diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:44:12 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-27 17:44:12 +0000 |
commit | 1be69c2c660b70ac2f4de2a5326e27e3e60eb82d (patch) | |
tree | bb299ab6f411f4fccd735907035de710e4ec6abc /lib/crypto_backend/pbkdf2_generic.c | |
parent | Initial commit. (diff) | |
download | cryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.tar.xz cryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.zip |
Adding upstream version 2:2.3.7.upstream/2%2.3.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | lib/crypto_backend/pbkdf2_generic.c | 232 |
1 files changed, 232 insertions, 0 deletions
diff --git a/lib/crypto_backend/pbkdf2_generic.c b/lib/crypto_backend/pbkdf2_generic.c new file mode 100644 index 0000000..b18c7a7 --- /dev/null +++ b/lib/crypto_backend/pbkdf2_generic.c @@ -0,0 +1,232 @@ +/* + * Implementation of Password-Based Cryptography as per PKCS#5 + * Copyright (C) 2002,2003 Simon Josefsson + * Copyright (C) 2004 Free Software Foundation + * + * cryptsetup related changes + * Copyright (C) 2012-2021 Red Hat, Inc. All rights reserved. + * Copyright (C) 2012-2021 Milan Broz + * + * This file is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this file; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + * + */ + +#include <errno.h> +#include <alloca.h> +#include "crypto_backend_internal.h" + +static int hash_buf(const char *src, size_t src_len, + char *dst, size_t dst_len, + const char *hash_name) +{ + struct crypt_hash *hd = NULL; + int r; + + if (crypt_hash_init(&hd, hash_name)) + return -EINVAL; + + r = crypt_hash_write(hd, src, src_len); + + if (!r) + r = crypt_hash_final(hd, dst, dst_len); + + crypt_hash_destroy(hd); + return r; +} + +/* + * 5.2 PBKDF2 + * + * PBKDF2 applies a pseudorandom function (see Appendix B.1 for an + * example) to derive keys. The length of the derived key is essentially + * unbounded. (However, the maximum effective search space for the + * derived key may be limited by the structure of the underlying + * pseudorandom function. See Appendix B.1 for further discussion.) + * PBKDF2 is recommended for new applications. + * + * PBKDF2 (P, S, c, dkLen) + * + * Options: PRF underlying pseudorandom function (hLen + * denotes the length in octets of the + * pseudorandom function output) + * + * Input: P password, an octet string (ASCII or UTF-8) + * S salt, an octet string + * c iteration count, a positive integer + * dkLen intended length in octets of the derived + * key, a positive integer, at most + * (2^32 - 1) * hLen + * + * Output: DK derived key, a dkLen-octet string + */ + +/* + * if hash_block_size is not zero, the HMAC key is pre-hashed + * inside this function. + * This prevents situation when crypto backend doesn't support + * long HMAC keys or it tries hash long key in every iteration + * (because of crypt_final() cannot do simple key reset. + */ + +#define MAX_PRF_BLOCK_LEN 80 + +int pkcs5_pbkdf2(const char *hash, + const char *P, size_t Plen, + const char *S, size_t Slen, + unsigned int c, unsigned int dkLen, + char *DK, unsigned int hash_block_size) +{ + struct crypt_hmac *hmac; + char U[MAX_PRF_BLOCK_LEN]; + char T[MAX_PRF_BLOCK_LEN]; + char P_hash[MAX_PRF_BLOCK_LEN]; + int i, k, rc = -EINVAL; + unsigned int u, hLen, l, r; + size_t tmplen = Slen + 4; + char *tmp; + + tmp = alloca(tmplen); + if (tmp == NULL) + return -ENOMEM; + + hLen = crypt_hmac_size(hash); + if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN) + return -EINVAL; + + if (c == 0) + return -EINVAL; + + if (dkLen == 0) + return -EINVAL; + + /* + * + * Steps: + * + * 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and + * stop. + */ + + if (dkLen > 4294967295U) + return -EINVAL; + + /* + * 2. Let l be the number of hLen-octet blocks in the derived key, + * rounding up, and let r be the number of octets in the last + * block: + * + * l = CEIL (dkLen / hLen) , + * r = dkLen - (l - 1) * hLen . + * + * Here, CEIL (x) is the "ceiling" function, i.e. the smallest + * integer greater than, or equal to, x. + */ + + l = dkLen / hLen; + if (dkLen % hLen) + l++; + r = dkLen - (l - 1) * hLen; + + /* + * 3. For each block of the derived key apply the function F defined + * below to the password P, the salt S, the iteration count c, and + * the block index to compute the block: + * + * T_1 = F (P, S, c, 1) , + * T_2 = F (P, S, c, 2) , + * ... + * T_l = F (P, S, c, l) , + * + * where the function F is defined as the exclusive-or sum of the + * first c iterates of the underlying pseudorandom function PRF + * applied to the password P and the concatenation of the salt S + * and the block index i: + * + * F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c + * + * where + * + * U_1 = PRF (P, S || INT (i)) , + * U_2 = PRF (P, U_1) , + * ... + * U_c = PRF (P, U_{c-1}) . + * + * Here, INT (i) is a four-octet encoding of the integer i, most + * significant octet first. + * + * 4. Concatenate the blocks and extract the first dkLen octets to + * produce a derived key DK: + * + * DK = T_1 || T_2 || ... || T_l<0..r-1> + * + * 5. Output the derived key DK. + * + * Note. The construction of the function F follows a "belt-and- + * suspenders" approach. The iterates U_i are computed recursively to + * remove a degree of parallelism from an opponent; they are exclusive- + * ored together to reduce concerns about the recursion degenerating + * into a small set of values. + * + */ + + /* If hash_block_size is provided, hash password in advance. */ + if (hash_block_size > 0 && Plen > hash_block_size) { + if (hash_buf(P, Plen, P_hash, hLen, hash)) + return -EINVAL; + + if (crypt_hmac_init(&hmac, hash, P_hash, hLen)) + return -EINVAL; + crypt_backend_memzero(P_hash, sizeof(P_hash)); + } else { + if (crypt_hmac_init(&hmac, hash, P, Plen)) + return -EINVAL; + } + + for (i = 1; (unsigned int) i <= l; i++) { + memset(T, 0, hLen); + + for (u = 1; u <= c ; u++) { + if (u == 1) { + memcpy(tmp, S, Slen); + tmp[Slen + 0] = (i & 0xff000000) >> 24; + tmp[Slen + 1] = (i & 0x00ff0000) >> 16; + tmp[Slen + 2] = (i & 0x0000ff00) >> 8; + tmp[Slen + 3] = (i & 0x000000ff) >> 0; + + if (crypt_hmac_write(hmac, tmp, tmplen)) + goto out; + } else { + if (crypt_hmac_write(hmac, U, hLen)) + goto out; + } + + if (crypt_hmac_final(hmac, U, hLen)) + goto out; + + for (k = 0; (unsigned int) k < hLen; k++) + T[k] ^= U[k]; + } + + memcpy(DK + (i - 1) * hLen, T, (unsigned int) i == l ? r : hLen); + } + rc = 0; +out: + crypt_hmac_destroy(hmac); + crypt_backend_memzero(U, sizeof(U)); + crypt_backend_memzero(T, sizeof(T)); + crypt_backend_memzero(tmp, tmplen); + + return rc; +} |