From 39ce00b8d520cbecbd6af87257e8fb11df0ec273 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 27 Apr 2024 11:44:07 +0200 Subject: Adding upstream version 4.94.2. Signed-off-by: Daniel Baumann --- src/dane-openssl.c | 1719 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1719 insertions(+) create mode 100644 src/dane-openssl.c (limited to 'src/dane-openssl.c') diff --git a/src/dane-openssl.c b/src/dane-openssl.c new file mode 100644 index 0000000..6ed3529 --- /dev/null +++ b/src/dane-openssl.c @@ -0,0 +1,1719 @@ +/* + * Author: Viktor Dukhovni + * License: THIS CODE IS IN THE PUBLIC DOMAIN. + * + * Copyright (c) The Exim Maintainers 2014 - 2019 + */ +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if OPENSSL_VERSION_NUMBER < 0x1000000fL +# error "OpenSSL 1.0.0 or higher required" +#endif + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) +# define X509_up_ref(x) CRYPTO_add(&((x)->references), 1, CRYPTO_LOCK_X509) +#endif + +/* LibreSSL 2.9.0 and later - 2.9.0 has removed a number of macros ... */ +#ifdef LIBRESSL_VERSION_NUMBER +# if LIBRESSL_VERSION_NUMBER >= 0x2090000fL +# define EXIM_HAVE_ASN1_MACROS +# endif +#endif +/* OpenSSL */ +#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER) +# define EXIM_HAVE_ASN1_MACROS +# define EXIM_OPAQUE_X509 +/* Older OpenSSL and all LibreSSL */ +#else +# define X509_STORE_CTX_get_verify(ctx) (ctx)->verify +# define X509_STORE_CTX_get_verify_cb(ctx) (ctx)->verify_cb +# define X509_STORE_CTX_get0_cert(ctx) (ctx)->cert +# define X509_STORE_CTX_get0_chain(ctx) (ctx)->chain +# define X509_STORE_CTX_get0_untrusted(ctx) (ctx)->untrusted + +# define X509_STORE_CTX_set_verify(ctx, verify_chain) (ctx)->verify = (verify_chain) +# define X509_STORE_CTX_set0_verified_chain(ctx, sk) (ctx)->chain = (sk) +# define X509_STORE_CTX_set_error_depth(ctx, val) (ctx)->error_depth = (val) +# define X509_STORE_CTX_set_current_cert(ctx, cert) (ctx)->current_cert = (cert) + +# define ASN1_STRING_get0_data ASN1_STRING_data +# define X509_getm_notBefore X509_get_notBefore +# define X509_getm_notAfter X509_get_notAfter + +# define CRYPTO_ONCE_STATIC_INIT 0 +# define CRYPTO_THREAD_run_once run_once +typedef int CRYPTO_ONCE; +#endif + + +#include "danessl.h" + +#define DANESSL_F_ADD_SKID 100 +#define DANESSL_F_ADD_TLSA 101 +#define DANESSL_F_CHECK_END_ENTITY 102 +#define DANESSL_F_CTX_INIT 103 +#define DANESSL_F_GROW_CHAIN 104 +#define DANESSL_F_INIT 105 +#define DANESSL_F_LIBRARY_INIT 106 +#define DANESSL_F_LIST_ALLOC 107 +#define DANESSL_F_MATCH 108 +#define DANESSL_F_PUSH_EXT 109 +#define DANESSL_F_SET_TRUST_ANCHOR 110 +#define DANESSL_F_VERIFY_CERT 111 +#define DANESSL_F_WRAP_CERT 112 +#define DANESSL_F_DANESSL_VERIFY_CHAIN 113 + +#define DANESSL_R_BAD_CERT 100 +#define DANESSL_R_BAD_CERT_PKEY 101 +#define DANESSL_R_BAD_DATA_LENGTH 102 +#define DANESSL_R_BAD_DIGEST 103 +#define DANESSL_R_BAD_NULL_DATA 104 +#define DANESSL_R_BAD_PKEY 105 +#define DANESSL_R_BAD_SELECTOR 106 +#define DANESSL_R_BAD_USAGE 107 +#define DANESSL_R_INIT 108 +#define DANESSL_R_LIBRARY_INIT 109 +#define DANESSL_R_NOSIGN_KEY 110 +#define DANESSL_R_SCTX_INIT 111 +#define DANESSL_R_SUPPORT 112 + +#ifndef OPENSSL_NO_ERR +#define DANESSL_F_PLACEHOLDER 0 /* FIRST! Value TBD */ +static ERR_STRING_DATA dane_str_functs[] = { + /* error string */ + {DANESSL_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */ + {DANESSL_F_ADD_SKID, "add_skid"}, + {DANESSL_F_ADD_TLSA, "DANESSL_add_tlsa"}, + {DANESSL_F_CHECK_END_ENTITY, "check_end_entity"}, + {DANESSL_F_CTX_INIT, "DANESSL_CTX_init"}, + {DANESSL_F_GROW_CHAIN, "grow_chain"}, + {DANESSL_F_INIT, "DANESSL_init"}, + {DANESSL_F_LIBRARY_INIT, "DANESSL_library_init"}, + {DANESSL_F_LIST_ALLOC, "list_alloc"}, + {DANESSL_F_MATCH, "match"}, + {DANESSL_F_PUSH_EXT, "push_ext"}, + {DANESSL_F_SET_TRUST_ANCHOR, "set_trust_anchor"}, + {DANESSL_F_VERIFY_CERT, "verify_cert"}, + {DANESSL_F_WRAP_CERT, "wrap_cert"}, + {0, NULL} +}; +static ERR_STRING_DATA dane_str_reasons[] = { + /* error string */ + {DANESSL_R_BAD_CERT, "Bad TLSA record certificate"}, + {DANESSL_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"}, + {DANESSL_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"}, + {DANESSL_R_BAD_DIGEST, "Bad TLSA record digest"}, + {DANESSL_R_BAD_NULL_DATA, "Bad TLSA record null data"}, + {DANESSL_R_BAD_PKEY, "Bad TLSA record public key"}, + {DANESSL_R_BAD_SELECTOR, "Bad TLSA record selector"}, + {DANESSL_R_BAD_USAGE, "Bad TLSA record usage"}, + {DANESSL_R_INIT, "DANESSL_init() required"}, + {DANESSL_R_LIBRARY_INIT, "DANESSL_library_init() required"}, + {DANESSL_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"}, + {DANESSL_R_SCTX_INIT, "DANESSL_CTX_init() required"}, + {DANESSL_R_SUPPORT, "DANE library features not supported"}, + {0, NULL} +}; +#endif + +#define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FUNCTION__, __LINE__) + +static int err_lib_dane = -1; +static int dane_idx = -1; + +#ifdef X509_V_FLAG_PARTIAL_CHAIN /* OpenSSL >= 1.0.2 */ +static int wrap_to_root = 0; +#else +static int wrap_to_root = 1; +#endif + +static void (*cert_free)(void *) = (void (*)(void *)) X509_free; +static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free; + +typedef struct dane_list +{ + struct dane_list *next; + void *value; +} *dane_list; + +#define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0) + +typedef struct dane_host_list +{ + struct dane_host_list *next; + char *value; +} *dane_host_list; + +typedef struct dane_data +{ + size_t datalen; + unsigned char data[0]; +} *dane_data; + +typedef struct dane_data_list +{ + struct dane_data_list *next; + dane_data value; +} *dane_data_list; + +typedef struct dane_mtype +{ + int mdlen; + const EVP_MD *md; + dane_data_list data; +} *dane_mtype; + +typedef struct dane_mtype_list +{ + struct dane_mtype_list *next; + dane_mtype value; +} *dane_mtype_list; + +typedef struct dane_selector +{ + uint8_t selector; + dane_mtype_list mtype; +} *dane_selector; + +typedef struct dane_selector_list +{ + struct dane_selector_list *next; + dane_selector value; +} *dane_selector_list; + +typedef struct dane_pkey_list +{ + struct dane_pkey_list *next; + EVP_PKEY *value; +} *dane_pkey_list; + +typedef struct dane_cert_list +{ + struct dane_cert_list *next; + X509 *value; +} *dane_cert_list; + +typedef struct ssl_dane +{ + int (*verify)(X509_STORE_CTX *); + STACK_OF(X509) *roots; + STACK_OF(X509) *chain; + X509 *match; /* Matched cert */ + const char *thost; /* TLSA base domain */ + char *mhost; /* Matched peer name */ + dane_pkey_list pkeys; + dane_cert_list certs; + dane_host_list hosts; + dane_selector_list selectors[DANESSL_USAGE_LAST + 1]; + int depth; + int mdpth; /* Depth of matched cert */ + int multi; /* Multi-label wildcards? */ + int count; /* Number of TLSA records */ +} ssl_dane; + +#ifndef X509_V_ERR_HOSTNAME_MISMATCH +# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION +#endif + + + +static int +match(dane_selector_list slist, X509 *cert, int depth) +{ +int matched; + +/* + * Note, set_trust_anchor() needs to know whether the match was for a + * pkey digest or a certificate digest. We return MATCHED_PKEY or + * MATCHED_CERT accordingly. + */ +#define MATCHED_CERT (DANESSL_SELECTOR_CERT + 1) +#define MATCHED_PKEY (DANESSL_SELECTOR_SPKI + 1) + +/* + * Loop over each selector, mtype, and associated data element looking + * for a match. + */ +for (matched = 0; !matched && slist; slist = slist->next) + { + unsigned char mdbuf[EVP_MAX_MD_SIZE]; + unsigned char *buf = NULL; + unsigned char *buf2; + unsigned int len = 0; + + /* + * Extract ASN.1 DER form of certificate or public key. + */ + switch(slist->value->selector) + { + case DANESSL_SELECTOR_CERT: + len = i2d_X509(cert, NULL); + buf2 = buf = US OPENSSL_malloc(len); + if(buf) i2d_X509(cert, &buf2); + break; + case DANESSL_SELECTOR_SPKI: + len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL); + buf2 = buf = US OPENSSL_malloc(len); + if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2); + break; + } + + if (!buf) + { + DANEerr(DANESSL_F_MATCH, ERR_R_MALLOC_FAILURE); + return 0; + } + OPENSSL_assert(buf2 - buf == len); + + /* + * Loop over each mtype and data element + */ + for (dane_mtype_list m = slist->value->mtype; !matched && m; m = m->next) + { + unsigned char *cmpbuf = buf; + unsigned int cmplen = len; + + /* + * If it is a digest, compute the corresponding digest of the + * DER data for comparison, otherwise, use the full object. + */ + if (m->value->md) + { + cmpbuf = mdbuf; + if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0)) + matched = -1; + } + for (dane_data_list d = m->value->data; !matched && d; d = d->next) + if ( cmplen == d->value->datalen + && memcmp(cmpbuf, d->value->data, cmplen) == 0) + matched = slist->value->selector + 1; + } + + OPENSSL_free(buf); + } + +return matched; +} + +static int +push_ext(X509 *cert, X509_EXTENSION *ext) +{ +if (ext) + { + if (X509_add_ext(cert, ext, -1)) + return 1; + X509_EXTENSION_free(ext); + } +DANEerr(DANESSL_F_PUSH_EXT, ERR_R_MALLOC_FAILURE); +return 0; +} + +static int +add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val) +{ +X509V3_CTX v3ctx; + +X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0); +return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val)); +} + +static int +set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject) +{ +int ret = 0; +BIGNUM *bn; + +if (akid && akid->serial) + return (X509_set_serialNumber(cert, akid->serial)); + +/* + * Add one to subject's serial to avoid collisions between TA serial and + * serial of signing root. + */ +if ( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0 + && BN_add_word(bn, 1) + && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert))) + ret = 1; + +if (bn) + BN_free(bn); +return ret; +} + +static int +add_akid(X509 *cert, AUTHORITY_KEYID *akid) +{ +int nid = NID_authority_key_identifier; +ASN1_OCTET_STRING *id; +unsigned char c = 0; +int ret = 0; + +/* + * 0 will never be our subject keyid from a SHA-1 hash, but it could be + * our subject keyid if forced from child's akid. If so, set our + * authority keyid to 1. This way we are never self-signed, and thus + * exempt from any potential (off by default for now in OpenSSL) + * self-signature checks! + */ +id = akid && akid->keyid ? akid->keyid : 0; +if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c) + c = 1; + +if ( (akid = AUTHORITY_KEYID_new()) != 0 + && (akid->keyid = ASN1_OCTET_STRING_new()) != 0 +#ifdef EXIM_HAVE_ASN1_MACROS + && ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1) +#else + && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1) +#endif + && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND)) + ret = 1; +if (akid) + AUTHORITY_KEYID_free(akid); +return ret; +} + +static int +add_skid(X509 *cert, AUTHORITY_KEYID *akid) +{ +int nid = NID_subject_key_identifier; + +if (!akid || !akid->keyid) + return add_ext(0, cert, nid, "hash"); +return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0; +} + +static X509_NAME * +akid_issuer_name(AUTHORITY_KEYID *akid) +{ +if (akid && akid->issuer) + { + GENERAL_NAMES *gens = akid->issuer; + + for (int i = 0; i < sk_GENERAL_NAME_num(gens); ++i) + { + GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); + + if (gn->type == GEN_DIRNAME) + return (gn->d.dirn); + } + } +return 0; +} + +static int +set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid, X509_NAME *subj) +{ +X509_NAME *name = akid_issuer_name(akid); + +/* + * If subject's akid specifies an authority key identifier issuer name, we + * must use that. + */ +return X509_set_issuer_name(cert, + name ? name : subj); +} + +static int +grow_chain(ssl_dane *dane, int trusted, X509 *cert) +{ +STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain; +static ASN1_OBJECT *serverAuth = 0; + +#define UNTRUSTED 0 +#define TRUSTED 1 + +if ( trusted && !serverAuth + && !(serverAuth = OBJ_nid2obj(NID_server_auth))) + { + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!*xs && !(*xs = sk_X509_new_null())) + { + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } + +if (cert) + { + if (trusted && !X509_add1_trust_object(cert, serverAuth)) + return 0; +#ifdef EXIM_OPAQUE_X509 + X509_up_ref(cert); +#else + CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509); +#endif + if (!sk_X509_push(*xs, cert)) + { + X509_free(cert); + DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } + } +return 1; +} + +static int +wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top) +{ +int ret = 1; +X509 *cert = 0; +AUTHORITY_KEYID *akid; +X509_NAME *name = X509_get_issuer_name(subject); +EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject); + +#define WRAP_MID 0 /* Ensure intermediate. */ +#define WRAP_TOP 1 /* Ensure self-signed. */ + +if (!name || !newkey || !(cert = X509_new())) + return 0; + +/* + * Record the depth of the trust-anchor certificate. + */ +if (dane->depth < 0) + dane->depth = depth + 1; + +/* + * XXX: Uncaught error condition: + * + * The return value is NULL both when the extension is missing, and when + * OpenSSL rans out of memory while parsing the extension. + */ +ERR_clear_error(); +akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0); +/* XXX: Should we peek at the error stack here??? */ + +/* + * If top is true generate a self-issued root CA, otherwise an + * intermediate CA and possibly its self-signed issuer. + * + * CA cert valid for +/- 30 days + */ +if ( !X509_set_version(cert, 2) + || !set_serial(cert, akid, subject) + || !set_issuer_name(cert, akid, name) + || !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L) + || !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L) + || !X509_set_subject_name(cert, name) + || !X509_set_pubkey(cert, newkey) + || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE") + || (!top && !add_akid(cert, akid)) + || !add_skid(cert, akid) + || ( !top && wrap_to_root + && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP))) + ret = 0; + +if (akid) + AUTHORITY_KEYID_free(akid); +if (!key) + EVP_PKEY_free(newkey); +if (ret) + ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert); +if (cert) + X509_free(cert); +return ret; +} + +static int +wrap_cert(ssl_dane *dane, X509 *tacert, int depth) +{ +if (dane->depth < 0) + dane->depth = depth + 1; + +/* + * If the TA certificate is self-issued, or need not be, use it directly. + * Otherwise, synthesize requisite ancestors. + */ +if ( !wrap_to_root + || X509_check_issued(tacert, tacert) == X509_V_OK) + return grow_chain(dane, TRUSTED, tacert); + +if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID)) + return grow_chain(dane, UNTRUSTED, tacert); +return 0; +} + +static int +ta_signed(ssl_dane *dane, X509 *cert, int depth) +{ +EVP_PKEY *pk; +int done = 0; + +/* + * First check whether issued and signed by a TA cert, this is cheaper + * than the bare-public key checks below, since we can determine whether + * the candidate TA certificate issued the certificate to be checked + * first (name comparisons), before we bother with signature checks + * (public key operations). + */ +for (dane_cert_list x = dane->certs; !done && x; x = x->next) + { + if (X509_check_issued(x->value, cert) == X509_V_OK) + { + if (!(pk = X509_get_pubkey(x->value))) + { + /* + * The cert originally contained a valid pkey, which does + * not just vanish, so this is most likely a memory error. + */ + done = -1; + break; + } + /* Check signature, since some other TA may work if not this. */ + if (X509_verify(cert, pk) > 0) + done = wrap_cert(dane, x->value, depth) ? 1 : -1; + EVP_PKEY_free(pk); + } + } + +/* + * With bare TA public keys, we can't check whether the trust chain is + * issued by the key, but we can determine whether it is signed by the + * key, so we go with that. + * + * Ideally, the corresponding certificate was presented in the chain, and we + * matched it by its public key digest one level up. This code is here + * to handle adverse conditions imposed by sloppy administrators of + * receiving systems with poorly constructed chains. + * + * We'd like to optimize out keys that should not match when the cert's + * authority key id does not match the key id of this key computed via + * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans + * ASN1 tag and length thus also excluding the unused bits field that is + * logically part of the length). However, some CAs have a non-standard + * authority keyid, so we lose. Too bad. + * + * This may push errors onto the stack when the certificate signature is + * not of the right type or length, throw these away, + */ +for (dane_pkey_list k = dane->pkeys; !done && k; k = k->next) + if (X509_verify(cert, k->value) > 0) + done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1; + else + ERR_clear_error(); + +return done; +} + +static int +set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert) +{ +int matched = 0; +int depth = 0; +EVP_PKEY *takey; +X509 *ca; +STACK_OF(X509) *in = X509_STORE_CTX_get0_untrusted(ctx); + +if (!grow_chain(dane, UNTRUSTED, 0)) + return -1; + +/* + * Accept a degenerate case: depth 0 self-signed trust-anchor. + */ +if (X509_check_issued(cert, cert) == X509_V_OK) + { + dane->depth = 0; + matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], cert, 0); + if (matched > 0 && !grow_chain(dane, TRUSTED, cert)) + matched = -1; + return matched; + } + +/* Make a shallow copy of the input untrusted chain. */ +if (!(in = sk_X509_dup(in))) + { + DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); + return -1; + } + +/* + * At each iteration we consume the issuer of the current cert. This + * reduces the length of the "in" chain by one. If no issuer is found, + * we are done. We also stop when a certificate matches a TA in the + * peer's TLSA RRset. + * + * Caller ensures that the initial certificate is not self-signed. + */ +for (int n = sk_X509_num(in); n > 0; --n, ++depth) + { + int i; + for (i = 0; i < n; ++i) + if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK) + break; + + /* + * Final untrusted element with no issuer in the peer's chain, it may + * however be signed by a pkey or cert obtained via a TLSA RR. + */ + if (i == n) + break; + + /* Peer's chain contains an issuer ca. */ + ca = sk_X509_delete(in, i); + + /* If not a trust anchor, record untrusted ca and continue. */ + if ((matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], ca, + depth + 1)) == 0) + { + if (grow_chain(dane, UNTRUSTED, ca)) + { + if (X509_check_issued(ca, ca) != X509_V_OK) + { + /* Restart with issuer as subject */ + cert = ca; + continue; + } + /* Final self-signed element, skip ta_signed() check. */ + cert = 0; + } + else + matched = -1; + } + else if(matched == MATCHED_CERT) + { + if(!wrap_cert(dane, ca, depth)) + matched = -1; + } + else if(matched == MATCHED_PKEY) + { + if ( !(takey = X509_get_pubkey(ca)) + || !wrap_issuer(dane, takey, cert, depth, WRAP_MID)) + { + if (takey) + EVP_PKEY_free(takey); + else + DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE); + matched = -1; + } + } + break; + } + +/* Shallow free the duplicated input untrusted chain. */ +sk_X509_free(in); + +/* + * When the loop exits, if "cert" is set, it is not self-signed and has + * no issuer in the chain, we check for a possible signature via a DNS + * obtained TA cert or public key. + */ +if (matched == 0 && cert) + matched = ta_signed(dane, cert, depth); + +return matched; +} + +static int +check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert) +{ +int matched; + +matched = match(dane->selectors[DANESSL_USAGE_DANE_EE], cert, 0); +if (matched > 0) + { + dane->mdpth = 0; + dane->match = cert; + X509_up_ref(cert); + if(!X509_STORE_CTX_get0_chain(ctx)) + { + STACK_OF(X509) * sk = sk_X509_new_null(); + if (sk && sk_X509_push(sk, cert)) + { + X509_up_ref(cert); + X509_STORE_CTX_set0_verified_chain(ctx, sk); + } + else + { + if (sk) sk_X509_free(sk); + DANEerr(DANESSL_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE); + return -1; + } + } + } +return matched; +} + +static int +match_name(const char *certid, ssl_dane *dane) +{ +int multi = dane->multi; + +for (dane_host_list hosts = dane->hosts; hosts; hosts = hosts->next) + { + int match_subdomain = 0; + const char *domain = hosts->value; + const char *parent; + int idlen; + int domlen; + + if (*domain == '.' && domain[1] != '\0') + { + ++domain; + match_subdomain = 1; + } + + /* + * Sub-domain match: certid is any sub-domain of hostname. + */ + if(match_subdomain) + { + if ( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1 + && certid[idlen - domlen - 1] == '.' + && !strcasecmp(certid + (idlen - domlen), domain)) + return 1; + else + continue; + } + + /* + * Exact match and initial "*" match. The initial "*" in a certid + * matches one (if multi is false) or more hostname components under + * the condition that the certid contains multiple hostname components. + */ + if ( !strcasecmp(certid, domain) + || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0 + && (parent = strchr(domain, '.')) != 0 + && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent)) + && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0)) + return 1; + } +return 0; +} + +static const char * +check_name(const char *name, int len) +{ +const char *cp = name + len; + +while (len > 0 && !*--cp) + --len; /* Ignore trailing NULs */ +if (len <= 0) + return 0; +for (cp = name; *cp; cp++) + { + char c = *cp; + if (!((c >= 'a' && c <= 'z') || + (c >= '0' && c <= '9') || + (c >= 'A' && c <= 'Z') || + (c == '.' || c == '-') || + (c == '*'))) + return 0; /* Only LDH, '.' and '*' */ + } +if (cp - name != len) /* Guard against internal NULs */ + return 0; +return name; +} + +static const char * +parse_dns_name(const GENERAL_NAME *gn) +{ +if (gn->type != GEN_DNS) + return 0; +if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING) + return 0; +return check_name(CCS ASN1_STRING_get0_data(gn->d.ia5), + ASN1_STRING_length(gn->d.ia5)); +} + +static char * +parse_subject_name(X509 *cert) +{ +X509_NAME *name = X509_get_subject_name(cert); +X509_NAME_ENTRY *entry; +ASN1_STRING *entry_str; +unsigned char *namebuf; +int nid = NID_commonName; +int len; +int i; + +if (!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0) + return 0; +if (!(entry = X509_NAME_get_entry(name, i))) + return 0; +if (!(entry_str = X509_NAME_ENTRY_get_data(entry))) + return 0; + +if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0) + return 0; +if (len <= 0 || check_name(CS namebuf, len) == 0) + { + OPENSSL_free(namebuf); + return 0; + } +return CS namebuf; +} + +static int +name_check(ssl_dane *dane, X509 *cert) +{ +int matched = 0; +BOOL got_altname = FALSE; +GENERAL_NAMES *gens; + +gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0); +if (gens) + { + int n = sk_GENERAL_NAME_num(gens); + + for (int i = 0; i < n; ++i) + { + const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i); + const char *certid; + + if (gn->type != GEN_DNS) + continue; + got_altname = TRUE; + certid = parse_dns_name(gn); + if (certid && *certid) + { + if ((matched = match_name(certid, dane)) == 0) + continue; + if (!(dane->mhost = OPENSSL_strdup(certid))) + matched = -1; + DEBUG(D_tls) debug_printf("Dane name_check: matched SAN %s\n", certid); + break; + } + } + GENERAL_NAMES_free(gens); + } + +/* + * XXX: Should the subjectName be skipped when *any* altnames are present, + * or only when DNS altnames are present? + */ +if (!got_altname) + { + char *certid = parse_subject_name(cert); + if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0) + { + DEBUG(D_tls) debug_printf("Dane name_check: matched SN %s\n", certid); + dane->mhost = OPENSSL_strdup(certid); + } + if (certid) + OPENSSL_free(certid); + } +return matched; +} + +static int +verify_chain(X509_STORE_CTX *ctx) +{ +int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx); +X509 *cert = X509_STORE_CTX_get0_cert(ctx); +STACK_OF(X509) * chain = X509_STORE_CTX_get0_chain(ctx); +int chain_length = sk_X509_num(chain); +int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); +SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); +ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx); +dane_selector_list issuer_rrs = dane->selectors[DANESSL_USAGE_PKIX_TA]; +dane_selector_list leaf_rrs = dane->selectors[DANESSL_USAGE_PKIX_EE]; +int matched = 0; + +DEBUG(D_tls) debug_printf("Dane verify_chain\n"); + +/* Restore OpenSSL's internal_verify() as the signature check function */ +X509_STORE_CTX_set_verify(ctx, dane->verify); + +if ((matched = name_check(dane, cert)) < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return 0; + } + +if (!matched) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH); + if (!cb(0, ctx)) + return 0; + } +matched = 0; + +/* + * Satisfy at least one usage 0 or 1 constraint, unless we've already + * matched a usage 2 trust anchor. + * + * XXX: internal_verify() doesn't callback with top certs that are not + * self-issued. This is fixed in OpenSSL 1.1.0. + */ +if (dane->roots && sk_X509_num(dane->roots)) + { + X509 *top = sk_X509_value(chain, dane->depth); + + dane->mdpth = dane->depth; + dane->match = top; + X509_up_ref(top); + +#if OPENSSL_VERSION_NUMBER < 0x10100000L + if (X509_check_issued(top, top) != X509_V_OK) + { + X509_STORE_CTX_set_error_depth(ctx, dane->depth); + X509_STORE_CTX_set_current_cert(ctx, top); + if (!cb(1, ctx)) + return 0; + } +#endif + /* Pop synthetic trust-anchor ancestors off the chain! */ + while (--chain_length > dane->depth) + X509_free(sk_X509_pop(chain)); + } +else + { + int n = 0; + X509 *xn = cert; + + /* + * Check for an EE match, then a CA match at depths > 0, and + * finally, if the EE cert is self-issued, for a depth 0 CA match. + */ + if (leaf_rrs) + matched = match(leaf_rrs, xn, 0); + if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched EE\n"); + + if (!matched && issuer_rrs) + for (n = chain_length-1; !matched && n >= 0; --n) + { + xn = sk_X509_value(chain, n); + if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK) + matched = match(issuer_rrs, xn, n); + } + if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched %s\n", + n>0 ? "CA" : "selfisssued EE"); + + if (!matched) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED); + if (!cb(0, ctx)) + return 0; + } + else + { + dane->mdpth = n; + dane->match = xn; + X509_up_ref(xn); + } + } + +/* Tail recurse into OpenSSL's internal_verify */ +return dane->verify(ctx); +} + +static void +dane_reset(ssl_dane *dane) +{ +dane->depth = -1; +if (dane->mhost) + { + OPENSSL_free(dane->mhost); + dane->mhost = 0; + } +if (dane->roots) + { + sk_X509_pop_free(dane->roots, X509_free); + dane->roots = 0; + } +if (dane->chain) + { + sk_X509_pop_free(dane->chain, X509_free); + dane->chain = 0; + } +if (dane->match) + { + X509_free(dane->match); + dane->match = 0; + } +dane->mdpth = -1; +} + +static int +verify_cert(X509_STORE_CTX *ctx, void *unused_ctx) +{ +static int ssl_idx = -1; +SSL *ssl; +ssl_dane *dane; +int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx); +X509 *cert = X509_STORE_CTX_get0_cert(ctx); +int matched; + +DEBUG(D_tls) debug_printf("Dane verify_cert\n"); + +if (ssl_idx < 0) + ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); +if (dane_idx < 0) + { + DANEerr(DANESSL_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE); + return -1; + } + +ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx); +if (!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert) + return X509_verify_cert(ctx); + +/* Reset for verification of a new chain, perhaps a renegotiation. */ +dane_reset(dane); + +if (dane->selectors[DANESSL_USAGE_DANE_EE]) + { + if ((matched = check_end_entity(ctx, dane, cert)) > 0) + { + X509_STORE_CTX_set_error_depth(ctx, 0); + X509_STORE_CTX_set_current_cert(ctx, cert); + return cb(1, ctx); + } + if (matched < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return -1; + } + } + +if (dane->selectors[DANESSL_USAGE_DANE_TA]) + { + if ((matched = set_trust_anchor(ctx, dane, cert)) < 0) + { + X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM); + return -1; + } + if (matched) + { + /* + * Check that setting the untrusted chain updates the expected + * structure member at the expected offset. + */ + X509_STORE_CTX_trusted_stack(ctx, dane->roots); + X509_STORE_CTX_set_chain(ctx, dane->chain); + OPENSSL_assert(dane->chain == X509_STORE_CTX_get0_untrusted(ctx)); + } + } + +/* + * Name checks and usage 0/1 constraint enforcement are delayed until + * X509_verify_cert() builds the full chain and calls our verify_chain() + * wrapper. + */ +dane->verify = X509_STORE_CTX_get_verify(ctx); +X509_STORE_CTX_set_verify(ctx, verify_chain); + +if (X509_verify_cert(ctx)) + return 1; + +/* + * If the chain is invalid, clear any matching cert or hostname, to + * protect callers that might erroneously rely on these alone without + * checking the validation status. + */ +if (dane->match) + { + X509_free(dane->match); + dane->match = 0; + } +if (dane->mhost) + { + OPENSSL_free(dane->mhost); + dane->mhost = 0; + } + return 0; +} + +static dane_list +list_alloc(size_t vsize) +{ +void *value = (void *) OPENSSL_malloc(vsize); +dane_list l; + +if (!value) + { + DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!(l = (dane_list) OPENSSL_malloc(sizeof(*l)))) + { + OPENSSL_free(value); + DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE); + return 0; + } +l->next = 0; +l->value = value; +return l; +} + +static void +list_free(void *list, void (*f)(void *)) +{ +dane_list next; + +for (dane_list head = (dane_list) list; head; head = next) + { + next = head->next; + if (f && head->value) + f(head->value); + OPENSSL_free(head); + } +} + +static void +ossl_free(void * p) +{ +OPENSSL_free(p); +} + +static void +dane_mtype_free(void *p) +{ +list_free(((dane_mtype) p)->data, ossl_free); +OPENSSL_free(p); +} + +static void +dane_selector_free(void *p) +{ +list_free(((dane_selector) p)->mtype, dane_mtype_free); +OPENSSL_free(p); +} + + + +/* + +Tidy up once the connection is finished with. + +Arguments + ssl The ssl connection handle + +=> Before calling SSL_free() +tls_close() and tls_getc() [the error path] are the obvious places. +Could we do it earlier - right after verification? In tls_client_start() +right after SSL_connect() returns, in that case. + +*/ + +void +DANESSL_cleanup(SSL *ssl) +{ +ssl_dane *dane; + +DEBUG(D_tls) debug_printf("Dane lib-cleanup\n"); + +if (dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx))) + return; +(void) SSL_set_ex_data(ssl, dane_idx, 0); + +dane_reset(dane); +if (dane->hosts) + list_free(dane->hosts, ossl_free); +for (int u = 0; u <= DANESSL_USAGE_LAST; ++u) + if (dane->selectors[u]) + list_free(dane->selectors[u], dane_selector_free); +if (dane->pkeys) + list_free(dane->pkeys, pkey_free); +if (dane->certs) + list_free(dane->certs, cert_free); +OPENSSL_free(dane); +} + +static dane_host_list +host_list_init(const char **src) +{ +dane_host_list head = NULL; + +while (*src) + { + dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem)); + if (elem == 0) + { + list_free(head, ossl_free); + return 0; + } + elem->value = OPENSSL_strdup(*src++); + LINSERT(head, elem); + } +return head; +} + + +int +DANESSL_get_match_cert(SSL *ssl, X509 **match, const char **mhost, int *depth) +{ +ssl_dane *dane; + +if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT); + return -1; + } + +if (dane->match) + { + if (match) + *match = dane->match; + if (mhost) + *mhost = dane->mhost; + if (depth) + *depth = dane->mdpth; + } + + return (dane->match != 0); +} + + +#ifdef never_called +int +DANESSL_verify_chain(SSL *ssl, STACK_OF(X509) *chain) +{ +int ret; +X509 *cert; +X509_STORE_CTX * store_ctx; +SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl); +X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx); +int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx(); + +cert = sk_X509_value(chain, 0); +if (!(store_ctx = X509_STORE_CTX_new())) + { + DANEerr(DANESSL_F_DANESSL_VERIFY_CHAIN, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!X509_STORE_CTX_init(store_ctx, store, cert, chain)) + { + X509_STORE_CTX_free(store_ctx); + return 0; + } +X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl); + +X509_STORE_CTX_set_default(store_ctx, + SSL_is_server(ssl) ? "ssl_client" : "ssl_server"); +X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx), + SSL_get0_param(ssl)); + +if (SSL_get_verify_callback(ssl)) + X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl)); + +ret = verify_cert(store_ctx, NULL); + +SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx)); +X509_STORE_CTX_cleanup(store_ctx); + +return (ret); +} +#endif + + + + +/* + +Call this for each TLSA record found for the target, after the +DANE setup has been done on the ssl connection handle. + +Arguments: + ssl Connection handle + usage TLSA record field + selector TLSA record field + mdname ??? message digest name? + data ??? TLSA record megalump? + dlen length of data + +Return + -1 on error + 0 action not taken + 1 record accepted +*/ + +int +DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname, + unsigned const char *data, size_t dlen) +{ +ssl_dane *dane; +dane_selector_list s = 0; +dane_mtype_list m = 0; +dane_data_list d = 0; +dane_cert_list xlist = 0; +dane_pkey_list klist = 0; +const EVP_MD *md = 0; + +DEBUG(D_tls) debug_printf("Dane add-tlsa: usage %u sel %u mdname \"%s\"\n", + usage, selector, mdname); + +if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx))) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT); + return -1; + } + +if (usage > DANESSL_USAGE_LAST) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_USAGE); + return 0; + } +if (selector > DANESSL_SELECTOR_LAST) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_SELECTOR); + return 0; + } + +/* Support built-in standard one-digit mtypes */ +if (mdname && *mdname && mdname[1] == '\0') + switch (*mdname - '0') + { + case DANESSL_MATCHING_FULL: mdname = 0; break; + case DANESSL_MATCHING_2256: mdname = "sha256"; break; + case DANESSL_MATCHING_2512: mdname = "sha512"; break; + } +if (mdname && *mdname && !(md = EVP_get_digestbyname(mdname))) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DIGEST); + return 0; + } +if (mdname && *mdname && dlen != EVP_MD_size(md)) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DATA_LENGTH); + return 0; + } +if (!data) + { + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_NULL_DATA); + return 0; + } + +/* + * Full Certificate or Public Key when NULL or empty digest name + */ +if (!mdname || !*mdname) + { + X509 *x = 0; + EVP_PKEY *k = 0; + const unsigned char *p = data; + +#define xklistinit(lvar, ltype, var, freeFunc) do { \ + (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \ + if ((lvar) == 0) { \ + DANEerr(DANESSL_F_ADD_TLSA, ERR_R_MALLOC_FAILURE); \ + freeFunc((var)); \ + return 0; \ + } \ + (lvar)->next = 0; \ + lvar->value = var; \ + } while (0) +#define xkfreeret(ret) do { \ + if (xlist) list_free(xlist, cert_free); \ + if (klist) list_free(klist, pkey_free); \ + return (ret); \ + } while (0) + + switch (selector) + { + case DANESSL_SELECTOR_CERT: + if (!d2i_X509(&x, &p, dlen) || dlen != p - data) + { + if (x) + X509_free(x); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT); + return 0; + } + k = X509_get_pubkey(x); + EVP_PKEY_free(k); + if (k == 0) + { + X509_free(x); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT_PKEY); + return 0; + } + if (usage == DANESSL_USAGE_DANE_TA) + xklistinit(xlist, dane_cert_list, x, X509_free); + break; + + case DANESSL_SELECTOR_SPKI: + if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data) + { + if (k) + EVP_PKEY_free(k); + DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_PKEY); + return 0; + } + if (usage == DANESSL_USAGE_DANE_TA) + xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free); + break; + } + } + +/* Find insertion point and don't add duplicate elements. */ +for (s = dane->selectors[usage]; s; s = s->next) + if (s->value->selector == selector) + { + for (m = s->value->mtype; m; m = m->next) + if (m->value->md == md) + { + for (d = m->value->data; d; d = d->next) + if ( d->value->datalen == dlen + && memcmp(d->value->data, data, dlen) == 0) + xkfreeret(1); + break; + } + break; + } + +if ((d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)) == 0) + xkfreeret(0); +d->value->datalen = dlen; +memcpy(d->value->data, data, dlen); +if (!m) + { + if ((m = (dane_mtype_list) list_alloc(sizeof(*m->value))) == 0) + { + list_free(d, ossl_free); + xkfreeret(0); + } + m->value->data = 0; + if ((m->value->md = md) != 0) + m->value->mdlen = dlen; + if (!s) + { + if ((s = (dane_selector_list) list_alloc(sizeof(*s->value))) == 0) + { + list_free(m, dane_mtype_free); + xkfreeret(0); + } + s->value->mtype = 0; + s->value->selector = selector; + LINSERT(dane->selectors[usage], s); + } + LINSERT(s->value->mtype, m); + } +LINSERT(m->value->data, d); + +if (xlist) + LINSERT(dane->certs, xlist); +else if (klist) + LINSERT(dane->pkeys, klist); +++dane->count; +return 1; +} + + + + +/* +Call this once we have an ssl connection handle but before +making the TLS connection. + +=> In tls_client_start() after the call to SSL_new() +and before the call to SSL_connect(). Exactly where +probably does not matter. +We probably want to keep our existing SNI handling; +call this with NULL. + +Arguments: + ssl Connection handle + sni_domain Optional peer server name + hostnames list of names to chack against peer cert + +Return + -1 on fatal error + 0 nonfatal error + 1 success +*/ + +int +DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames) +{ +ssl_dane *dane; + +DEBUG(D_tls) debug_printf("Dane ssl_init\n"); +if (dane_idx < 0) + { + DANEerr(DANESSL_F_INIT, DANESSL_R_LIBRARY_INIT); + return -1; + } + +if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain)) + return 0; + +if ((dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))) == 0) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + return 0; + } +if (!SSL_set_ex_data(ssl, dane_idx, dane)) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + OPENSSL_free(dane); + return 0; + } + +dane->verify = 0; +dane->hosts = 0; +dane->thost = 0; +dane->pkeys = 0; +dane->certs = 0; +dane->chain = 0; +dane->match = 0; +dane->roots = 0; +dane->depth = -1; +dane->mhost = 0; /* Future SSL control interface */ +dane->mdpth = 0; /* Future SSL control interface */ +dane->multi = 0; /* Future SSL control interface */ +dane->count = 0; +dane->hosts = 0; + +for (int i = 0; i <= DANESSL_USAGE_LAST; ++i) + dane->selectors[i] = 0; + +if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0) + { + DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE); + DANESSL_cleanup(ssl); + return 0; + } + +return 1; +} + + +/* + +Call this once we have a context to work with, but +before DANESSL_init() + +=> in tls_client_start(), after tls_init() call gives us the ctx, +if we decide we want to (policy) and can (TLSA records available) +replacing (? what about fallback) everything from testing tls_verify_hosts +down to just before calling SSL_new() for the conn handle. + +Arguments + ctx SSL context + +Return + -1 Error + 1 Success +*/ + +int +DANESSL_CTX_init(SSL_CTX *ctx) +{ +DEBUG(D_tls) debug_printf("Dane ctx-init\n"); +if (dane_idx >= 0) + { + SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0); + return 1; + } +DANEerr(DANESSL_F_CTX_INIT, DANESSL_R_LIBRARY_INIT); +return -1; +} + +static void +dane_init(void) +{ +/* + * Store library id in zeroth function slot, used to locate the library + * name. This must be done before we load the error strings. + */ +err_lib_dane = ERR_get_next_error_library(); + +#ifndef OPENSSL_NO_ERR +if (err_lib_dane > 0) + { + dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0); + ERR_load_strings(err_lib_dane, dane_str_functs); + ERR_load_strings(err_lib_dane, dane_str_reasons); + } +#endif + +/* + * Register SHA-2 digests, if implemented and not already registered. + */ +#if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256) +if (!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224()); +if (!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256()); +#endif +#if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512) +if (!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384()); +if (!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512()); +#endif + +/* + * Register an SSL index for the connection-specific ssl_dane structure. + * Using a separate index makes it possible to add DANE support to + * existing OpenSSL releases that don't have a suitable pointer in the + * SSL structure. + */ +dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0); +} + + +#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER) +static void +run_once(volatile int * once, void (*init)(void)) +{ +int wlock = 0; + +CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX); +if (!*once) + { + CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); + CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX); + wlock = 1; + if (!*once) + { + *once = 1; + init(); + } + } +if (wlock) + CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX); +else + CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX); +} +#endif + + + +/* + +Call this once. Probably early in startup will do; may need +to be after SSL library init. + +=> put after call to tls_init() for now + +Return + 1 Success + 0 Fail +*/ + +int +DANESSL_library_init(void) +{ +static CRYPTO_ONCE once = CRYPTO_ONCE_STATIC_INIT; + +DEBUG(D_tls) debug_printf("Dane lib-init\n"); +(void) CRYPTO_THREAD_run_once(&once, dane_init); + +#if defined(LN_sha256) +/* No DANE without SHA256 support */ +if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0) + return 1; +#endif +DANEerr(DANESSL_F_LIBRARY_INIT, DANESSL_R_SUPPORT); +return 0; +} + + +/* vi: aw ai sw=2 +*/ -- cgit v1.2.3