diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /gfx/angle/checkout/src/common/mathutil.h | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/angle/checkout/src/common/mathutil.h')
-rw-r--r-- | gfx/angle/checkout/src/common/mathutil.h | 1305 |
1 files changed, 1305 insertions, 0 deletions
diff --git a/gfx/angle/checkout/src/common/mathutil.h b/gfx/angle/checkout/src/common/mathutil.h new file mode 100644 index 0000000000..798ddba597 --- /dev/null +++ b/gfx/angle/checkout/src/common/mathutil.h @@ -0,0 +1,1305 @@ +// +// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// + +// mathutil.h: Math and bit manipulation functions. + +#ifndef COMMON_MATHUTIL_H_ +#define COMMON_MATHUTIL_H_ + +#include <math.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <algorithm> +#include <limits> + +#include <anglebase/numerics/safe_math.h> + +#include "common/debug.h" +#include "common/platform.h" + +namespace angle +{ +using base::CheckedNumeric; +using base::IsValueInRangeForNumericType; +} // namespace angle + +namespace gl +{ + +const unsigned int Float32One = 0x3F800000; +const unsigned short Float16One = 0x3C00; + +template <typename T> +inline bool isPow2(T x) +{ + static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type."); + return (x & (x - 1)) == 0 && (x != 0); +} + +inline int log2(int x) +{ + int r = 0; + while ((x >> r) > 1) + r++; + return r; +} + +inline unsigned int ceilPow2(unsigned int x) +{ + if (x != 0) + x--; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + x++; + + return x; +} + +template <typename DestT, typename SrcT> +inline DestT clampCast(SrcT value) +{ + // For floating-point types with denormalization, min returns the minimum positive normalized + // value. To find the value that has no values less than it, use numeric_limits::lowest. + constexpr const long double destLo = + static_cast<long double>(std::numeric_limits<DestT>::lowest()); + constexpr const long double destHi = + static_cast<long double>(std::numeric_limits<DestT>::max()); + constexpr const long double srcLo = + static_cast<long double>(std::numeric_limits<SrcT>::lowest()); + constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max()); + + if (destHi < srcHi) + { + DestT destMax = std::numeric_limits<DestT>::max(); + if (value >= static_cast<SrcT>(destMax)) + { + return destMax; + } + } + + if (destLo > srcLo) + { + DestT destLow = std::numeric_limits<DestT>::lowest(); + if (value <= static_cast<SrcT>(destLow)) + { + return destLow; + } + } + + return static_cast<DestT>(value); +} + +// Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max +// value is casted to the source type. +template <> +inline unsigned int clampCast(bool value) +{ + return static_cast<unsigned int>(value); +} + +template <> +inline int clampCast(bool value) +{ + return static_cast<int>(value); +} + +template <typename T, typename MIN, typename MAX> +inline T clamp(T x, MIN min, MAX max) +{ + // Since NaNs fail all comparison tests, a NaN value will default to min + return x > min ? (x > max ? max : x) : min; +} + +inline float clamp01(float x) +{ + return clamp(x, 0.0f, 1.0f); +} + +template <const int n> +inline unsigned int unorm(float x) +{ + const unsigned int max = 0xFFFFFFFF >> (32 - n); + + if (x > 1) + { + return max; + } + else if (x < 0) + { + return 0; + } + else + { + return (unsigned int)(max * x + 0.5f); + } +} + +inline bool supportsSSE2() +{ +#if defined(ANGLE_USE_SSE) + static bool checked = false; + static bool supports = false; + + if (checked) + { + return supports; + } + +# if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64) + { + int info[4]; + __cpuid(info, 0); + + if (info[0] >= 1) + { + __cpuid(info, 1); + + supports = (info[3] >> 26) & 1; + } + } +# endif // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64) + checked = true; + return supports; +#else // defined(ANGLE_USE_SSE) + return false; +#endif +} + +template <typename destType, typename sourceType> +destType bitCast(const sourceType &source) +{ + size_t copySize = std::min(sizeof(destType), sizeof(sourceType)); + destType output; + memcpy(&output, &source, copySize); + return output; +} + +inline unsigned short float32ToFloat16(float fp32) +{ + unsigned int fp32i = bitCast<unsigned int>(fp32); + unsigned int sign = (fp32i & 0x80000000) >> 16; + unsigned int abs = fp32i & 0x7FFFFFFF; + + if (abs > 0x7F800000) + { // NaN + return 0x7FFF; + } + else if (abs > 0x47FFEFFF) + { // Infinity + return static_cast<uint16_t>(sign | 0x7C00); + } + else if (abs < 0x38800000) // Denormal + { + unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000; + int e = 113 - (abs >> 23); + + if (e < 24) + { + abs = mantissa >> e; + } + else + { + abs = 0; + } + + return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13); + } + else + { + return static_cast<unsigned short>( + sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13); + } +} + +float float16ToFloat32(unsigned short h); + +unsigned int convertRGBFloatsTo999E5(float red, float green, float blue); +void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue); + +inline unsigned short float32ToFloat11(float fp32) +{ + const unsigned int float32MantissaMask = 0x7FFFFF; + const unsigned int float32ExponentMask = 0x7F800000; + const unsigned int float32SignMask = 0x80000000; + const unsigned int float32ValueMask = ~float32SignMask; + const unsigned int float32ExponentFirstBit = 23; + const unsigned int float32ExponentBias = 127; + + const unsigned short float11Max = 0x7BF; + const unsigned short float11MantissaMask = 0x3F; + const unsigned short float11ExponentMask = 0x7C0; + const unsigned short float11BitMask = 0x7FF; + const unsigned int float11ExponentBias = 14; + + const unsigned int float32Maxfloat11 = 0x477E0000; + const unsigned int float32Minfloat11 = 0x38800000; + + const unsigned int float32Bits = bitCast<unsigned int>(fp32); + const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; + + unsigned int float32Val = float32Bits & float32ValueMask; + + if ((float32Val & float32ExponentMask) == float32ExponentMask) + { + // INF or NAN + if ((float32Val & float32MantissaMask) != 0) + { + return float11ExponentMask | + (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) & + float11MantissaMask); + } + else if (float32Sign) + { + // -INF is clamped to 0 since float11 is positive only + return 0; + } + else + { + return float11ExponentMask; + } + } + else if (float32Sign) + { + // float11 is positive only, so clamp to zero + return 0; + } + else if (float32Val > float32Maxfloat11) + { + // The number is too large to be represented as a float11, set to max + return float11Max; + } + else + { + if (float32Val < float32Minfloat11) + { + // The number is too small to be represented as a normalized float11 + // Convert it to a denormalized value. + const unsigned int shift = (float32ExponentBias - float11ExponentBias) - + (float32Val >> float32ExponentFirstBit); + float32Val = + ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; + } + else + { + // Rebias the exponent to represent the value as a normalized float11 + float32Val += 0xC8000000; + } + + return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask; + } +} + +inline unsigned short float32ToFloat10(float fp32) +{ + const unsigned int float32MantissaMask = 0x7FFFFF; + const unsigned int float32ExponentMask = 0x7F800000; + const unsigned int float32SignMask = 0x80000000; + const unsigned int float32ValueMask = ~float32SignMask; + const unsigned int float32ExponentFirstBit = 23; + const unsigned int float32ExponentBias = 127; + + const unsigned short float10Max = 0x3DF; + const unsigned short float10MantissaMask = 0x1F; + const unsigned short float10ExponentMask = 0x3E0; + const unsigned short float10BitMask = 0x3FF; + const unsigned int float10ExponentBias = 14; + + const unsigned int float32Maxfloat10 = 0x477C0000; + const unsigned int float32Minfloat10 = 0x38800000; + + const unsigned int float32Bits = bitCast<unsigned int>(fp32); + const bool float32Sign = (float32Bits & float32SignMask) == float32SignMask; + + unsigned int float32Val = float32Bits & float32ValueMask; + + if ((float32Val & float32ExponentMask) == float32ExponentMask) + { + // INF or NAN + if ((float32Val & float32MantissaMask) != 0) + { + return float10ExponentMask | + (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) & + float10MantissaMask); + } + else if (float32Sign) + { + // -INF is clamped to 0 since float11 is positive only + return 0; + } + else + { + return float10ExponentMask; + } + } + else if (float32Sign) + { + // float10 is positive only, so clamp to zero + return 0; + } + else if (float32Val > float32Maxfloat10) + { + // The number is too large to be represented as a float11, set to max + return float10Max; + } + else + { + if (float32Val < float32Minfloat10) + { + // The number is too small to be represented as a normalized float11 + // Convert it to a denormalized value. + const unsigned int shift = (float32ExponentBias - float10ExponentBias) - + (float32Val >> float32ExponentFirstBit); + float32Val = + ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift; + } + else + { + // Rebias the exponent to represent the value as a normalized float11 + float32Val += 0xC8000000; + } + + return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask; + } +} + +inline float float11ToFloat32(unsigned short fp11) +{ + unsigned short exponent = (fp11 >> 6) & 0x1F; + unsigned short mantissa = fp11 & 0x3F; + + if (exponent == 0x1F) + { + // INF or NAN + return bitCast<float>(0x7f800000 | (mantissa << 17)); + } + else + { + if (exponent != 0) + { + // normalized + } + else if (mantissa != 0) + { + // The value is denormalized + exponent = 1; + + do + { + exponent--; + mantissa <<= 1; + } while ((mantissa & 0x40) == 0); + + mantissa = mantissa & 0x3F; + } + else // The value is zero + { + exponent = static_cast<unsigned short>(-112); + } + + return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17)); + } +} + +inline float float10ToFloat32(unsigned short fp11) +{ + unsigned short exponent = (fp11 >> 5) & 0x1F; + unsigned short mantissa = fp11 & 0x1F; + + if (exponent == 0x1F) + { + // INF or NAN + return bitCast<float>(0x7f800000 | (mantissa << 17)); + } + else + { + if (exponent != 0) + { + // normalized + } + else if (mantissa != 0) + { + // The value is denormalized + exponent = 1; + + do + { + exponent--; + mantissa <<= 1; + } while ((mantissa & 0x20) == 0); + + mantissa = mantissa & 0x1F; + } + else // The value is zero + { + exponent = static_cast<unsigned short>(-112); + } + + return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18)); + } +} + +// Convers to and from float and 16.16 fixed point format. + +inline float FixedToFloat(uint32_t fixedInput) +{ + return static_cast<float>(fixedInput) / 65536.0f; +} + +inline uint32_t FloatToFixed(float floatInput) +{ + static constexpr uint32_t kHighest = 32767 * 65536 + 65535; + static constexpr uint32_t kLowest = static_cast<uint32_t>(-32768 * 65536 + 65535); + + if (floatInput > 32767.65535) + { + return kHighest; + } + else if (floatInput < -32768.65535) + { + return kLowest; + } + else + { + return static_cast<uint32_t>(floatInput * 65536); + } +} + +template <typename T> +inline float normalizedToFloat(T input) +{ + static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); + + if (sizeof(T) > 2) + { + // float has only a 23 bit mantissa, so we need to do the calculation in double precision + constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max(); + return static_cast<float>(input * inverseMax); + } + else + { + constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max(); + return input * inverseMax; + } +} + +template <unsigned int inputBitCount, typename T> +inline float normalizedToFloat(T input) +{ + static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); + static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount."); + + if (inputBitCount > 23) + { + // float has only a 23 bit mantissa, so we need to do the calculation in double precision + constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1); + return static_cast<float>(input * inverseMax); + } + else + { + constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1); + return input * inverseMax; + } +} + +template <typename T> +inline T floatToNormalized(float input) +{ + if (sizeof(T) > 2) + { + // float has only a 23 bit mantissa, so we need to do the calculation in double precision + return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5); + } + else + { + return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f); + } +} + +template <unsigned int outputBitCount, typename T> +inline T floatToNormalized(float input) +{ + static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount."); + + if (outputBitCount > 23) + { + // float has only a 23 bit mantissa, so we need to do the calculation in double precision + return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5); + } + else + { + return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f); + } +} + +template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> +inline T getShiftedData(T input) +{ + static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), + "T must have at least as many bits as inputBitCount + inputBitStart."); + const T mask = (1 << inputBitCount) - 1; + return (input >> inputBitStart) & mask; +} + +template <unsigned int inputBitCount, unsigned int inputBitStart, typename T> +inline T shiftData(T input) +{ + static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8), + "T must have at least as many bits as inputBitCount + inputBitStart."); + const T mask = (1 << inputBitCount) - 1; + return (input & mask) << inputBitStart; +} + +inline unsigned int CountLeadingZeros(uint32_t x) +{ + // Use binary search to find the amount of leading zeros. + unsigned int zeros = 32u; + uint32_t y; + + y = x >> 16u; + if (y != 0) + { + zeros = zeros - 16u; + x = y; + } + y = x >> 8u; + if (y != 0) + { + zeros = zeros - 8u; + x = y; + } + y = x >> 4u; + if (y != 0) + { + zeros = zeros - 4u; + x = y; + } + y = x >> 2u; + if (y != 0) + { + zeros = zeros - 2u; + x = y; + } + y = x >> 1u; + if (y != 0) + { + return zeros - 2u; + } + return zeros - x; +} + +inline unsigned char average(unsigned char a, unsigned char b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline signed char average(signed char a, signed char b) +{ + return ((short)a + (short)b) / 2; +} + +inline unsigned short average(unsigned short a, unsigned short b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline signed short average(signed short a, signed short b) +{ + return ((int)a + (int)b) / 2; +} + +inline unsigned int average(unsigned int a, unsigned int b) +{ + return ((a ^ b) >> 1) + (a & b); +} + +inline int average(int a, int b) +{ + long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll; + return static_cast<int>(average); +} + +inline float average(float a, float b) +{ + return (a + b) * 0.5f; +} + +inline unsigned short averageHalfFloat(unsigned short a, unsigned short b) +{ + return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f); +} + +inline unsigned int averageFloat11(unsigned int a, unsigned int b) +{ + return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) + + float11ToFloat32(static_cast<unsigned short>(b))) * + 0.5f); +} + +inline unsigned int averageFloat10(unsigned int a, unsigned int b) +{ + return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) + + float10ToFloat32(static_cast<unsigned short>(b))) * + 0.5f); +} + +template <typename T> +class Range +{ + public: + Range() {} + Range(T lo, T hi) : mLow(lo), mHigh(hi) {} + + T length() const { return (empty() ? 0 : (mHigh - mLow)); } + + bool intersects(Range<T> other) + { + if (mLow <= other.mLow) + { + return other.mLow < mHigh; + } + else + { + return mLow < other.mHigh; + } + } + + // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6. + void extend(T value) + { + mLow = value < mLow ? value : mLow; + mHigh = value >= mHigh ? (value + 1) : mHigh; + } + + bool empty() const { return mHigh <= mLow; } + + bool contains(T value) const { return value >= mLow && value < mHigh; } + + class Iterator final + { + public: + Iterator(T value) : mCurrent(value) {} + + Iterator &operator++() + { + mCurrent++; + return *this; + } + bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; } + bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; } + T operator*() const { return mCurrent; } + + private: + T mCurrent; + }; + + Iterator begin() const { return Iterator(mLow); } + + Iterator end() const { return Iterator(mHigh); } + + T low() const { return mLow; } + T high() const { return mHigh; } + + void invalidate() + { + mLow = std::numeric_limits<T>::max(); + mHigh = std::numeric_limits<T>::min(); + } + + private: + T mLow; + T mHigh; +}; + +typedef Range<int> RangeI; +typedef Range<unsigned int> RangeUI; + +struct IndexRange +{ + struct Undefined + {}; + IndexRange(Undefined) {} + IndexRange() : IndexRange(0, 0, 0) {} + IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_) + : start(start_), end(end_), vertexIndexCount(vertexIndexCount_) + { + ASSERT(start <= end); + } + + // Number of vertices in the range. + size_t vertexCount() const { return (end - start) + 1; } + + // Inclusive range of indices that are not primitive restart + size_t start; + size_t end; + + // Number of non-primitive restart indices + size_t vertexIndexCount; +}; + +// Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a +// floating-point value. As in GLSL ldexp() built-in. +inline float Ldexp(float x, int exp) +{ + if (exp > 128) + { + return std::numeric_limits<float>::infinity(); + } + if (exp < -126) + { + return 0.0f; + } + double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp)); + return static_cast<float>(result); +} + +// First, both normalized floating-point values are converted into 16-bit integer values. +// Then, the results are packed into the returned 32-bit unsigned integer. +// The first float value will be written to the least significant bits of the output; +// the last float value will be written to the most significant bits. +// The conversion of each value to fixed point is done as follows : +// packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0) +inline uint32_t packSnorm2x16(float f1, float f2) +{ + int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f)); + int16_t mostSignificantBits = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | + (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF); +} + +// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, +// each component is converted to a normalized floating-point value to generate the returned two +// float values. The first float value will be extracted from the least significant bits of the +// input; the last float value will be extracted from the most-significant bits. The conversion for +// unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f / +// 32767.0, -1, +1) +inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2) +{ + int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF); + int16_t mostSignificantBits = static_cast<int16_t>(u >> 16); + *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f); + *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f); +} + +// First, both normalized floating-point values are converted into 16-bit integer values. +// Then, the results are packed into the returned 32-bit unsigned integer. +// The first float value will be written to the least significant bits of the output; +// the last float value will be written to the most significant bits. +// The conversion of each value to fixed point is done as follows: +// packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0) +inline uint32_t packUnorm2x16(float f1, float f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f)); + uint16_t mostSignificantBits = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | + static_cast<uint32_t>(leastSignificantBits); +} + +// First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then, +// each component is converted to a normalized floating-point value to generate the returned two +// float values. The first float value will be extracted from the least significant bits of the +// input; the last float value will be extracted from the most-significant bits. The conversion for +// unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0 +inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); + uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); + *f1 = static_cast<float>(leastSignificantBits) / 65535.0f; + *f2 = static_cast<float>(mostSignificantBits) / 65535.0f; +} + +// Helper functions intended to be used only here. +namespace priv +{ + +inline uint8_t ToPackedUnorm8(float f) +{ + return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f)); +} + +inline int8_t ToPackedSnorm8(float f) +{ + return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f)); +} + +} // namespace priv + +// Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works +// similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the +// unsigned integer starting from the least significant bits. +inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4) +{ + uint8_t bits[4]; + bits[0] = priv::ToPackedUnorm8(f1); + bits[1] = priv::ToPackedUnorm8(f2); + bits[2] = priv::ToPackedUnorm8(f3); + bits[3] = priv::ToPackedUnorm8(f4); + uint32_t result = 0u; + for (int i = 0; i < 4; ++i) + { + int shift = i * 8; + result |= (static_cast<uint32_t>(bits[i]) << shift); + } + return result; +} + +// Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f. +// Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant +// bits. +inline void UnpackUnorm4x8(uint32_t u, float *f) +{ + for (int i = 0; i < 4; ++i) + { + int shift = i * 8; + uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF); + f[i] = static_cast<float>(bits) / 255.0f; + } +} + +// Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats +// are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least +// significant bits. +inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4) +{ + int8_t bits[4]; + bits[0] = priv::ToPackedSnorm8(f1); + bits[1] = priv::ToPackedSnorm8(f2); + bits[2] = priv::ToPackedSnorm8(f3); + bits[3] = priv::ToPackedSnorm8(f4); + uint32_t result = 0u; + for (int i = 0; i < 4; ++i) + { + int shift = i * 8; + result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift); + } + return result; +} + +// Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f. +// Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant +// bits, and clamped to the range -1.0 to 1.0. +inline void UnpackSnorm4x8(uint32_t u, float *f) +{ + for (int i = 0; i < 4; ++i) + { + int shift = i * 8; + int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF); + f[i] = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f); + } +} + +// Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit +// floating-point representation found in the OpenGL ES Specification, and then packing these +// two 16-bit integers into a 32-bit unsigned integer. +// f1: The 16 least-significant bits of the result; +// f2: The 16 most-significant bits. +inline uint32_t packHalf2x16(float f1, float f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1)); + uint16_t mostSignificantBits = static_cast<uint16_t>(float32ToFloat16(f2)); + return static_cast<uint32_t>(mostSignificantBits) << 16 | + static_cast<uint32_t>(leastSignificantBits); +} + +// Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of +// 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL +// ES Specification, and converting them to 32-bit floating-point values. The first float value is +// obtained from the 16 least-significant bits of u; the second component is obtained from the 16 +// most-significant bits of u. +inline void unpackHalf2x16(uint32_t u, float *f1, float *f2) +{ + uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF); + uint16_t mostSignificantBits = static_cast<uint16_t>(u >> 16); + + *f1 = float16ToFloat32(leastSignificantBits); + *f2 = float16ToFloat32(mostSignificantBits); +} + +inline uint8_t sRGBToLinear(uint8_t srgbValue) +{ + float value = srgbValue / 255.0f; + if (value <= 0.04045f) + { + value = value / 12.92f; + } + else + { + value = std::pow((value + 0.055f) / 1.055f, 2.4f); + } + return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f)); +} + +inline uint8_t linearToSRGB(uint8_t linearValue) +{ + float value = linearValue / 255.0f; + if (value <= 0.0f) + { + value = 0.0f; + } + else if (value < 0.0031308f) + { + value = value * 12.92f; + } + else if (value < 1.0f) + { + value = std::pow(value, 0.41666f) * 1.055f - 0.055f; + } + else + { + value = 1.0f; + } + return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f)); +} + +// Reverse the order of the bits. +inline uint32_t BitfieldReverse(uint32_t value) +{ + // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics + // for this, and right now it's not used in performance-critical paths. + uint32_t result = 0u; + for (size_t j = 0u; j < 32u; ++j) + { + result |= (((value >> j) & 1u) << (31u - j)); + } + return result; +} + +// Count the 1 bits. +#if defined(_M_IX86) || defined(_M_X64) +# define ANGLE_HAS_BITCOUNT_32 +inline int BitCount(uint32_t bits) +{ + return static_cast<int>(__popcnt(bits)); +} +# if defined(_M_X64) +# define ANGLE_HAS_BITCOUNT_64 +inline int BitCount(uint64_t bits) +{ + return static_cast<int>(__popcnt64(bits)); +} +# endif // defined(_M_X64) +#endif // defined(_M_IX86) || defined(_M_X64) + +#if defined(ANGLE_PLATFORM_POSIX) +# define ANGLE_HAS_BITCOUNT_32 +inline int BitCount(uint32_t bits) +{ + return __builtin_popcount(bits); +} + +# if defined(ANGLE_IS_64_BIT_CPU) +# define ANGLE_HAS_BITCOUNT_64 +inline int BitCount(uint64_t bits) +{ + return __builtin_popcountll(bits); +} +# endif // defined(ANGLE_IS_64_BIT_CPU) +#endif // defined(ANGLE_PLATFORM_POSIX) + +int BitCountPolyfill(uint32_t bits); + +#if !defined(ANGLE_HAS_BITCOUNT_32) +inline int BitCount(const uint32_t bits) +{ + return BitCountPolyfill(bits); +} +#endif // !defined(ANGLE_HAS_BITCOUNT_32) + +#if !defined(ANGLE_HAS_BITCOUNT_64) +inline int BitCount(const uint64_t bits) +{ + return BitCount(static_cast<uint32_t>(bits >> 32)) + BitCount(static_cast<uint32_t>(bits)); +} +#endif // !defined(ANGLE_HAS_BITCOUNT_64) +#undef ANGLE_HAS_BITCOUNT_32 +#undef ANGLE_HAS_BITCOUNT_64 + +inline int BitCount(uint8_t bits) +{ + return BitCount(static_cast<uint32_t>(bits)); +} + +inline int BitCount(uint16_t bits) +{ + return BitCount(static_cast<uint32_t>(bits)); +} + +#if defined(ANGLE_PLATFORM_WINDOWS) +// Return the index of the least significant bit set. Indexing is such that bit 0 is the least +// significant bit. Implemented for different bit widths on different platforms. +inline unsigned long ScanForward(uint32_t bits) +{ + ASSERT(bits != 0u); + unsigned long firstBitIndex = 0ul; + unsigned char ret = _BitScanForward(&firstBitIndex, bits); + ASSERT(ret != 0u); + return firstBitIndex; +} + +# if defined(ANGLE_IS_64_BIT_CPU) +inline unsigned long ScanForward(uint64_t bits) +{ + ASSERT(bits != 0u); + unsigned long firstBitIndex = 0ul; + unsigned char ret = _BitScanForward64(&firstBitIndex, bits); + ASSERT(ret != 0u); + return firstBitIndex; +} +# endif // defined(ANGLE_IS_64_BIT_CPU) +#endif // defined(ANGLE_PLATFORM_WINDOWS) + +#if defined(ANGLE_PLATFORM_POSIX) +inline unsigned long ScanForward(uint32_t bits) +{ + ASSERT(bits != 0u); + return static_cast<unsigned long>(__builtin_ctz(bits)); +} + +# if defined(ANGLE_IS_64_BIT_CPU) +inline unsigned long ScanForward(uint64_t bits) +{ + ASSERT(bits != 0u); + return static_cast<unsigned long>(__builtin_ctzll(bits)); +} +# endif // defined(ANGLE_IS_64_BIT_CPU) +#endif // defined(ANGLE_PLATFORM_POSIX) + +inline unsigned long ScanForward(uint8_t bits) +{ + return ScanForward(static_cast<uint32_t>(bits)); +} + +inline unsigned long ScanForward(uint16_t bits) +{ + return ScanForward(static_cast<uint32_t>(bits)); +} + +// Return the index of the most significant bit set. Indexing is such that bit 0 is the least +// significant bit. +inline unsigned long ScanReverse(unsigned long bits) +{ + ASSERT(bits != 0u); +#if defined(ANGLE_PLATFORM_WINDOWS) + unsigned long lastBitIndex = 0ul; + unsigned char ret = _BitScanReverse(&lastBitIndex, bits); + ASSERT(ret != 0u); + return lastBitIndex; +#elif defined(ANGLE_PLATFORM_POSIX) + return static_cast<unsigned long>(sizeof(unsigned long) * CHAR_BIT - 1 - __builtin_clzl(bits)); +#else +# error Please implement bit-scan-reverse for your platform! +#endif +} + +// Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL. +template <typename T> +int FindLSB(T bits) +{ + static_assert(std::is_integral<T>::value, "must be integral type."); + if (bits == 0u) + { + return -1; + } + else + { + return static_cast<int>(ScanForward(bits)); + } +} + +// Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL. +template <typename T> +int FindMSB(T bits) +{ + static_assert(std::is_integral<T>::value, "must be integral type."); + if (bits == 0u) + { + return -1; + } + else + { + return static_cast<int>(ScanReverse(bits)); + } +} + +// Returns whether the argument is Not a Number. +// IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) - +// non-zero. +inline bool isNaN(float f) +{ + // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u + // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu + return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && + (bitCast<uint32_t>(f) & 0x7fffffu); +} + +// Returns whether the argument is infinity. +// IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) - +// zero. +inline bool isInf(float f) +{ + // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u + // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu + return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) && + !(bitCast<uint32_t>(f) & 0x7fffffu); +} + +namespace priv +{ +template <unsigned int N, unsigned int R> +struct iSquareRoot +{ + static constexpr unsigned int solve() + { + return (R * R > N) + ? 0 + : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value)); + } + enum Result + { + value = iSquareRoot::solve() + }; +}; + +template <unsigned int N> +struct iSquareRoot<N, N> +{ + enum result + { + value = N + }; +}; + +} // namespace priv + +template <unsigned int N> +constexpr unsigned int iSquareRoot() +{ + return priv::iSquareRoot<N, 1>::value; +} + +// Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow. +// +// Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow +// behavior is undefined. + +template <typename T> +inline T WrappingSum(T lhs, T rhs) +{ + uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); + uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); + return static_cast<T>(lhsUnsigned + rhsUnsigned); +} + +template <typename T> +inline T WrappingDiff(T lhs, T rhs) +{ + uint32_t lhsUnsigned = static_cast<uint32_t>(lhs); + uint32_t rhsUnsigned = static_cast<uint32_t>(rhs); + return static_cast<T>(lhsUnsigned - rhsUnsigned); +} + +inline int32_t WrappingMul(int32_t lhs, int32_t rhs) +{ + int64_t lhsWide = static_cast<int64_t>(lhs); + int64_t rhsWide = static_cast<int64_t>(rhs); + // The multiplication is guaranteed not to overflow. + int64_t resultWide = lhsWide * rhsWide; + // Implement the desired wrapping behavior by masking out the high-order 32 bits. + resultWide = resultWide & 0xffffffffll; + // Casting to a narrower signed type is fine since the casted value is representable in the + // narrower type. + return static_cast<int32_t>(resultWide); +} + +inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension) +{ + return 2.0f * dimensionScreen / viewportDimension; +} + +inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension) +{ + float halfShifted = coordinateScreen / viewportDimension; + return 2.0f * (halfShifted - 0.5f); +} + +} // namespace gl + +namespace rx +{ + +template <typename T> +T roundUp(const T value, const T alignment) +{ + auto temp = value + alignment - static_cast<T>(1); + return temp - temp % alignment; +} + +template <typename T> +angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment) +{ + angle::CheckedNumeric<T> checkedValue(value); + angle::CheckedNumeric<T> checkedAlignment(alignment); + return roundUp(checkedValue, checkedAlignment); +} + +inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor) +{ + unsigned int divided = value / divisor; + return (divided + ((value % divisor == 0) ? 0 : 1)); +} + +#if defined(__has_builtin) +# define ANGLE_HAS_BUILTIN(x) __has_builtin(x) +#else +# define ANGLE_HAS_BUILTIN(x) 0 +#endif + +#if defined(_MSC_VER) + +# define ANGLE_ROTL(x, y) _rotl(x, y) +# define ANGLE_ROTL64(x, y) _rotl64(x, y) +# define ANGLE_ROTR16(x, y) _rotr16(x, y) + +#elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \ + ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16) + +# define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y) +# define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y) +# define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y) + +#else + +inline uint32_t RotL(uint32_t x, int8_t r) +{ + return (x << r) | (x >> (32 - r)); +} + +inline uint64_t RotL64(uint64_t x, int8_t r) +{ + return (x << r) | (x >> (64 - r)); +} + +inline uint16_t RotR16(uint16_t x, int8_t r) +{ + return (x >> r) | (x << (16 - r)); +} + +# define ANGLE_ROTL(x, y) ::rx::RotL(x, y) +# define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y) +# define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y) + +#endif // namespace rx + +constexpr unsigned int Log2(unsigned int bytes) +{ + return bytes == 1 ? 0 : (1 + Log2(bytes / 2)); +} +} // namespace rx + +#endif // COMMON_MATHUTIL_H_ |