/* * OPENSSL crypto backend implementation * * Copyright (C) 2010-2021 Red Hat, Inc. All rights reserved. * Copyright (C) 2010-2021 Milan Broz * * This file is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * In addition, as a special exception, the copyright holders give * permission to link the code of portions of this program with the * OpenSSL library under certain conditions as described in each * individual source file, and distribute linked combinations * including the two. * * You must obey the GNU Lesser General Public License in all respects * for all of the code used other than OpenSSL. */ #include #include #include #include #include #include "crypto_backend_internal.h" #define CONST_CAST(x) (x)(uintptr_t) static int crypto_backend_initialised = 0; struct crypt_hash { EVP_MD_CTX *md; const EVP_MD *hash_id; int hash_len; }; struct crypt_hmac { HMAC_CTX *md; const EVP_MD *hash_id; int hash_len; }; struct crypt_cipher { bool use_kernel; union { struct crypt_cipher_kernel kernel; struct { EVP_CIPHER_CTX *hd_enc; EVP_CIPHER_CTX *hd_dec; size_t iv_length; } lib; } u; }; struct hash_alg { const char *name; const char *openssl_name; }; /* * Compatible wrappers for OpenSSL < 1.1.0 and LibreSSL < 2.7.0 */ #if OPENSSL_VERSION_NUMBER < 0x10100000L || \ (defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2070000fL) static void openssl_backend_init(void) { OpenSSL_add_all_algorithms(); } static const char *openssl_backend_version(void) { return SSLeay_version(SSLEAY_VERSION); } static EVP_MD_CTX *EVP_MD_CTX_new(void) { EVP_MD_CTX *md = malloc(sizeof(*md)); if (md) EVP_MD_CTX_init(md); return md; } static void EVP_MD_CTX_free(EVP_MD_CTX *md) { EVP_MD_CTX_cleanup(md); free(md); } static HMAC_CTX *HMAC_CTX_new(void) { HMAC_CTX *md = malloc(sizeof(*md)); if (md) HMAC_CTX_init(md); return md; } static void HMAC_CTX_free(HMAC_CTX *md) { HMAC_CTX_cleanup(md); free(md); } #else static void openssl_backend_init(void) { } static const char *openssl_backend_version(void) { return OpenSSL_version(OPENSSL_VERSION); } #endif int crypt_backend_init(void) { if (crypto_backend_initialised) return 0; openssl_backend_init(); crypto_backend_initialised = 1; return 0; } void crypt_backend_destroy(void) { crypto_backend_initialised = 0; } uint32_t crypt_backend_flags(void) { return 0; } const char *crypt_backend_version(void) { return openssl_backend_version(); } static const char *crypt_hash_compat_name(const char *name) { const char *hash_name = name; int i; static struct hash_alg hash_algs[] = { { "blake2b-512", "blake2b512" }, { "blake2s-256", "blake2s256" }, { NULL, NULL, }}; if (!name) return NULL; i = 0; while (hash_algs[i].name) { if (!strcasecmp(name, hash_algs[i].name)) { hash_name = hash_algs[i].openssl_name; break; } i++; } return hash_name; } /* HASH */ int crypt_hash_size(const char *name) { const EVP_MD *hash_id; hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name)); if (!hash_id) return -EINVAL; return EVP_MD_size(hash_id); } int crypt_hash_init(struct crypt_hash **ctx, const char *name) { struct crypt_hash *h; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; h->md = EVP_MD_CTX_new(); if (!h->md) { free(h); return -ENOMEM; } h->hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name)); if (!h->hash_id) { EVP_MD_CTX_free(h->md); free(h); return -EINVAL; } if (EVP_DigestInit_ex(h->md, h->hash_id, NULL) != 1) { EVP_MD_CTX_free(h->md); free(h); return -EINVAL; } h->hash_len = EVP_MD_size(h->hash_id); *ctx = h; return 0; } static int crypt_hash_restart(struct crypt_hash *ctx) { if (EVP_DigestInit_ex(ctx->md, ctx->hash_id, NULL) != 1) return -EINVAL; return 0; } int crypt_hash_write(struct crypt_hash *ctx, const char *buffer, size_t length) { if (EVP_DigestUpdate(ctx->md, buffer, length) != 1) return -EINVAL; return 0; } int crypt_hash_final(struct crypt_hash *ctx, char *buffer, size_t length) { unsigned char tmp[EVP_MAX_MD_SIZE]; unsigned int tmp_len = 0; if (length > (size_t)ctx->hash_len) return -EINVAL; if (EVP_DigestFinal_ex(ctx->md, tmp, &tmp_len) != 1) return -EINVAL; memcpy(buffer, tmp, length); crypt_backend_memzero(tmp, sizeof(tmp)); if (tmp_len < length) return -EINVAL; if (crypt_hash_restart(ctx)) return -EINVAL; return 0; } void crypt_hash_destroy(struct crypt_hash *ctx) { EVP_MD_CTX_free(ctx->md); memset(ctx, 0, sizeof(*ctx)); free(ctx); } /* HMAC */ int crypt_hmac_size(const char *name) { return crypt_hash_size(name); } int crypt_hmac_init(struct crypt_hmac **ctx, const char *name, const void *key, size_t key_length) { struct crypt_hmac *h; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; h->md = HMAC_CTX_new(); if (!h->md) { free(h); return -ENOMEM; } h->hash_id = EVP_get_digestbyname(crypt_hash_compat_name(name)); if (!h->hash_id) { HMAC_CTX_free(h->md); free(h); return -EINVAL; } HMAC_Init_ex(h->md, key, key_length, h->hash_id, NULL); h->hash_len = EVP_MD_size(h->hash_id); *ctx = h; return 0; } static void crypt_hmac_restart(struct crypt_hmac *ctx) { HMAC_Init_ex(ctx->md, NULL, 0, ctx->hash_id, NULL); } int crypt_hmac_write(struct crypt_hmac *ctx, const char *buffer, size_t length) { HMAC_Update(ctx->md, (const unsigned char *)buffer, length); return 0; } int crypt_hmac_final(struct crypt_hmac *ctx, char *buffer, size_t length) { unsigned char tmp[EVP_MAX_MD_SIZE]; unsigned int tmp_len = 0; if (length > (size_t)ctx->hash_len) return -EINVAL; HMAC_Final(ctx->md, tmp, &tmp_len); memcpy(buffer, tmp, length); crypt_backend_memzero(tmp, sizeof(tmp)); if (tmp_len < length) return -EINVAL; crypt_hmac_restart(ctx); return 0; } void crypt_hmac_destroy(struct crypt_hmac *ctx) { HMAC_CTX_free(ctx->md); memset(ctx, 0, sizeof(*ctx)); free(ctx); } /* RNG */ int crypt_backend_rng(char *buffer, size_t length, int quality, int fips) { if (RAND_bytes((unsigned char *)buffer, length) != 1) return -EINVAL; return 0; } /* PBKDF */ int crypt_pbkdf(const char *kdf, const char *hash, const char *password, size_t password_length, const char *salt, size_t salt_length, char *key, size_t key_length, uint32_t iterations, uint32_t memory, uint32_t parallel) { const EVP_MD *hash_id; if (!kdf) return -EINVAL; if (!strcmp(kdf, "pbkdf2")) { hash_id = EVP_get_digestbyname(crypt_hash_compat_name(hash)); if (!hash_id) return -EINVAL; if (!PKCS5_PBKDF2_HMAC(password, (int)password_length, (const unsigned char *)salt, (int)salt_length, (int)iterations, hash_id, (int)key_length, (unsigned char *)key)) return -EINVAL; return 0; } else if (!strncmp(kdf, "argon2", 6)) { return argon2(kdf, password, password_length, salt, salt_length, key, key_length, iterations, memory, parallel); } return -EINVAL; } /* Block ciphers */ static void _cipher_destroy(EVP_CIPHER_CTX **hd_enc, EVP_CIPHER_CTX **hd_dec) { EVP_CIPHER_CTX_free(*hd_enc); *hd_enc = NULL; EVP_CIPHER_CTX_free(*hd_dec); *hd_dec = NULL; } static int _cipher_init(EVP_CIPHER_CTX **hd_enc, EVP_CIPHER_CTX **hd_dec, const char *name, const char *mode, const void *key, size_t key_length, size_t *iv_length) { char cipher_name[256]; const EVP_CIPHER *type; int r, key_bits; key_bits = key_length * 8; if (!strcmp(mode, "xts")) key_bits /= 2; r = snprintf(cipher_name, sizeof(cipher_name), "%s-%d-%s", name, key_bits, mode); if (r < 0 || (size_t)r >= sizeof(cipher_name)) return -EINVAL; type = EVP_get_cipherbyname(cipher_name); if (!type) return -ENOENT; if (EVP_CIPHER_key_length(type) != (int)key_length) return -EINVAL; *hd_enc = EVP_CIPHER_CTX_new(); *hd_dec = EVP_CIPHER_CTX_new(); *iv_length = EVP_CIPHER_iv_length(type); if (!*hd_enc || !*hd_dec) return -EINVAL; if (EVP_EncryptInit_ex(*hd_enc, type, NULL, key, NULL) != 1 || EVP_DecryptInit_ex(*hd_dec, type, NULL, key, NULL) != 1) { _cipher_destroy(hd_enc, hd_dec); return -EINVAL; } if (EVP_CIPHER_CTX_set_padding(*hd_enc, 0) != 1 || EVP_CIPHER_CTX_set_padding(*hd_dec, 0) != 1) { _cipher_destroy(hd_enc, hd_dec); return -EINVAL; } return 0; } int crypt_cipher_init(struct crypt_cipher **ctx, const char *name, const char *mode, const void *key, size_t key_length) { struct crypt_cipher *h; int r; h = malloc(sizeof(*h)); if (!h) return -ENOMEM; if (!_cipher_init(&h->u.lib.hd_enc, &h->u.lib.hd_dec, name, mode, key, key_length, &h->u.lib.iv_length)) { h->use_kernel = false; *ctx = h; return 0; } r = crypt_cipher_init_kernel(&h->u.kernel, name, mode, key, key_length); if (r < 0) { free(h); return r; } h->use_kernel = true; *ctx = h; return 0; } void crypt_cipher_destroy(struct crypt_cipher *ctx) { if (ctx->use_kernel) crypt_cipher_destroy_kernel(&ctx->u.kernel); else _cipher_destroy(&ctx->u.lib.hd_enc, &ctx->u.lib.hd_dec); free(ctx); } static int _cipher_encrypt(struct crypt_cipher *ctx, const unsigned char *in, unsigned char *out, int length, const unsigned char *iv, size_t iv_length) { int len; if (ctx->u.lib.iv_length != iv_length) return -EINVAL; if (EVP_EncryptInit_ex(ctx->u.lib.hd_enc, NULL, NULL, NULL, iv) != 1) return -EINVAL; if (EVP_EncryptUpdate(ctx->u.lib.hd_enc, out, &len, in, length) != 1) return -EINVAL; if (EVP_EncryptFinal(ctx->u.lib.hd_enc, out + len, &len) != 1) return -EINVAL; return 0; } static int _cipher_decrypt(struct crypt_cipher *ctx, const unsigned char *in, unsigned char *out, int length, const unsigned char *iv, size_t iv_length) { int len; if (ctx->u.lib.iv_length != iv_length) return -EINVAL; if (EVP_DecryptInit_ex(ctx->u.lib.hd_dec, NULL, NULL, NULL, iv) != 1) return -EINVAL; if (EVP_DecryptUpdate(ctx->u.lib.hd_dec, out, &len, in, length) != 1) return -EINVAL; if (EVP_DecryptFinal(ctx->u.lib.hd_dec, out + len, &len) != 1) return -EINVAL; return 0; } int crypt_cipher_encrypt(struct crypt_cipher *ctx, const char *in, char *out, size_t length, const char *iv, size_t iv_length) { if (ctx->use_kernel) return crypt_cipher_encrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length); return _cipher_encrypt(ctx, (const unsigned char*)in, (unsigned char *)out, length, (const unsigned char*)iv, iv_length); } int crypt_cipher_decrypt(struct crypt_cipher *ctx, const char *in, char *out, size_t length, const char *iv, size_t iv_length) { if (ctx->use_kernel) return crypt_cipher_decrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length); return _cipher_decrypt(ctx, (const unsigned char*)in, (unsigned char *)out, length, (const unsigned char*)iv, iv_length); } bool crypt_cipher_kernel_only(struct crypt_cipher *ctx) { return ctx->use_kernel; } int crypt_bitlk_decrypt_key(const void *key, size_t key_length, const char *in, char *out, size_t length, const char *iv, size_t iv_length, const char *tag, size_t tag_length) { #ifdef EVP_CTRL_CCM_SET_IVLEN EVP_CIPHER_CTX *ctx; int len = 0, r = -EINVAL; ctx = EVP_CIPHER_CTX_new(); if (!ctx) return -EINVAL; if (EVP_DecryptInit_ex(ctx, EVP_aes_256_ccm(), NULL, NULL, NULL) != 1) goto out; //EVP_CIPHER_CTX_key_length(ctx) //EVP_CIPHER_CTX_iv_length(ctx) if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_IVLEN, iv_length, NULL) != 1) goto out; if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_length, CONST_CAST(void*)tag) != 1) goto out; if (EVP_DecryptInit_ex(ctx, NULL, NULL, key, (const unsigned char*)iv) != 1) goto out; if (EVP_DecryptUpdate(ctx, (unsigned char*)out, &len, (const unsigned char*)in, length) == 1) r = 0; out: EVP_CIPHER_CTX_free(ctx); return r; #else return -ENOTSUP; #endif }