diff options
Diffstat (limited to '')
-rw-r--r-- | lib/verity/verity_fec.c | 316 |
1 files changed, 316 insertions, 0 deletions
diff --git a/lib/verity/verity_fec.c b/lib/verity/verity_fec.c new file mode 100644 index 0000000..e076c97 --- /dev/null +++ b/lib/verity/verity_fec.c @@ -0,0 +1,316 @@ +/* + * dm-verity Forward Error Correction (FEC) support + * + * Copyright (C) 2015 Google, Inc. All rights reserved. + * Copyright (C) 2017-2021 Red Hat, Inc. All rights reserved. + * + * This file is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this file; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#include <stdlib.h> +#include <errno.h> + +#include "verity.h" +#include "internal.h" +#include "rs.h" + +/* ecc parameters */ +#define FEC_RSM 255 +#define FEC_MIN_RSN 231 +#define FEC_MAX_RSN 253 + +#define FEC_INPUT_DEVICES 2 + +/* parameters to init_rs_char */ +#define FEC_PARAMS(roots) \ + 8, /* symbol size in bits */ \ + 0x11d, /* field generator polynomial coefficients */ \ + 0, /* first root of the generator */ \ + 1, /* primitive element to generate polynomial roots */ \ + (roots), /* polynomial degree (number of roots) */ \ + 0 /* padding bytes at the front of shortened block */ + +struct fec_input_device { + struct device *device; + int fd; + uint64_t start; + uint64_t count; +}; + +struct fec_context { + uint32_t rsn; + uint32_t roots; + uint64_t size; + uint64_t blocks; + uint64_t rounds; + uint32_t block_size; + struct fec_input_device *inputs; + size_t ninputs; +}; + +/* computes ceil(x / y) */ +static inline uint64_t FEC_div_round_up(uint64_t x, uint64_t y) +{ + return (x / y) + (x % y > 0 ? 1 : 0); +} + +/* returns a physical offset for the given RS offset */ +static inline uint64_t FEC_interleave(struct fec_context *ctx, uint64_t offset) +{ + return (offset / ctx->rsn) + + (offset % ctx->rsn) * ctx->rounds * ctx->block_size; +} + +/* returns data for a byte at the specified RS offset */ +static int FEC_read_interleaved(struct fec_context *ctx, uint64_t i, + void *output, size_t count) +{ + size_t n; + uint64_t offset = FEC_interleave(ctx, i); + + /* offsets outside input area are assumed to contain zeros */ + if (offset >= ctx->size) { + memset(output, 0, count); + return 0; + } + + /* find the correct input device and read from it */ + for (n = 0; n < ctx->ninputs; ++n) { + if (offset >= ctx->inputs[n].count) { + offset -= ctx->inputs[n].count; + continue; + } + + /* FIXME: read_lseek_blockwise candidate */ + if (lseek(ctx->inputs[n].fd, ctx->inputs[n].start + offset, SEEK_SET) < 0) + return -1; + return (read_buffer(ctx->inputs[n].fd, output, count) == (ssize_t)count) ? 0 : -1; + } + + /* should never be reached */ + return -1; +} + +/* encodes/decode inputs to/from fd */ +static int FEC_process_inputs(struct crypt_device *cd, + struct crypt_params_verity *params, + struct fec_input_device *inputs, + size_t ninputs, int fd, + int decode, unsigned int *errors) +{ + int r = 0; + unsigned int i; + struct fec_context ctx; + uint32_t b; + uint64_t n; + uint8_t rs_block[FEC_RSM]; + uint8_t *buf = NULL; + void *rs; + + /* initialize parameters */ + ctx.roots = params->fec_roots; + ctx.rsn = FEC_RSM - ctx.roots; + ctx.block_size = params->data_block_size; + ctx.inputs = inputs; + ctx.ninputs = ninputs; + + rs = init_rs_char(FEC_PARAMS(ctx.roots)); + if (!rs) { + log_err(cd, _("Failed to allocate RS context.")); + return -ENOMEM; + } + + /* calculate the total area covered by error correction codes */ + ctx.size = 0; + for (n = 0; n < ctx.ninputs; ++n) { + log_dbg(cd, "FEC input %s, offset %" PRIu64 " [bytes], length %" PRIu64 " [bytes]", + device_path(ctx.inputs[n].device), ctx.inputs[n].start, ctx.inputs[n].count); + ctx.size += ctx.inputs[n].count; + } + + /* each byte in a data block is covered by a different code */ + ctx.blocks = FEC_div_round_up(ctx.size, ctx.block_size); + ctx.rounds = FEC_div_round_up(ctx.blocks, ctx.rsn); + + buf = malloc((size_t)ctx.block_size * ctx.rsn); + if (!buf) { + log_err(cd, _("Failed to allocate buffer.")); + r = -ENOMEM; + goto out; + } + + /* encode/decode input */ + for (n = 0; n < ctx.rounds; ++n) { + for (i = 0; i < ctx.rsn; ++i) { + if (FEC_read_interleaved(&ctx, n * ctx.rsn * ctx.block_size + i, + &buf[i * ctx.block_size], ctx.block_size)) { + log_err(cd, _("Failed to read RS block %" PRIu64 " byte %d."), n, i); + r = -EIO; + goto out; + } + } + + for (b = 0; b < ctx.block_size; ++b) { + for (i = 0; i < ctx.rsn; ++i) + rs_block[i] = buf[i * ctx.block_size + b]; + + /* decoding from parity device */ + if (decode) { + if (read_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) { + log_err(cd, _("Failed to read parity for RS block %" PRIu64 "."), n); + r = -EIO; + goto out; + } + + /* coverity[tainted_data] */ + r = decode_rs_char(rs, rs_block); + if (r < 0) { + log_err(cd, _("Failed to repair parity for block %" PRIu64 "."), n); + goto out; + } + /* return number of detected errors */ + if (errors) + *errors += r; + r = 0; + } else { + /* encoding and writing parity data to fec device */ + encode_rs_char(rs, rs_block, &rs_block[ctx.rsn]); + if (write_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) { + log_err(cd, _("Failed to write parity for RS block %" PRIu64 "."), n); + r = -EIO; + goto out; + } + } + } + } +out: + free_rs_char(rs); + free(buf); + return r; +} + +int VERITY_FEC_process(struct crypt_device *cd, + struct crypt_params_verity *params, + struct device *fec_device, int check_fec, + unsigned int *errors) +{ + int r = -EIO, fd = -1; + size_t ninputs = FEC_INPUT_DEVICES; + struct fec_input_device inputs[FEC_INPUT_DEVICES] = { + { + .device = crypt_data_device(cd), + .fd = -1, + .start = 0, + .count = params->data_size * params->data_block_size + },{ + .device = crypt_metadata_device(cd), + .fd = -1, + .start = VERITY_hash_offset_block(params) * params->data_block_size, + .count = (VERITY_FEC_blocks(cd, fec_device, params) - params->data_size) * params->data_block_size + } + }; + + /* validate parameters */ + if (params->data_block_size != params->hash_block_size) { + log_err(cd, _("Block sizes must match for FEC.")); + return -EINVAL; + } + + if (params->fec_roots > FEC_RSM - FEC_MIN_RSN || + params->fec_roots < FEC_RSM - FEC_MAX_RSN) { + log_err(cd, _("Invalid number of parity bytes.")); + return -EINVAL; + } + + if (!inputs[0].count) { + log_err(cd, _("Invalid FEC segment length.")); + return -EINVAL; + } + if (!inputs[1].count) + ninputs--; + + if (check_fec) + fd = open(device_path(fec_device), O_RDONLY); + else + fd = open(device_path(fec_device), O_RDWR); + + if (fd == -1) { + log_err(cd, _("Cannot open device %s."), device_path(fec_device)); + goto out; + } + + if (lseek(fd, params->fec_area_offset, SEEK_SET) < 0) { + log_dbg(cd, "Cannot seek to requested position in FEC device."); + goto out; + } + + /* input devices */ + inputs[0].fd = open(device_path(inputs[0].device), O_RDONLY); + if (inputs[0].fd == -1) { + log_err(cd, _("Cannot open device %s."), device_path(inputs[0].device)); + goto out; + } + inputs[1].fd = open(device_path(inputs[1].device), O_RDONLY); + if (inputs[1].fd == -1) { + log_err(cd, _("Cannot open device %s."), device_path(inputs[1].device)); + goto out; + } + + r = FEC_process_inputs(cd, params, inputs, ninputs, fd, check_fec, errors); +out: + if (inputs[0].fd != -1) + close(inputs[0].fd); + if (inputs[1].fd != -1) + close(inputs[1].fd); + if (fd != -1) + close(fd); + + return r; +} + +uint64_t VERITY_FEC_blocks(struct crypt_device *cd, + struct device *fec_device, + struct crypt_params_verity *params) +{ + uint64_t blocks = 0; + + /* + * FEC covers this data: + * | protected data | hash area | padding (optional foreign metadata) | + * + * If hash device is in a separate image, metadata covers the whole rest of the image after hash area. + * If hash and FEC device is in the image, metadata ends on the FEC area offset. + */ + if (device_is_identical(crypt_metadata_device(cd), fec_device) > 0) { + log_dbg(cd, "FEC and hash device is the same."); + blocks = params->fec_area_offset; + } else { + /* cover the entire hash device starting from hash_offset */ + if (device_size(crypt_metadata_device(cd), &blocks)) { + log_err(cd, _("Failed to determine size for device %s."), + device_path(crypt_metadata_device(cd))); + return 0; + } + } + + blocks /= params->data_block_size; + if (blocks) + blocks -= VERITY_hash_offset_block(params); + + /* Protected data */ + blocks += params->data_size; + + return blocks; +} |