summaryrefslogtreecommitdiffstats
path: root/lib/verity/rs_decode_char.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 17:44:12 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 17:44:12 +0000
commit1be69c2c660b70ac2f4de2a5326e27e3e60eb82d (patch)
treebb299ab6f411f4fccd735907035de710e4ec6abc /lib/verity/rs_decode_char.c
parentInitial commit. (diff)
downloadcryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.tar.xz
cryptsetup-1be69c2c660b70ac2f4de2a5326e27e3e60eb82d.zip
Adding upstream version 2:2.3.7.upstream/2%2.3.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/verity/rs_decode_char.c')
-rw-r--r--lib/verity/rs_decode_char.c197
1 files changed, 197 insertions, 0 deletions
diff --git a/lib/verity/rs_decode_char.c b/lib/verity/rs_decode_char.c
new file mode 100644
index 0000000..aa27a64
--- /dev/null
+++ b/lib/verity/rs_decode_char.c
@@ -0,0 +1,197 @@
+/*
+ * Reed-Solomon decoder, based on libfec
+ *
+ * Copyright (C) 2002, Phil Karn, KA9Q
+ * libcryptsetup modifications
+ * Copyright (C) 2017-2021 Red Hat, Inc. All rights reserved.
+ *
+ * This file is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This file is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this file; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#include <string.h>
+#include <stdlib.h>
+
+#include "rs.h"
+
+int decode_rs_char(struct rs* rs, data_t* data)
+{
+ int deg_lambda, el, deg_omega, syn_error, count;
+ int i, j, r, k;
+ data_t q, tmp, num1, num2, den, discr_r;
+ /* FIXME: remove VLAs here */
+ data_t lambda[rs->nroots + 1], s[rs->nroots]; /* Err+Eras Locator poly and syndrome poly */
+ data_t b[rs->nroots + 1], t[rs->nroots + 1], omega[rs->nroots + 1];
+ data_t root[rs->nroots], reg[rs->nroots + 1], loc[rs->nroots];
+
+ memset(s, 0, rs->nroots * sizeof(data_t));
+ memset(b, 0, (rs->nroots + 1) * sizeof(data_t));
+
+ /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
+ for (i = 0; i < rs->nroots; i++)
+ s[i] = data[0];
+
+ for (j = 1; j < rs->nn - rs->pad; j++) {
+ for (i = 0; i < rs->nroots; i++) {
+ if (s[i] == 0) {
+ s[i] = data[j];
+ } else {
+ s[i] = data[j] ^ rs->alpha_to[modnn(rs, rs->index_of[s[i]] + (rs->fcr + i) * rs->prim)];
+ }
+ }
+ }
+
+ /* Convert syndromes to index form, checking for nonzero condition */
+ syn_error = 0;
+ for (i = 0; i < rs->nroots; i++) {
+ syn_error |= s[i];
+ s[i] = rs->index_of[s[i]];
+ }
+
+ /*
+ * if syndrome is zero, data[] is a codeword and there are no
+ * errors to correct. So return data[] unmodified
+ */
+ if (!syn_error)
+ return 0;
+
+ memset(&lambda[1], 0, rs->nroots * sizeof(lambda[0]));
+ lambda[0] = 1;
+
+ for (i = 0; i < rs->nroots + 1; i++)
+ b[i] = rs->index_of[lambda[i]];
+
+ /*
+ * Begin Berlekamp-Massey algorithm to determine error+erasure
+ * locator polynomial
+ */
+ r = 0;
+ el = 0;
+ while (++r <= rs->nroots) { /* r is the step number */
+ /* Compute discrepancy at the r-th step in poly-form */
+ discr_r = 0;
+ for (i = 0; i < r; i++) {
+ if ((lambda[i] != 0) && (s[r - i - 1] != A0)) {
+ discr_r ^= rs->alpha_to[modnn(rs, rs->index_of[lambda[i]] + s[r - i - 1])];
+ }
+ }
+ discr_r = rs->index_of[discr_r]; /* Index form */
+ if (discr_r == A0) {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ memmove(&b[1], b, rs->nroots * sizeof(b[0]));
+ b[0] = A0;
+ } else {
+ /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
+ t[0] = lambda[0];
+ for (i = 0; i < rs->nroots; i++) {
+ if (b[i] != A0)
+ t[i + 1] = lambda[i + 1] ^ rs->alpha_to[modnn(rs, discr_r + b[i])];
+ else
+ t[i + 1] = lambda[i + 1];
+ }
+ if (2 * el <= r - 1) {
+ el = r - el;
+ /*
+ * 2 lines below: B(x) <-- inv(discr_r) *
+ * lambda(x)
+ */
+ for (i = 0; i <= rs->nroots; i++)
+ b[i] = (lambda[i] == 0) ? A0 : modnn(rs, rs->index_of[lambda[i]] - discr_r + rs->nn);
+ } else {
+ /* 2 lines below: B(x) <-- x*B(x) */
+ memmove(&b[1], b, rs->nroots * sizeof(b[0]));
+ b[0] = A0;
+ }
+ memcpy(lambda, t, (rs->nroots + 1) * sizeof(t[0]));
+ }
+ }
+
+ /* Convert lambda to index form and compute deg(lambda(x)) */
+ deg_lambda = 0;
+ for (i = 0; i < rs->nroots + 1; i++) {
+ lambda[i] = rs->index_of[lambda[i]];
+ if (lambda[i] != A0)
+ deg_lambda = i;
+ }
+ /* Find roots of the error+erasure locator polynomial by Chien search */
+ memcpy(&reg[1], &lambda[1], rs->nroots * sizeof(reg[0]));
+ count = 0; /* Number of roots of lambda(x) */
+ for (i = 1, k = rs->iprim - 1; i <= rs->nn; i++, k = modnn(rs, k + rs->iprim)) {
+ q = 1; /* lambda[0] is always 0 */
+ for (j = deg_lambda; j > 0; j--) {
+ if (reg[j] != A0) {
+ reg[j] = modnn(rs, reg[j] + j);
+ q ^= rs->alpha_to[reg[j]];
+ }
+ }
+ if (q != 0)
+ continue; /* Not a root */
+
+ /* store root (index-form) and error location number */
+ root[count] = i;
+ loc[count] = k;
+ /* If we've already found max possible roots, abort the search to save time */
+ if (++count == deg_lambda)
+ break;
+ }
+
+ /*
+ * deg(lambda) unequal to number of roots => uncorrectable
+ * error detected
+ */
+ if (deg_lambda != count)
+ return -1;
+
+ /*
+ * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
+ * x**rs->nroots). in index form. Also find deg(omega).
+ */
+ deg_omega = deg_lambda - 1;
+ for (i = 0; i <= deg_omega; i++) {
+ tmp = 0;
+ for (j = i; j >= 0; j--) {
+ if ((s[i - j] != A0) && (lambda[j] != A0))
+ tmp ^= rs->alpha_to[modnn(rs, s[i - j] + lambda[j])];
+ }
+ omega[i] = rs->index_of[tmp];
+ }
+
+ /*
+ * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
+ * inv(X(l))**(rs->fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
+ */
+ for (j = count - 1; j >= 0; j--) {
+ num1 = 0;
+ for (i = deg_omega; i >= 0; i--) {
+ if (omega[i] != A0)
+ num1 ^= rs->alpha_to[modnn(rs, omega[i] + i * root[j])];
+ }
+ num2 = rs->alpha_to[modnn(rs, root[j] * (rs->fcr - 1) + rs->nn)];
+ den = 0;
+
+ /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
+ for (i = RS_MIN(deg_lambda, rs->nroots - 1) & ~1; i >= 0; i -= 2) {
+ if (lambda[i + 1] != A0)
+ den ^= rs->alpha_to[modnn(rs, lambda[i + 1] + i * root[j])];
+ }
+
+ /* Apply error to data */
+ if (num1 != 0 && loc[j] >= rs->pad) {
+ data[loc[j] - rs->pad] ^= rs->alpha_to[modnn(rs, rs->index_of[num1] +
+ rs->index_of[num2] + rs->nn - rs->index_of[den])];
+ }
+ }
+
+ return count;
+}