by *CP, + If your architecture allows unaligned access, this is equivalent to + * (__typeof__ (v) *) cp = v */ +static void +set_uint64 (char *cp, u64 v) +{ + memcpy (cp, &v, sizeof v); +} + +/* Put result from CTX in first 64 bytes following RESBUF. + The result must be in little endian byte order. */ +void * +sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf) +{ + int i; + char *r = resbuf; + + for (i = 0; i < 8; i++) + set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); + + return resbuf; +} + +void * +sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf) +{ + int i; + char *r = resbuf; + + for (i = 0; i < 6; i++) + set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); + + return resbuf; +} + +/* Process the remaining bytes in the internal buffer and the usual + prolog according to the standard and write the result to RESBUF. */ +static void +sha512_conclude_ctx (struct sha512_ctx *ctx) +{ + /* Take yet unprocessed bytes into account. */ + size_t bytes = ctx->buflen; + size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8; + + /* Now count remaining bytes. */ + ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes)); + if (u64lt (ctx->total[0], u64lo (bytes))) + ctx->total[1] = u64plus (ctx->total[1], u64lo (1)); + + /* Put the 128-bit file length in *bits* at the end of the buffer. + Use set_uint64 rather than a simple assignment, to avoid risk of + unaligned access. */ + set_uint64 ((char *) &ctx->buffer[size - 2], + SWAP (u64or (u64shl (ctx->total[1], 3), + u64shr (ctx->total[0], 61)))); + set_uint64 ((char *) &ctx->buffer[size - 1], + SWAP (u64shl (ctx->total[0], 3))); + + memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes); + + /* Process last bytes. */ + sha512_process_block (ctx->buffer, size * 8, ctx); +} + +void * +sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf) +{ + sha512_conclude_ctx (ctx); + return sha512_read_ctx (ctx, resbuf); +} + +void * +sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf) +{ + sha512_conclude_ctx (ctx); + return sha384_read_ctx (ctx, resbuf); +} +#endif + +#ifdef GL_COMPILE_CRYPTO_STREAM + +#include "af_alg.h" + +/* Compute message digest for bytes read from STREAM using algorithm ALG. + Write the message digest into RESBLOCK, which contains HASHLEN bytes. + The initial and finishing operations are INIT_CTX and FINISH_CTX. + Return zero if and only if successful. */ +static int +shaxxx_stream (FILE *stream, char const *alg, void *resblock, + ssize_t hashlen, void (*init_ctx) (struct sha512_ctx *), + void *(*finish_ctx) (struct sha512_ctx *, void *)) +{ + switch (afalg_stream (stream, alg, resblock, hashlen)) + { + case 0: return 0; + case -EIO: return 1; + } + + char *buffer = malloc (BLOCKSIZE + 72); + if (!buffer) + return 1; + + struct sha512_ctx ctx; + init_ctx (&ctx); + size_t sum; + + /* Iterate over full file contents. */ + while (1) + { + /* We read the file in blocks of BLOCKSIZE bytes. One call of the + computation function processes the whole buffer so that with the + next round of the loop another block can be read. */ + size_t n; + sum = 0; + + /* Read block. Take care for partial reads. */ + while (1) + { + /* Either process a partial fread() from this loop, + or the fread() in afalg_stream may have gotten EOF. + We need to avoid a subsequent fread() as EOF may + not be sticky. For details of such systems, see: + https://sourceware.org/bugzilla/show_bug.cgi?id=1190 */ + if (feof (stream)) + goto process_partial_block; + + n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); + + sum += n; + + if (sum == BLOCKSIZE) + break; + + if (n == 0) + { + /* Check for the error flag IFF N == 0, so that we don't + exit the loop after a partial read due to e.g., EAGAIN + or EWOULDBLOCK. */ + if (ferror (stream)) + { + free (buffer); + return 1; + } + goto process_partial_block; + } + } + + /* Process buffer with BLOCKSIZE bytes. Note that + BLOCKSIZE % 128 == 0 + */ + sha512_process_block (buffer, BLOCKSIZE, &ctx); + } + + process_partial_block:; + + /* Process any remaining bytes. */ + if (sum > 0) + sha512_process_bytes (buffer, sum, &ctx); + + /* Construct result in desired memory. */ + finish_ctx (&ctx, resblock); + free (buffer); + return 0; +} + +int +sha512_stream (FILE *stream, void *resblock) +{ + return shaxxx_stream (stream, "sha512", resblock, SHA512_DIGEST_SIZE, + sha512_init_ctx, sha512_finish_ctx); +} + +int +sha384_stream (FILE *stream, void *resblock) +{ + return shaxxx_stream (stream, "sha384", resblock, SHA384_DIGEST_SIZE, + sha384_init_ctx, sha384_finish_ctx); +} +#endif + +#if ! HAVE_OPENSSL_SHA512 +/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The + result is always in little endian byte order, so that a byte-wise + output yields to the wanted ASCII representation of the message + digest. */ +void * +sha512_buffer (const char *buffer, size_t len, void *resblock) +{ + struct sha512_ctx ctx; + + /* Initialize the computation context. */ + sha512_init_ctx (&ctx); + + /* Process whole buffer but last len % 128 bytes. */ + sha512_process_bytes (buffer, len, &ctx); + + /* Put result in desired memory area. */ + return sha512_finish_ctx (&ctx, resblock); +} + +void * +sha384_buffer (const char *buffer, size_t len, void *resblock) +{ + struct sha512_ctx ctx; + + /* Initialize the computation context. */ + sha384_init_ctx (&ctx); + + /* Process whole buffer but last len % 128 bytes. */ + sha512_process_bytes (buffer, len, &ctx); + + /* Put result in desired memory area. */ + return sha384_finish_ctx (&ctx, resblock); +} + +void +sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx) +{ + /* When we already have some bits in our internal buffer concatenate + both inputs first. */ + if (ctx->buflen != 0) + { + size_t left_over = ctx->buflen; + size_t add = 256 - left_over > len ? len : 256 - left_over; + + memcpy (&((char *) ctx->buffer)[left_over], buffer, add); + ctx->buflen += add; + + if (ctx->buflen > 128) + { + sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx); + + ctx->buflen &= 127; + /* The regions in the following copy operation cannot overlap, + because ctx->buflen < 128 ≤ (left_over + add) & ~127. */ + memcpy (ctx->buffer, + &((char *) ctx->buffer)[(left_over + add) & ~127], + ctx->buflen); + } + + buffer = (const char *) buffer + add; + len -= add; + } + + /* Process available complete blocks. */ + if (len >= 128) + { +#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) +# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0) + if (UNALIGNED_P (buffer)) + while (len > 128) + { + sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx); + buffer = (const char *) buffer + 128; + len -= 128; + } + else +#endif + { + sha512_process_block (buffer, len & ~127, ctx); + buffer = (const char *) buffer + (len & ~127); + len &= 127; + } + } + + /* Move remaining bytes in internal buffer. */ + if (len > 0) + { + size_t left_over = ctx->buflen; + + memcpy (&((char *) ctx->buffer)[left_over], buffer, len); + left_over += len; + if (left_over >= 128) + { + sha512_process_block (ctx->buffer, 128, ctx); + left_over -= 128; + /* The regions in the following copy operation cannot overlap, + because left_over ≤ 128. */ + memcpy (ctx->buffer, &ctx->buffer[16], left_over); + } + ctx->buflen = left_over; + } +} + +/* --- Code below is the primary difference between sha1.c and sha512.c --- */ + +/* SHA512 round constants */ +#define K(I) sha512_round_constants[I] +static u64 const sha512_round_constants[80] = { + u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd), + u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc), + u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019), + u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118), + u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe), + u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2), + u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1), + u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694), + u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3), + u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65), + u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483), + u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5), + u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210), + u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4), + u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725), + u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70), + u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926), + u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df), + u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8), + u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b), + u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001), + u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30), + u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910), + u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8), + u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53), + u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8), + u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb), + u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3), + u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60), + u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec), + u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9), + u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b), + u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207), + u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178), + u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6), + u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b), + u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493), + u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c), + u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a), + u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817), +}; + +/* Round functions. */ +#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B))) +#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G))) + +/* Process LEN bytes of BUFFER, accumulating context into CTX. + It is assumed that LEN % 128 == 0. + Most of this code comes from GnuPG's cipher/sha1.c. */ + +void +sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx) +{ + u64 const *words = buffer; + u64 const *endp = words + len / sizeof (u64); + u64 x[16]; + u64 a = ctx->state[0]; + u64 b = ctx->state[1]; + u64 c = ctx->state[2]; + u64 d = ctx->state[3]; + u64 e = ctx->state[4]; + u64 f = ctx->state[5]; + u64 g = ctx->state[6]; + u64 h = ctx->state[7]; + u64 lolen = u64size (len); + + /* First increment the byte count. FIPS PUB 180-2 specifies the possible + length of the file up to 2^128 bits. Here we only compute the + number of bytes. Do a double word increment. */ + ctx->total[0] = u64plus (ctx->total[0], lolen); + ctx->total[1] = u64plus (ctx->total[1], + u64plus (u64size (len >> 31 >> 31 >> 2), + u64lo (u64lt (ctx->total[0], lolen)))); + +#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7))) +#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6))) +#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25))) +#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23))) + +#define M(I) (x[(I) & 15] \ + = u64plus (x[(I) & 15], \ + u64plus (S1 (x[((I) - 2) & 15]), \ + u64plus (x[((I) - 7) & 15], \ + S0 (x[((I) - 15) & 15]))))) + +#define R(A, B, C, D, E, F, G, H, K, M) \ + do \ + { \ + u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \ + u64 t1 = \ + u64plus (H, u64plus (SS1 (E), \ + u64plus (F1 (E, F, G), u64plus (K, M)))); \ + D = u64plus (D, t1); \ + H = u64plus (t0, t1); \ + } \ + while (0) + + while (words < endp) + { + int t; + /* FIXME: see sha1.c for a better implementation. */ + for (t = 0; t < 16; t++) + { + x[t] = SWAP (*words); + words++; + } + + R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); + R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); + R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); + R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); + R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); + R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); + R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); + R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); + R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); + R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); + R( g, h, a, b, c, d, e, f, K(10), x[10] ); + R( f, g, h, a, b, c, d, e, K(11), x[11] ); + R( e, f, g, h, a, b, c, d, K(12), x[12] ); + R( d, e, f, g, h, a, b, c, K(13), x[13] ); + R( c, d, e, f, g, h, a, b, K(14), x[14] ); + R( b, c, d, e, f, g, h, a, K(15), x[15] ); + R( a, b, c, d, e, f, g, h, K(16), M(16) ); + R( h, a, b, c, d, e, f, g, K(17), M(17) ); + R( g, h, a, b, c, d, e, f, K(18), M(18) ); + R( f, g, h, a, b, c, d, e, K(19), M(19) ); + R( e, f, g, h, a, b, c, d, K(20), M(20) ); + R( d, e, f, g, h, a, b, c, K(21), M(21) ); + R( c, d, e, f, g, h, a, b, K(22), M(22) ); + R( b, c, d, e, f, g, h, a, K(23), M(23) ); + R( a, b, c, d, e, f, g, h, K(24), M(24) ); + R( h, a, b, c, d, e, f, g, K(25), M(25) ); + R( g, h, a, b, c, d, e, f, K(26), M(26) ); + R( f, g, h, a, b, c, d, e, K(27), M(27) ); + R( e, f, g, h, a, b, c, d, K(28), M(28) ); + R( d, e, f, g, h, a, b, c, K(29), M(29) ); + R( c, d, e, f, g, h, a, b, K(30), M(30) ); + R( b, c, d, e, f, g, h, a, K(31), M(31) ); + R( a, b, c, d, e, f, g, h, K(32), M(32) ); + R( h, a, b, c, d, e, f, g, K(33), M(33) ); + R( g, h, a, b, c, d, e, f, K(34), M(34) ); + R( f, g, h, a, b, c, d, e, K(35), M(35) ); + R( e, f, g, h, a, b, c, d, K(36), M(36) ); + R( d, e, f, g, h, a, b, c, K(37), M(37) ); + R( c, d, e, f, g, h, a, b, K(38), M(38) ); + R( b, c, d, e, f, g, h, a, K(39), M(39) ); + R( a, b, c, d, e, f, g, h, K(40), M(40) ); + R( h, a, b, c, d, e, f, g, K(41), M(41) ); + R( g, h, a, b, c, d, e, f, K(42), M(42) ); + R( f, g, h, a, b, c, d, e, K(43), M(43) ); + R( e, f, g, h, a, b, c, d, K(44), M(44) ); + R( d, e, f, g, h, a, b, c, K(45), M(45) ); + R( c, d, e, f, g, h, a, b, K(46), M(46) ); + R( b, c, d, e, f, g, h, a, K(47), M(47) ); + R( a, b, c, d, e, f, g, h, K(48), M(48) ); + R( h, a, b, c, d, e, f, g, K(49), M(49) ); + R( g, h, a, b, c, d, e, f, K(50), M(50) ); + R( f, g, h, a, b, c, d, e, K(51), M(51) ); + R( e, f, g, h, a, b, c, d, K(52), M(52) ); + R( d, e, f, g, h, a, b, c, K(53), M(53) ); + R( c, d, e, f, g, h, a, b, K(54), M(54) ); + R( b, c, d, e, f, g, h, a, K(55), M(55) ); + R( a, b, c, d, e, f, g, h, K(56), M(56) ); + R( h, a, b, c, d, e, f, g, K(57), M(57) ); + R( g, h, a, b, c, d, e, f, K(58), M(58) ); + R( f, g, h, a, b, c, d, e, K(59), M(59) ); + R( e, f, g, h, a, b, c, d, K(60), M(60) ); + R( d, e, f, g, h, a, b, c, K(61), M(61) ); + R( c, d, e, f, g, h, a, b, K(62), M(62) ); + R( b, c, d, e, f, g, h, a, K(63), M(63) ); + R( a, b, c, d, e, f, g, h, K(64), M(64) ); + R( h, a, b, c, d, e, f, g, K(65), M(65) ); + R( g, h, a, b, c, d, e, f, K(66), M(66) ); + R( f, g, h, a, b, c, d, e, K(67), M(67) ); + R( e, f, g, h, a, b, c, d, K(68), M(68) ); + R( d, e, f, g, h, a, b, c, K(69), M(69) ); + R( c, d, e, f, g, h, a, b, K(70), M(70) ); + R( b, c, d, e, f, g, h, a, K(71), M(71) ); + R( a, b, c, d, e, f, g, h, K(72), M(72) ); + R( h, a, b, c, d, e, f, g, K(73), M(73) ); + R( g, h, a, b, c, d, e, f, K(74), M(74) ); + R( f, g, h, a, b, c, d, e, K(75), M(75) ); + R( e, f, g, h, a, b, c, d, K(76), M(76) ); + R( d, e, f, g, h, a, b, c, K(77), M(77) ); + R( c, d, e, f, g, h, a, b, K(78), M(78) ); + R( b, c, d, e, f, g, h, a, K(79), M(79) ); + + a = ctx->state[0] = u64plus (ctx->state[0], a); + b = ctx->state[1] = u64plus (ctx->state[1], b); + c = ctx->state[2] = u64plus (ctx->state[2], c); + d = ctx->state[3] = u64plus (ctx->state[3], d); + e = ctx->state[4] = u64plus (ctx->state[4], e); + f = ctx->state[5] = u64plus (ctx->state[5], f); + g = ctx->state[6] = u64plus (ctx->state[6], g); + h = ctx->state[7] = u64plus (ctx->state[7], h); + } +} +#endif + +/* + * Hey Emacs! + * Local Variables: + * coding: utf-8 + * End: + */ |