/* Test of locking in multithreaded situations. Copyright (C) 2005, 2008-2020 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ #include #if USE_ISOC_THREADS || USE_POSIX_THREADS || USE_ISOC_AND_POSIX_THREADS || USE_WINDOWS_THREADS #if USE_ISOC_THREADS # define TEST_ISOC_THREADS 1 #endif #if USE_POSIX_THREADS # define TEST_POSIX_THREADS 1 #endif #if USE_ISOC_AND_POSIX_THREADS # define TEST_ISOC_AND_POSIX_THREADS 1 #endif #if USE_WINDOWS_THREADS # define TEST_WINDOWS_THREADS 1 #endif /* Whether to enable locking. Uncomment this to get a test program without locking, to verify that it crashes. */ #define ENABLE_LOCKING 1 /* Which tests to perform. Uncomment some of these, to verify that all tests crash if no locking is enabled. */ #define DO_TEST_LOCK 1 #define DO_TEST_RWLOCK 1 #define DO_TEST_RECURSIVE_LOCK 1 #define DO_TEST_ONCE 1 /* Whether to help the scheduler through explicit yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to use 'volatile' on some variables that communicate information between threads. If set to 0, a semaphore or a lock is used to protect these variables. If set to 1, 'volatile' is used; this is theoretically equivalent but can lead to much slower execution (e.g. 30x slower total run time on a 40-core machine), because 'volatile' does not imply any synchronization/communication between different CPUs. */ #define USE_VOLATILE 0 #if USE_POSIX_THREADS && HAVE_SEMAPHORE_H /* Whether to use a semaphore to communicate information between threads. If set to 0, a lock is used. If set to 1, a semaphore is used. Uncomment this to reduce the dependencies of this test. */ # define USE_SEMAPHORE 1 /* Mac OS X provides only named semaphores (sem_open); its facility for unnamed semaphores (sem_init) does not work. */ # if defined __APPLE__ && defined __MACH__ # define USE_NAMED_SEMAPHORE 1 # else # define USE_UNNAMED_SEMAPHORE 1 # endif #endif /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of operations performed in each thread. This is quite high, because with a smaller count, say 5000, we often get an "OK" result even without ENABLE_LOCKING (on Linux/x86). */ #define REPEAT_COUNT 50000 #include #include #include #include #if !ENABLE_LOCKING # undef USE_ISOC_THREADS # undef USE_POSIX_THREADS # undef USE_ISOC_AND_POSIX_THREADS # undef USE_WINDOWS_THREADS #endif #include "glthread/lock.h" #if !ENABLE_LOCKING # if TEST_ISOC_THREADS # define USE_ISOC_THREADS 1 # endif # if TEST_POSIX_THREADS # define USE_POSIX_THREADS 1 # endif # if TEST_ISOC_AND_POSIX_THREADS # define USE_ISOC_AND_POSIX_THREADS 1 # endif # if TEST_WINDOWS_THREADS # define USE_WINDOWS_THREADS 1 # endif #endif #include "glthread/thread.h" #include "glthread/yield.h" #if USE_SEMAPHORE # include # include # include # include #endif #if HAVE_DECL_ALARM # include # include #endif #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() gl_thread_yield () #else # define yield() #endif #if USE_VOLATILE struct atomic_int { volatile int value; }; static void init_atomic_int (struct atomic_int *ai) { } static int get_atomic_int_value (struct atomic_int *ai) { return ai->value; } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { ai->value = new_value; } #elif USE_SEMAPHORE /* This atomic_int implementation can only support the values 0 and 1. It is initially 0 and can be set to 1 only once. */ # if USE_UNNAMED_SEMAPHORE struct atomic_int { sem_t semaphore; }; #define atomic_int_semaphore(ai) (&(ai)->semaphore) static void init_atomic_int (struct atomic_int *ai) { sem_init (&ai->semaphore, 0, 0); } # endif # if USE_NAMED_SEMAPHORE struct atomic_int { sem_t *semaphore; }; #define atomic_int_semaphore(ai) ((ai)->semaphore) static void init_atomic_int (struct atomic_int *ai) { sem_t *s; unsigned int count; for (count = 0; ; count++) { char name[80]; /* Use getpid() in the name, so that different processes running at the same time will not interfere. Use ai in the name, so that different atomic_int in the same process will not interfere. Use a count in the name, so that even in the (unlikely) case that a semaphore with the specified name already exists, we can try a different name. */ sprintf (name, "test-lock-%lu-%p-%u", (unsigned long) getpid (), ai, count); s = sem_open (name, O_CREAT | O_EXCL, 0600, 0); if (s == SEM_FAILED) { if (errno == EEXIST) /* Retry with a different name. */ continue; else { perror ("sem_open failed"); abort (); } } else { /* Try not to leave a semaphore hanging around on the file system eternally, if we can avoid it. */ sem_unlink (name); break; } } ai->semaphore = s; } # endif static int get_atomic_int_value (struct atomic_int *ai) { if (sem_trywait (atomic_int_semaphore (ai)) == 0) { if (sem_post (atomic_int_semaphore (ai))) abort (); return 1; } else if (errno == EAGAIN) return 0; else abort (); } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { if (new_value == 0) /* It's already initialized with 0. */ return; /* To set the value 1: */ if (sem_post (atomic_int_semaphore (ai))) abort (); } #else struct atomic_int { gl_lock_define (, lock) int value; }; static void init_atomic_int (struct atomic_int *ai) { gl_lock_init (ai->lock); } static int get_atomic_int_value (struct atomic_int *ai) { gl_lock_lock (ai->lock); int ret = ai->value; gl_lock_unlock (ai->lock); return ret; } static void set_atomic_int_value (struct atomic_int *ai, int new_value) { gl_lock_lock (ai->lock); ai->value = new_value; gl_lock_unlock (ai->lock); } #endif #define ACCOUNT_COUNT 4 static int account[ACCOUNT_COUNT]; static int random_account (void) { return ((unsigned int) rand () >> 3) % ACCOUNT_COUNT; } static void check_accounts (void) { int i, sum; sum = 0; for (i = 0; i < ACCOUNT_COUNT; i++) sum += account[i]; if (sum != ACCOUNT_COUNT * 1000) abort (); } /* ------------------- Test normal (non-recursive) locks ------------------- */ /* Test normal locks by having several bank accounts and several threads which shuffle around money between the accounts and another thread checking that all the money is still there. */ gl_lock_define_initialized(static, my_lock) static void * lock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", gl_thread_self_pointer ()); gl_lock_lock (my_lock); dbgprintf ("Mutator %p after lock\n", gl_thread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; dbgprintf ("Mutator %p before unlock\n", gl_thread_self_pointer ()); gl_lock_unlock (my_lock); dbgprintf ("Mutator %p after unlock\n", gl_thread_self_pointer ()); dbgprintf ("Mutator %p before check lock\n", gl_thread_self_pointer ()); gl_lock_lock (my_lock); check_accounts (); gl_lock_unlock (my_lock); dbgprintf ("Mutator %p after check unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", gl_thread_self_pointer ()); return NULL; } static struct atomic_int lock_checker_done; static void * lock_checker_thread (void *arg) { while (get_atomic_int_value (&lock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", gl_thread_self_pointer ()); gl_lock_lock (my_lock); check_accounts (); gl_lock_unlock (my_lock); dbgprintf ("Checker %p after check unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", gl_thread_self_pointer ()); return NULL; } static void test_lock (void) { int i; gl_thread_t checkerthread; gl_thread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&lock_checker_done); set_atomic_int_value (&lock_checker_done, 0); /* Spawn the threads. */ checkerthread = gl_thread_create (lock_checker_thread, NULL); for (i = 0; i < THREAD_COUNT; i++) threads[i] = gl_thread_create (lock_mutator_thread, NULL); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) gl_thread_join (threads[i], NULL); set_atomic_int_value (&lock_checker_done, 1); gl_thread_join (checkerthread, NULL); check_accounts (); } /* ----------------- Test read-write (non-recursive) locks ----------------- */ /* Test read-write locks by having several bank accounts and several threads which shuffle around money between the accounts and several other threads that check that all the money is still there. */ gl_rwlock_define_initialized(static, my_rwlock) static void * rwlock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { int i1, i2, value; dbgprintf ("Mutator %p before wrlock\n", gl_thread_self_pointer ()); gl_rwlock_wrlock (my_rwlock); dbgprintf ("Mutator %p after wrlock\n", gl_thread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; dbgprintf ("Mutator %p before unlock\n", gl_thread_self_pointer ()); gl_rwlock_unlock (my_rwlock); dbgprintf ("Mutator %p after unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", gl_thread_self_pointer ()); return NULL; } static struct atomic_int rwlock_checker_done; static void * rwlock_checker_thread (void *arg) { while (get_atomic_int_value (&rwlock_checker_done) == 0) { dbgprintf ("Checker %p before check rdlock\n", gl_thread_self_pointer ()); gl_rwlock_rdlock (my_rwlock); check_accounts (); gl_rwlock_unlock (my_rwlock); dbgprintf ("Checker %p after check unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", gl_thread_self_pointer ()); return NULL; } static void test_rwlock (void) { int i; gl_thread_t checkerthreads[THREAD_COUNT]; gl_thread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&rwlock_checker_done); set_atomic_int_value (&rwlock_checker_done, 0); /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) checkerthreads[i] = gl_thread_create (rwlock_checker_thread, NULL); for (i = 0; i < THREAD_COUNT; i++) threads[i] = gl_thread_create (rwlock_mutator_thread, NULL); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) gl_thread_join (threads[i], NULL); set_atomic_int_value (&rwlock_checker_done, 1); for (i = 0; i < THREAD_COUNT; i++) gl_thread_join (checkerthreads[i], NULL); check_accounts (); } /* -------------------------- Test recursive locks -------------------------- */ /* Test recursive locks by having several bank accounts and several threads which shuffle around money between the accounts (recursively) and another thread checking that all the money is still there. */ gl_recursive_lock_define_initialized(static, my_reclock) static void recshuffle (void) { int i1, i2, value; dbgprintf ("Mutator %p before lock\n", gl_thread_self_pointer ()); gl_recursive_lock_lock (my_reclock); dbgprintf ("Mutator %p after lock\n", gl_thread_self_pointer ()); i1 = random_account (); i2 = random_account (); value = ((unsigned int) rand () >> 3) % 10; account[i1] += value; account[i2] -= value; /* Recursive with probability 0.5. */ if (((unsigned int) rand () >> 3) % 2) recshuffle (); dbgprintf ("Mutator %p before unlock\n", gl_thread_self_pointer ()); gl_recursive_lock_unlock (my_reclock); dbgprintf ("Mutator %p after unlock\n", gl_thread_self_pointer ()); } static void * reclock_mutator_thread (void *arg) { int repeat; for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { recshuffle (); dbgprintf ("Mutator %p before check lock\n", gl_thread_self_pointer ()); gl_recursive_lock_lock (my_reclock); check_accounts (); gl_recursive_lock_unlock (my_reclock); dbgprintf ("Mutator %p after check unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Mutator %p dying.\n", gl_thread_self_pointer ()); return NULL; } static struct atomic_int reclock_checker_done; static void * reclock_checker_thread (void *arg) { while (get_atomic_int_value (&reclock_checker_done) == 0) { dbgprintf ("Checker %p before check lock\n", gl_thread_self_pointer ()); gl_recursive_lock_lock (my_reclock); check_accounts (); gl_recursive_lock_unlock (my_reclock); dbgprintf ("Checker %p after check unlock\n", gl_thread_self_pointer ()); yield (); } dbgprintf ("Checker %p dying.\n", gl_thread_self_pointer ()); return NULL; } static void test_recursive_lock (void) { int i; gl_thread_t checkerthread; gl_thread_t threads[THREAD_COUNT]; /* Initialization. */ for (i = 0; i < ACCOUNT_COUNT; i++) account[i] = 1000; init_atomic_int (&reclock_checker_done); set_atomic_int_value (&reclock_checker_done, 0); /* Spawn the threads. */ checkerthread = gl_thread_create (reclock_checker_thread, NULL); for (i = 0; i < THREAD_COUNT; i++) threads[i] = gl_thread_create (reclock_mutator_thread, NULL); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) gl_thread_join (threads[i], NULL); set_atomic_int_value (&reclock_checker_done, 1); gl_thread_join (checkerthread, NULL); check_accounts (); } /* ------------------------ Test once-only execution ------------------------ */ /* Test once-only execution by having several threads attempt to grab a once-only task simultaneously (triggered by releasing a read-write lock). */ gl_once_define(static, fresh_once) static int ready[THREAD_COUNT]; static gl_lock_t ready_lock[THREAD_COUNT]; #if ENABLE_LOCKING static gl_rwlock_t fire_signal[REPEAT_COUNT]; #else static volatile int fire_signal_state; #endif static gl_once_t once_control; static int performed; gl_lock_define_initialized(static, performed_lock) static void once_execute (void) { gl_lock_lock (performed_lock); performed++; gl_lock_unlock (performed_lock); } static void * once_contender_thread (void *arg) { int id = (int) (intptr_t) arg; int repeat; for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Tell the main thread that we're ready. */ gl_lock_lock (ready_lock[id]); ready[id] = 1; gl_lock_unlock (ready_lock[id]); if (repeat == REPEAT_COUNT) break; dbgprintf ("Contender %p waiting for signal for round %d\n", gl_thread_self_pointer (), repeat); #if ENABLE_LOCKING /* Wait for the signal to go. */ gl_rwlock_rdlock (fire_signal[repeat]); /* And don't hinder the others (if the scheduler is unfair). */ gl_rwlock_unlock (fire_signal[repeat]); #else /* Wait for the signal to go. */ while (fire_signal_state <= repeat) yield (); #endif dbgprintf ("Contender %p got the signal for round %d\n", gl_thread_self_pointer (), repeat); /* Contend for execution. */ gl_once (once_control, once_execute); } return NULL; } static void test_once (void) { int i, repeat; gl_thread_t threads[THREAD_COUNT]; /* Initialize all variables. */ for (i = 0; i < THREAD_COUNT; i++) { ready[i] = 0; gl_lock_init (ready_lock[i]); } #if ENABLE_LOCKING for (i = 0; i < REPEAT_COUNT; i++) gl_rwlock_init (fire_signal[i]); #else fire_signal_state = 0; #endif #if ENABLE_LOCKING /* Block all fire_signals. */ for (i = REPEAT_COUNT-1; i >= 0; i--) gl_rwlock_wrlock (fire_signal[i]); #endif /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) threads[i] = gl_thread_create (once_contender_thread, (void *) (intptr_t) i); for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Wait until every thread is ready. */ dbgprintf ("Main thread before synchronizing for round %d\n", repeat); for (;;) { int ready_count = 0; for (i = 0; i < THREAD_COUNT; i++) { gl_lock_lock (ready_lock[i]); ready_count += ready[i]; gl_lock_unlock (ready_lock[i]); } if (ready_count == THREAD_COUNT) break; yield (); } dbgprintf ("Main thread after synchronizing for round %d\n", repeat); if (repeat > 0) { /* Check that exactly one thread executed the once_execute() function. */ if (performed != 1) abort (); } if (repeat == REPEAT_COUNT) break; /* Preparation for the next round: Initialize once_control. */ memcpy (&once_control, &fresh_once, sizeof (gl_once_t)); /* Preparation for the next round: Reset the performed counter. */ performed = 0; /* Preparation for the next round: Reset the ready flags. */ for (i = 0; i < THREAD_COUNT; i++) { gl_lock_lock (ready_lock[i]); ready[i] = 0; gl_lock_unlock (ready_lock[i]); } /* Signal all threads simultaneously. */ dbgprintf ("Main thread giving signal for round %d\n", repeat); #if ENABLE_LOCKING gl_rwlock_unlock (fire_signal[repeat]); #else fire_signal_state = repeat + 1; #endif } /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) gl_thread_join (threads[i], NULL); } /* -------------------------------------------------------------------------- */ int main () { #if HAVE_DECL_ALARM /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); #endif #if DO_TEST_LOCK printf ("Starting test_lock ..."); fflush (stdout); test_lock (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_RWLOCK printf ("Starting test_rwlock ..."); fflush (stdout); test_rwlock (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_RECURSIVE_LOCK printf ("Starting test_recursive_lock ..."); fflush (stdout); test_recursive_lock (); printf (" OK\n"); fflush (stdout); #endif #if DO_TEST_ONCE printf ("Starting test_once ..."); fflush (stdout); test_once (); printf (" OK\n"); fflush (stdout); #endif return 0; } #else /* No multithreading available. */ #include int main () { fputs ("Skipping test: multithreading not enabled\n", stderr); return 77; } #endif