summaryrefslogtreecommitdiffstats
path: root/js/src/builtin/String.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /js/src/builtin/String.cpp
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/builtin/String.cpp')
-rw-r--r--js/src/builtin/String.cpp4520
1 files changed, 4520 insertions, 0 deletions
diff --git a/js/src/builtin/String.cpp b/js/src/builtin/String.cpp
new file mode 100644
index 0000000000..ffea9dea7c
--- /dev/null
+++ b/js/src/builtin/String.cpp
@@ -0,0 +1,4520 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "builtin/String.h"
+
+#include "mozilla/Attributes.h"
+#include "mozilla/CheckedInt.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/PodOperations.h"
+#include "mozilla/Range.h"
+#include "mozilla/TextUtils.h"
+#include "mozilla/Unused.h"
+
+#include <algorithm>
+#include <limits>
+#include <string.h>
+#include <type_traits>
+
+#include "jsapi.h"
+#include "jsnum.h"
+#include "jstypes.h"
+
+#include "builtin/Array.h"
+#include "builtin/Boolean.h"
+#if JS_HAS_INTL_API
+# include "builtin/intl/CommonFunctions.h"
+#endif
+#include "builtin/RegExp.h"
+#include "jit/InlinableNatives.h"
+#include "js/Conversions.h"
+#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
+#include "js/friend/StackLimits.h" // js::CheckRecursionLimit
+#if !JS_HAS_INTL_API
+# include "js/LocaleSensitive.h"
+#endif
+#include "js/PropertySpec.h"
+#include "js/StableStringChars.h"
+#include "js/UniquePtr.h"
+#if JS_HAS_INTL_API
+# include "unicode/uchar.h"
+# include "unicode/unorm2.h"
+# include "unicode/ustring.h"
+# include "unicode/utypes.h"
+#endif
+#include "util/StringBuffer.h"
+#include "util/Unicode.h"
+#include "vm/BytecodeUtil.h"
+#include "vm/GlobalObject.h"
+#include "vm/Interpreter.h"
+#include "vm/JSAtom.h"
+#include "vm/JSContext.h"
+#include "vm/JSObject.h"
+#include "vm/Opcodes.h"
+#include "vm/Printer.h"
+#include "vm/RegExpObject.h"
+#include "vm/RegExpStatics.h"
+#include "vm/SelfHosting.h"
+#include "vm/ToSource.h" // js::ValueToSource
+
+#include "vm/InlineCharBuffer-inl.h"
+#include "vm/Interpreter-inl.h"
+#include "vm/StringObject-inl.h"
+#include "vm/StringType-inl.h"
+
+using namespace js;
+
+using JS::Symbol;
+using JS::SymbolCode;
+
+using mozilla::AsciiAlphanumericToNumber;
+using mozilla::CheckedInt;
+using mozilla::IsAsciiHexDigit;
+using mozilla::IsNaN;
+using mozilla::PodCopy;
+using mozilla::RangedPtr;
+
+using JS::AutoCheckCannotGC;
+using JS::AutoStableStringChars;
+
+static JSLinearString* ArgToLinearString(JSContext* cx, const CallArgs& args,
+ unsigned argno) {
+ if (argno >= args.length()) {
+ return cx->names().undefined;
+ }
+
+ JSString* str = ToString<CanGC>(cx, args[argno]);
+ if (!str) {
+ return nullptr;
+ }
+
+ return str->ensureLinear(cx);
+}
+
+/*
+ * Forward declarations for URI encode/decode and helper routines
+ */
+static bool str_decodeURI(JSContext* cx, unsigned argc, Value* vp);
+
+static bool str_decodeURI_Component(JSContext* cx, unsigned argc, Value* vp);
+
+static bool str_encodeURI(JSContext* cx, unsigned argc, Value* vp);
+
+static bool str_encodeURI_Component(JSContext* cx, unsigned argc, Value* vp);
+
+/*
+ * Global string methods
+ */
+
+/* ES5 B.2.1 */
+template <typename CharT>
+static bool Escape(JSContext* cx, const CharT* chars, uint32_t length,
+ InlineCharBuffer<Latin1Char>& newChars,
+ uint32_t* newLengthOut) {
+ // clang-format off
+ static const uint8_t shouldPassThrough[128] = {
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1, /* !"#$%&'()*+,-./ */
+ 1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, /* 0123456789:;<=>? */
+ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* @ABCDEFGHIJKLMNO */
+ 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1, /* PQRSTUVWXYZ[\]^_ */
+ 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* `abcdefghijklmno */
+ 1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, /* pqrstuvwxyz{\}~ DEL */
+ };
+ // clang-format on
+
+ /* Take a first pass and see how big the result string will need to be. */
+ uint32_t newLength = length;
+ for (size_t i = 0; i < length; i++) {
+ char16_t ch = chars[i];
+ if (ch < 128 && shouldPassThrough[ch]) {
+ continue;
+ }
+
+ /*
+ * newlength is incremented below by at most 5 and at this point it must
+ * be a valid string length, so this should never overflow uint32_t.
+ */
+ static_assert(JSString::MAX_LENGTH < UINT32_MAX - 5,
+ "Adding 5 to valid string length should not overflow");
+
+ MOZ_ASSERT(newLength <= JSString::MAX_LENGTH);
+
+ /* The character will be encoded as %XX or %uXXXX. */
+ newLength += (ch < 256) ? 2 : 5;
+
+ if (MOZ_UNLIKELY(newLength > JSString::MAX_LENGTH)) {
+ ReportAllocationOverflow(cx);
+ return false;
+ }
+ }
+
+ if (newLength == length) {
+ *newLengthOut = newLength;
+ return true;
+ }
+
+ if (!newChars.maybeAlloc(cx, newLength)) {
+ return false;
+ }
+
+ static const char digits[] = "0123456789ABCDEF";
+
+ Latin1Char* rawNewChars = newChars.get();
+ size_t i, ni;
+ for (i = 0, ni = 0; i < length; i++) {
+ char16_t ch = chars[i];
+ if (ch < 128 && shouldPassThrough[ch]) {
+ rawNewChars[ni++] = ch;
+ } else if (ch < 256) {
+ rawNewChars[ni++] = '%';
+ rawNewChars[ni++] = digits[ch >> 4];
+ rawNewChars[ni++] = digits[ch & 0xF];
+ } else {
+ rawNewChars[ni++] = '%';
+ rawNewChars[ni++] = 'u';
+ rawNewChars[ni++] = digits[ch >> 12];
+ rawNewChars[ni++] = digits[(ch & 0xF00) >> 8];
+ rawNewChars[ni++] = digits[(ch & 0xF0) >> 4];
+ rawNewChars[ni++] = digits[ch & 0xF];
+ }
+ }
+ MOZ_ASSERT(ni == newLength);
+
+ *newLengthOut = newLength;
+ return true;
+}
+
+static bool str_escape(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ InlineCharBuffer<Latin1Char> newChars;
+ uint32_t newLength = 0; // initialize to silence GCC warning
+ if (str->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ if (!Escape(cx, str->latin1Chars(nogc), str->length(), newChars,
+ &newLength)) {
+ return false;
+ }
+ } else {
+ AutoCheckCannotGC nogc;
+ if (!Escape(cx, str->twoByteChars(nogc), str->length(), newChars,
+ &newLength)) {
+ return false;
+ }
+ }
+
+ // Return input if no characters need to be escaped.
+ if (newLength == str->length()) {
+ args.rval().setString(str);
+ return true;
+ }
+
+ JSString* res = newChars.toString(cx, newLength);
+ if (!res) {
+ return false;
+ }
+
+ args.rval().setString(res);
+ return true;
+}
+
+template <typename CharT>
+static inline bool Unhex4(const RangedPtr<const CharT> chars,
+ char16_t* result) {
+ CharT a = chars[0], b = chars[1], c = chars[2], d = chars[3];
+
+ if (!(IsAsciiHexDigit(a) && IsAsciiHexDigit(b) && IsAsciiHexDigit(c) &&
+ IsAsciiHexDigit(d))) {
+ return false;
+ }
+
+ char16_t unhex = AsciiAlphanumericToNumber(a);
+ unhex = (unhex << 4) + AsciiAlphanumericToNumber(b);
+ unhex = (unhex << 4) + AsciiAlphanumericToNumber(c);
+ unhex = (unhex << 4) + AsciiAlphanumericToNumber(d);
+ *result = unhex;
+ return true;
+}
+
+template <typename CharT>
+static inline bool Unhex2(const RangedPtr<const CharT> chars,
+ char16_t* result) {
+ CharT a = chars[0], b = chars[1];
+
+ if (!(IsAsciiHexDigit(a) && IsAsciiHexDigit(b))) {
+ return false;
+ }
+
+ *result = (AsciiAlphanumericToNumber(a) << 4) + AsciiAlphanumericToNumber(b);
+ return true;
+}
+
+template <typename CharT>
+static bool Unescape(StringBuffer& sb,
+ const mozilla::Range<const CharT> chars) {
+ // Step 2.
+ uint32_t length = chars.length();
+
+ /*
+ * Note that the spec algorithm has been optimized to avoid building
+ * a string in the case where no escapes are present.
+ */
+ bool building = false;
+
+#define ENSURE_BUILDING \
+ do { \
+ if (!building) { \
+ building = true; \
+ if (!sb.reserve(length)) return false; \
+ sb.infallibleAppend(chars.begin().get(), k); \
+ } \
+ } while (false);
+
+ // Step 4.
+ uint32_t k = 0;
+
+ // Step 5.
+ while (k < length) {
+ // Step 5.a.
+ char16_t c = chars[k];
+
+ // Step 5.b.
+ if (c == '%') {
+ static_assert(JSString::MAX_LENGTH < UINT32_MAX - 6,
+ "String length is not near UINT32_MAX");
+
+ // Steps 5.b.i-ii.
+ if (k + 6 <= length && chars[k + 1] == 'u') {
+ if (Unhex4(chars.begin() + k + 2, &c)) {
+ ENSURE_BUILDING
+ k += 5;
+ }
+ } else if (k + 3 <= length) {
+ if (Unhex2(chars.begin() + k + 1, &c)) {
+ ENSURE_BUILDING
+ k += 2;
+ }
+ }
+ }
+
+ // Step 5.c.
+ if (building && !sb.append(c)) {
+ return false;
+ }
+
+ // Step 5.d.
+ k += 1;
+ }
+
+ return true;
+#undef ENSURE_BUILDING
+}
+
+// ES2018 draft rev f83aa38282c2a60c6916ebc410bfdf105a0f6a54
+// B.2.1.2 unescape ( string )
+static bool str_unescape(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Step 1.
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ // Step 3.
+ JSStringBuilder sb(cx);
+ if (str->hasTwoByteChars() && !sb.ensureTwoByteChars()) {
+ return false;
+ }
+
+ // Steps 2, 4-5.
+ if (str->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ if (!Unescape(sb, str->latin1Range(nogc))) {
+ return false;
+ }
+ } else {
+ AutoCheckCannotGC nogc;
+ if (!Unescape(sb, str->twoByteRange(nogc))) {
+ return false;
+ }
+ }
+
+ // Step 6.
+ JSLinearString* result;
+ if (!sb.empty()) {
+ result = sb.finishString();
+ if (!result) {
+ return false;
+ }
+ } else {
+ result = str;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+static bool str_uneval(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ JSString* str = ValueToSource(cx, args.get(0));
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+static const JSFunctionSpec string_functions[] = {
+ JS_FN(js_escape_str, str_escape, 1, JSPROP_RESOLVING),
+ JS_FN(js_unescape_str, str_unescape, 1, JSPROP_RESOLVING),
+ JS_FN(js_uneval_str, str_uneval, 1, JSPROP_RESOLVING),
+ JS_FN(js_decodeURI_str, str_decodeURI, 1, JSPROP_RESOLVING),
+ JS_FN(js_encodeURI_str, str_encodeURI, 1, JSPROP_RESOLVING),
+ JS_FN(js_decodeURIComponent_str, str_decodeURI_Component, 1,
+ JSPROP_RESOLVING),
+ JS_FN(js_encodeURIComponent_str, str_encodeURI_Component, 1,
+ JSPROP_RESOLVING),
+
+ JS_FS_END};
+
+static const unsigned STRING_ELEMENT_ATTRS =
+ JSPROP_ENUMERATE | JSPROP_READONLY | JSPROP_PERMANENT;
+
+static bool str_enumerate(JSContext* cx, HandleObject obj) {
+ RootedString str(cx, obj->as<StringObject>().unbox());
+ js::StaticStrings& staticStrings = cx->staticStrings();
+
+ RootedValue value(cx);
+ for (size_t i = 0, length = str->length(); i < length; i++) {
+ JSString* str1 = staticStrings.getUnitStringForElement(cx, str, i);
+ if (!str1) {
+ return false;
+ }
+ value.setString(str1);
+ if (!DefineDataElement(cx, obj, i, value,
+ STRING_ELEMENT_ATTRS | JSPROP_RESOLVING)) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static bool str_mayResolve(const JSAtomState&, jsid id, JSObject*) {
+ // str_resolve ignores non-integer ids.
+ return JSID_IS_INT(id);
+}
+
+static bool str_resolve(JSContext* cx, HandleObject obj, HandleId id,
+ bool* resolvedp) {
+ if (!JSID_IS_INT(id)) {
+ return true;
+ }
+
+ RootedString str(cx, obj->as<StringObject>().unbox());
+
+ int32_t slot = JSID_TO_INT(id);
+ if ((size_t)slot < str->length()) {
+ JSString* str1 =
+ cx->staticStrings().getUnitStringForElement(cx, str, size_t(slot));
+ if (!str1) {
+ return false;
+ }
+ RootedValue value(cx, StringValue(str1));
+ if (!DefineDataElement(cx, obj, uint32_t(slot), value,
+ STRING_ELEMENT_ATTRS | JSPROP_RESOLVING)) {
+ return false;
+ }
+ *resolvedp = true;
+ }
+ return true;
+}
+
+static const JSClassOps StringObjectClassOps = {
+ nullptr, // addProperty
+ nullptr, // delProperty
+ str_enumerate, // enumerate
+ nullptr, // newEnumerate
+ str_resolve, // resolve
+ str_mayResolve, // mayResolve
+ nullptr, // finalize
+ nullptr, // call
+ nullptr, // hasInstance
+ nullptr, // construct
+ nullptr, // trace
+};
+
+const JSClass StringObject::class_ = {
+ js_String_str,
+ JSCLASS_HAS_RESERVED_SLOTS(StringObject::RESERVED_SLOTS) |
+ JSCLASS_HAS_CACHED_PROTO(JSProto_String),
+ &StringObjectClassOps, &StringObject::classSpec_};
+
+/*
+ * Perform the initial |RequireObjectCoercible(thisv)| and |ToString(thisv)|
+ * from nearly all String.prototype.* functions.
+ */
+static MOZ_ALWAYS_INLINE JSString* ToStringForStringFunction(
+ JSContext* cx, const char* funName, HandleValue thisv) {
+ if (!CheckRecursionLimit(cx)) {
+ return nullptr;
+ }
+
+ if (thisv.isString()) {
+ return thisv.toString();
+ }
+
+ if (thisv.isObject()) {
+ RootedObject obj(cx, &thisv.toObject());
+ if (obj->is<StringObject>()) {
+ StringObject* nobj = &obj->as<StringObject>();
+ // We have to make sure that the ToPrimitive call from ToString
+ // would be unobservable.
+ if (HasNoToPrimitiveMethodPure(nobj, cx) &&
+ HasNativeMethodPure(nobj, cx->names().toString, str_toString, cx)) {
+ return nobj->unbox();
+ }
+ }
+ } else if (thisv.isNullOrUndefined()) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_INCOMPATIBLE_PROTO, "String", funName,
+ thisv.isNull() ? "null" : "undefined");
+ return nullptr;
+ }
+
+ return ToStringSlow<CanGC>(cx, thisv);
+}
+
+MOZ_ALWAYS_INLINE bool IsString(HandleValue v) {
+ return v.isString() || (v.isObject() && v.toObject().is<StringObject>());
+}
+
+MOZ_ALWAYS_INLINE bool str_toSource_impl(JSContext* cx, const CallArgs& args) {
+ MOZ_ASSERT(IsString(args.thisv()));
+
+ JSString* str = ToString<CanGC>(cx, args.thisv());
+ if (!str) {
+ return false;
+ }
+
+ UniqueChars quoted = QuoteString(cx, str, '"');
+ if (!quoted) {
+ return false;
+ }
+
+ JSStringBuilder sb(cx);
+ if (!sb.append("(new String(") ||
+ !sb.append(quoted.get(), strlen(quoted.get())) || !sb.append("))")) {
+ return false;
+ }
+
+ JSString* result = sb.finishString();
+ if (!result) {
+ return false;
+ }
+ args.rval().setString(result);
+ return true;
+}
+
+static bool str_toSource(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return CallNonGenericMethod<IsString, str_toSource_impl>(cx, args);
+}
+
+MOZ_ALWAYS_INLINE bool str_toString_impl(JSContext* cx, const CallArgs& args) {
+ MOZ_ASSERT(IsString(args.thisv()));
+
+ args.rval().setString(
+ args.thisv().isString()
+ ? args.thisv().toString()
+ : args.thisv().toObject().as<StringObject>().unbox());
+ return true;
+}
+
+bool js::str_toString(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return CallNonGenericMethod<IsString, str_toString_impl>(cx, args);
+}
+
+/*
+ * Java-like string native methods.
+ */
+
+JSString* js::SubstringKernel(JSContext* cx, HandleString str, int32_t beginInt,
+ int32_t lengthInt) {
+ MOZ_ASSERT(0 <= beginInt);
+ MOZ_ASSERT(0 <= lengthInt);
+ MOZ_ASSERT(uint32_t(beginInt) <= str->length());
+ MOZ_ASSERT(uint32_t(lengthInt) <= str->length() - beginInt);
+
+ uint32_t begin = beginInt;
+ uint32_t len = lengthInt;
+
+ /*
+ * Optimization for one level deep ropes.
+ * This is common for the following pattern:
+ *
+ * while() {
+ * text = text.substr(0, x) + "bla" + text.substr(x)
+ * test.charCodeAt(x + 1)
+ * }
+ */
+ if (str->isRope()) {
+ JSRope* rope = &str->asRope();
+
+ /* Substring is totally in leftChild of rope. */
+ if (begin + len <= rope->leftChild()->length()) {
+ return NewDependentString(cx, rope->leftChild(), begin, len);
+ }
+
+ /* Substring is totally in rightChild of rope. */
+ if (begin >= rope->leftChild()->length()) {
+ begin -= rope->leftChild()->length();
+ return NewDependentString(cx, rope->rightChild(), begin, len);
+ }
+
+ /*
+ * Requested substring is partly in the left and partly in right child.
+ * Create a rope of substrings for both childs.
+ */
+ MOZ_ASSERT(begin < rope->leftChild()->length() &&
+ begin + len > rope->leftChild()->length());
+
+ size_t lhsLength = rope->leftChild()->length() - begin;
+ size_t rhsLength = begin + len - rope->leftChild()->length();
+
+ Rooted<JSRope*> ropeRoot(cx, rope);
+ RootedString lhs(
+ cx, NewDependentString(cx, ropeRoot->leftChild(), begin, lhsLength));
+ if (!lhs) {
+ return nullptr;
+ }
+
+ RootedString rhs(
+ cx, NewDependentString(cx, ropeRoot->rightChild(), 0, rhsLength));
+ if (!rhs) {
+ return nullptr;
+ }
+
+ return JSRope::new_<CanGC>(cx, lhs, rhs, len);
+ }
+
+ return NewDependentString(cx, str, begin, len);
+}
+
+/**
+ * U+03A3 GREEK CAPITAL LETTER SIGMA has two different lower case mappings
+ * depending on its context:
+ * When it's preceded by a cased character and not followed by another cased
+ * character, its lower case form is U+03C2 GREEK SMALL LETTER FINAL SIGMA.
+ * Otherwise its lower case mapping is U+03C3 GREEK SMALL LETTER SIGMA.
+ *
+ * Unicode 9.0, §3.13 Default Case Algorithms
+ */
+static char16_t Final_Sigma(const char16_t* chars, size_t length,
+ size_t index) {
+ MOZ_ASSERT(index < length);
+ MOZ_ASSERT(chars[index] == unicode::GREEK_CAPITAL_LETTER_SIGMA);
+ MOZ_ASSERT(unicode::ToLowerCase(unicode::GREEK_CAPITAL_LETTER_SIGMA) ==
+ unicode::GREEK_SMALL_LETTER_SIGMA);
+
+#if JS_HAS_INTL_API
+ // Tell the analysis the BinaryProperty.contains function pointer called by
+ // u_hasBinaryProperty cannot GC.
+ JS::AutoSuppressGCAnalysis nogc;
+
+ bool precededByCased = false;
+ for (size_t i = index; i > 0;) {
+ char16_t c = chars[--i];
+ uint32_t codePoint = c;
+ if (unicode::IsTrailSurrogate(c) && i > 0) {
+ char16_t lead = chars[i - 1];
+ if (unicode::IsLeadSurrogate(lead)) {
+ codePoint = unicode::UTF16Decode(lead, c);
+ i--;
+ }
+ }
+
+ // Ignore any characters with the property Case_Ignorable.
+ // NB: We need to skip over all Case_Ignorable characters, even when
+ // they also have the Cased binary property.
+ if (u_hasBinaryProperty(codePoint, UCHAR_CASE_IGNORABLE)) {
+ continue;
+ }
+
+ precededByCased = u_hasBinaryProperty(codePoint, UCHAR_CASED);
+ break;
+ }
+ if (!precededByCased) {
+ return unicode::GREEK_SMALL_LETTER_SIGMA;
+ }
+
+ bool followedByCased = false;
+ for (size_t i = index + 1; i < length;) {
+ char16_t c = chars[i++];
+ uint32_t codePoint = c;
+ if (unicode::IsLeadSurrogate(c) && i < length) {
+ char16_t trail = chars[i];
+ if (unicode::IsTrailSurrogate(trail)) {
+ codePoint = unicode::UTF16Decode(c, trail);
+ i++;
+ }
+ }
+
+ // Ignore any characters with the property Case_Ignorable.
+ // NB: We need to skip over all Case_Ignorable characters, even when
+ // they also have the Cased binary property.
+ if (u_hasBinaryProperty(codePoint, UCHAR_CASE_IGNORABLE)) {
+ continue;
+ }
+
+ followedByCased = u_hasBinaryProperty(codePoint, UCHAR_CASED);
+ break;
+ }
+ if (!followedByCased) {
+ return unicode::GREEK_SMALL_LETTER_FINAL_SIGMA;
+ }
+#endif
+
+ return unicode::GREEK_SMALL_LETTER_SIGMA;
+}
+
+// If |srcLength == destLength| is true, the destination buffer was allocated
+// with the same size as the source buffer. When we append characters which
+// have special casing mappings, we test |srcLength == destLength| to decide
+// if we need to back out and reallocate a sufficiently large destination
+// buffer. Otherwise the destination buffer was allocated with the correct
+// size to hold all lower case mapped characters, i.e.
+// |destLength == ToLowerCaseLength(srcChars, 0, srcLength)| is true.
+template <typename CharT>
+static size_t ToLowerCaseImpl(CharT* destChars, const CharT* srcChars,
+ size_t startIndex, size_t srcLength,
+ size_t destLength) {
+ MOZ_ASSERT(startIndex < srcLength);
+ MOZ_ASSERT(srcLength <= destLength);
+ if constexpr (std::is_same_v<CharT, Latin1Char>) {
+ MOZ_ASSERT(srcLength == destLength);
+ }
+
+ size_t j = startIndex;
+ for (size_t i = startIndex; i < srcLength; i++) {
+ CharT c = srcChars[i];
+ if constexpr (!std::is_same_v<CharT, Latin1Char>) {
+ if (unicode::IsLeadSurrogate(c) && i + 1 < srcLength) {
+ char16_t trail = srcChars[i + 1];
+ if (unicode::IsTrailSurrogate(trail)) {
+ trail = unicode::ToLowerCaseNonBMPTrail(c, trail);
+ destChars[j++] = c;
+ destChars[j++] = trail;
+ i++;
+ continue;
+ }
+ }
+
+ // Special case: U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE
+ // lowercases to <U+0069 U+0307>.
+ if (c == unicode::LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
+ // Return if the output buffer is too small.
+ if (srcLength == destLength) {
+ return i;
+ }
+
+ destChars[j++] = CharT('i');
+ destChars[j++] = CharT(unicode::COMBINING_DOT_ABOVE);
+ continue;
+ }
+
+ // Special case: U+03A3 GREEK CAPITAL LETTER SIGMA lowercases to
+ // one of two codepoints depending on context.
+ if (c == unicode::GREEK_CAPITAL_LETTER_SIGMA) {
+ destChars[j++] = Final_Sigma(srcChars, srcLength, i);
+ continue;
+ }
+ }
+
+ c = unicode::ToLowerCase(c);
+ destChars[j++] = c;
+ }
+
+ MOZ_ASSERT(j == destLength);
+ return srcLength;
+}
+
+static size_t ToLowerCaseLength(const char16_t* chars, size_t startIndex,
+ size_t length) {
+ size_t lowerLength = length;
+ for (size_t i = startIndex; i < length; i++) {
+ char16_t c = chars[i];
+
+ // U+0130 is lowercased to the two-element sequence <U+0069 U+0307>.
+ if (c == unicode::LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
+ lowerLength += 1;
+ }
+ }
+ return lowerLength;
+}
+
+template <typename CharT>
+static JSString* ToLowerCase(JSContext* cx, JSLinearString* str) {
+ // Unlike toUpperCase, toLowerCase has the nice invariant that if the
+ // input is a Latin-1 string, the output is also a Latin-1 string.
+
+ InlineCharBuffer<CharT> newChars;
+
+ const size_t length = str->length();
+ size_t resultLength;
+ {
+ AutoCheckCannotGC nogc;
+ const CharT* chars = str->chars<CharT>(nogc);
+
+ // We don't need extra special casing checks in the loop below,
+ // because U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE and U+03A3
+ // GREEK CAPITAL LETTER SIGMA already have simple lower case mappings.
+ MOZ_ASSERT(unicode::ChangesWhenLowerCased(
+ unicode::LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE),
+ "U+0130 has a simple lower case mapping");
+ MOZ_ASSERT(
+ unicode::ChangesWhenLowerCased(unicode::GREEK_CAPITAL_LETTER_SIGMA),
+ "U+03A3 has a simple lower case mapping");
+
+ // One element Latin-1 strings can be directly retrieved from the
+ // static strings cache.
+ if constexpr (std::is_same_v<CharT, Latin1Char>) {
+ if (length == 1) {
+ CharT lower = unicode::ToLowerCase(chars[0]);
+ MOZ_ASSERT(StaticStrings::hasUnit(lower));
+
+ return cx->staticStrings().getUnit(lower);
+ }
+ }
+
+ // Look for the first character that changes when lowercased.
+ size_t i = 0;
+ for (; i < length; i++) {
+ CharT c = chars[i];
+ if constexpr (!std::is_same_v<CharT, Latin1Char>) {
+ if (unicode::IsLeadSurrogate(c) && i + 1 < length) {
+ CharT trail = chars[i + 1];
+ if (unicode::IsTrailSurrogate(trail)) {
+ if (unicode::ChangesWhenLowerCasedNonBMP(c, trail)) {
+ break;
+ }
+
+ i++;
+ continue;
+ }
+ }
+ }
+ if (unicode::ChangesWhenLowerCased(c)) {
+ break;
+ }
+ }
+
+ // If no character needs to change, return the input string.
+ if (i == length) {
+ return str;
+ }
+
+ resultLength = length;
+ if (!newChars.maybeAlloc(cx, resultLength)) {
+ return nullptr;
+ }
+
+ PodCopy(newChars.get(), chars, i);
+
+ size_t readChars =
+ ToLowerCaseImpl(newChars.get(), chars, i, length, resultLength);
+ if constexpr (!std::is_same_v<CharT, Latin1Char>) {
+ if (readChars < length) {
+ resultLength = ToLowerCaseLength(chars, readChars, length);
+
+ if (!newChars.maybeRealloc(cx, length, resultLength)) {
+ return nullptr;
+ }
+
+ MOZ_ALWAYS_TRUE(length == ToLowerCaseImpl(newChars.get(), chars,
+ readChars, length,
+ resultLength));
+ }
+ } else {
+ MOZ_ASSERT(readChars == length,
+ "Latin-1 strings don't have special lower case mappings");
+ }
+ }
+
+ return newChars.toStringDontDeflate(cx, resultLength);
+}
+
+JSString* js::StringToLowerCase(JSContext* cx, HandleString string) {
+ JSLinearString* linear = string->ensureLinear(cx);
+ if (!linear) {
+ return nullptr;
+ }
+
+ if (linear->hasLatin1Chars()) {
+ return ToLowerCase<Latin1Char>(cx, linear);
+ }
+ return ToLowerCase<char16_t>(cx, linear);
+}
+
+static bool str_toLowerCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(cx,
+ ToStringForStringFunction(cx, "toLowerCase", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ JSString* result = StringToLowerCase(cx, str);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#if JS_HAS_INTL_API
+// String.prototype.toLocaleLowerCase is self-hosted when Intl is exposed,
+// with core functionality performed by the intrinsic below.
+
+static const char* CaseMappingLocale(JSContext* cx, JSString* str) {
+ JSLinearString* locale = str->ensureLinear(cx);
+ if (!locale) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(locale->length() >= 2, "locale is a valid language tag");
+
+ // Lithuanian, Turkish, and Azeri have language dependent case mappings.
+ static const char languagesWithSpecialCasing[][3] = {"lt", "tr", "az"};
+
+ // All strings in |languagesWithSpecialCasing| are of length two, so we
+ // only need to compare the first two characters to find a matching locale.
+ // ES2017 Intl, §9.2.2 BestAvailableLocale
+ if (locale->length() == 2 || locale->latin1OrTwoByteChar(2) == '-') {
+ for (const auto& language : languagesWithSpecialCasing) {
+ if (locale->latin1OrTwoByteChar(0) == language[0] &&
+ locale->latin1OrTwoByteChar(1) == language[1]) {
+ return language;
+ }
+ }
+ }
+
+ return ""; // ICU root locale
+}
+
+bool js::intl_toLocaleLowerCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ MOZ_ASSERT(args.length() == 2);
+ MOZ_ASSERT(args[0].isString());
+ MOZ_ASSERT(args[1].isString());
+
+ RootedString string(cx, args[0].toString());
+
+ const char* locale = CaseMappingLocale(cx, args[1].toString());
+ if (!locale) {
+ return false;
+ }
+
+ // Call String.prototype.toLowerCase() for language independent casing.
+ if (intl::StringsAreEqual(locale, "")) {
+ JSString* str = StringToLowerCase(cx, string);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+ }
+
+ AutoStableStringChars inputChars(cx);
+ if (!inputChars.initTwoByte(cx, string)) {
+ return false;
+ }
+ mozilla::Range<const char16_t> input = inputChars.twoByteRange();
+
+ // Note: maximum case mapping length is three characters, so the result
+ // length might be > INT32_MAX. ICU will fail in this case.
+ static_assert(JSString::MAX_LENGTH <= INT32_MAX,
+ "String length must fit in int32_t for ICU");
+
+ static const size_t INLINE_CAPACITY = js::intl::INITIAL_CHAR_BUFFER_SIZE;
+
+ Vector<char16_t, INLINE_CAPACITY> chars(cx);
+ if (!chars.resize(std::max(INLINE_CAPACITY, input.length()))) {
+ return false;
+ }
+
+ int32_t size = intl::CallICU(
+ cx,
+ [&input, locale](UChar* chars, int32_t size, UErrorCode* status) {
+ return u_strToLower(chars, size, input.begin().get(), input.length(),
+ locale, status);
+ },
+ chars);
+ if (size < 0) {
+ return false;
+ }
+
+ JSString* result = NewStringCopyN<CanGC>(cx, chars.begin(), size);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#else
+
+// When the Intl API is not exposed, String.prototype.toLowerCase is implemented
+// in C++.
+static bool str_toLocaleLowerCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(
+ cx, ToStringForStringFunction(cx, "toLocaleLowerCase", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ /*
+ * Forcefully ignore the first (or any) argument and return toLowerCase(),
+ * ECMA has reserved that argument, presumably for defining the locale.
+ */
+ if (cx->runtime()->localeCallbacks &&
+ cx->runtime()->localeCallbacks->localeToLowerCase) {
+ RootedValue result(cx);
+ if (!cx->runtime()->localeCallbacks->localeToLowerCase(cx, str, &result)) {
+ return false;
+ }
+
+ args.rval().set(result);
+ return true;
+ }
+
+ RootedLinearString linear(cx, str->ensureLinear(cx));
+ if (!linear) {
+ return false;
+ }
+
+ JSString* result = StringToLowerCase(cx, linear);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#endif // JS_HAS_INTL_API
+
+static inline bool ToUpperCaseHasSpecialCasing(Latin1Char charCode) {
+ // U+00DF LATIN SMALL LETTER SHARP S is the only Latin-1 code point with
+ // special casing rules, so detect it inline.
+ bool hasUpperCaseSpecialCasing =
+ charCode == unicode::LATIN_SMALL_LETTER_SHARP_S;
+ MOZ_ASSERT(hasUpperCaseSpecialCasing ==
+ unicode::ChangesWhenUpperCasedSpecialCasing(charCode));
+
+ return hasUpperCaseSpecialCasing;
+}
+
+static inline bool ToUpperCaseHasSpecialCasing(char16_t charCode) {
+ return unicode::ChangesWhenUpperCasedSpecialCasing(charCode);
+}
+
+static inline size_t ToUpperCaseLengthSpecialCasing(Latin1Char charCode) {
+ // U+00DF LATIN SMALL LETTER SHARP S is uppercased to two 'S'.
+ MOZ_ASSERT(charCode == unicode::LATIN_SMALL_LETTER_SHARP_S);
+
+ return 2;
+}
+
+static inline size_t ToUpperCaseLengthSpecialCasing(char16_t charCode) {
+ MOZ_ASSERT(ToUpperCaseHasSpecialCasing(charCode));
+
+ return unicode::LengthUpperCaseSpecialCasing(charCode);
+}
+
+static inline void ToUpperCaseAppendUpperCaseSpecialCasing(char16_t charCode,
+ Latin1Char* elements,
+ size_t* index) {
+ // U+00DF LATIN SMALL LETTER SHARP S is uppercased to two 'S'.
+ MOZ_ASSERT(charCode == unicode::LATIN_SMALL_LETTER_SHARP_S);
+ static_assert('S' <= JSString::MAX_LATIN1_CHAR, "'S' is a Latin-1 character");
+
+ elements[(*index)++] = 'S';
+ elements[(*index)++] = 'S';
+}
+
+static inline void ToUpperCaseAppendUpperCaseSpecialCasing(char16_t charCode,
+ char16_t* elements,
+ size_t* index) {
+ unicode::AppendUpperCaseSpecialCasing(charCode, elements, index);
+}
+
+// See ToLowerCaseImpl for an explanation of the parameters.
+template <typename DestChar, typename SrcChar>
+static size_t ToUpperCaseImpl(DestChar* destChars, const SrcChar* srcChars,
+ size_t startIndex, size_t srcLength,
+ size_t destLength) {
+ static_assert(std::is_same_v<SrcChar, Latin1Char> ||
+ !std::is_same_v<DestChar, Latin1Char>,
+ "cannot write non-Latin-1 characters into Latin-1 string");
+ MOZ_ASSERT(startIndex < srcLength);
+ MOZ_ASSERT(srcLength <= destLength);
+
+ size_t j = startIndex;
+ for (size_t i = startIndex; i < srcLength; i++) {
+ char16_t c = srcChars[i];
+ if constexpr (!std::is_same_v<DestChar, Latin1Char>) {
+ if (unicode::IsLeadSurrogate(c) && i + 1 < srcLength) {
+ char16_t trail = srcChars[i + 1];
+ if (unicode::IsTrailSurrogate(trail)) {
+ trail = unicode::ToUpperCaseNonBMPTrail(c, trail);
+ destChars[j++] = c;
+ destChars[j++] = trail;
+ i++;
+ continue;
+ }
+ }
+ }
+
+ if (MOZ_UNLIKELY(c > 0x7f &&
+ ToUpperCaseHasSpecialCasing(static_cast<SrcChar>(c)))) {
+ // Return if the output buffer is too small.
+ if (srcLength == destLength) {
+ return i;
+ }
+
+ ToUpperCaseAppendUpperCaseSpecialCasing(c, destChars, &j);
+ continue;
+ }
+
+ c = unicode::ToUpperCase(c);
+ if constexpr (std::is_same_v<DestChar, Latin1Char>) {
+ MOZ_ASSERT(c <= JSString::MAX_LATIN1_CHAR);
+ }
+ destChars[j++] = c;
+ }
+
+ MOZ_ASSERT(j == destLength);
+ return srcLength;
+}
+
+template <typename CharT>
+static size_t ToUpperCaseLength(const CharT* chars, size_t startIndex,
+ size_t length) {
+ size_t upperLength = length;
+ for (size_t i = startIndex; i < length; i++) {
+ char16_t c = chars[i];
+
+ if (c > 0x7f && ToUpperCaseHasSpecialCasing(static_cast<CharT>(c))) {
+ upperLength += ToUpperCaseLengthSpecialCasing(static_cast<CharT>(c)) - 1;
+ }
+ }
+ return upperLength;
+}
+
+template <typename DestChar, typename SrcChar>
+static inline void CopyChars(DestChar* destChars, const SrcChar* srcChars,
+ size_t length) {
+ static_assert(!std::is_same_v<DestChar, SrcChar>,
+ "PodCopy is used for the same type case");
+ for (size_t i = 0; i < length; i++) {
+ destChars[i] = srcChars[i];
+ }
+}
+
+template <typename CharT>
+static inline void CopyChars(CharT* destChars, const CharT* srcChars,
+ size_t length) {
+ PodCopy(destChars, srcChars, length);
+}
+
+template <typename DestChar, typename SrcChar>
+static inline bool ToUpperCase(JSContext* cx,
+ InlineCharBuffer<DestChar>& newChars,
+ const SrcChar* chars, size_t startIndex,
+ size_t length, size_t* resultLength) {
+ MOZ_ASSERT(startIndex < length);
+
+ *resultLength = length;
+ if (!newChars.maybeAlloc(cx, length)) {
+ return false;
+ }
+
+ CopyChars(newChars.get(), chars, startIndex);
+
+ size_t readChars =
+ ToUpperCaseImpl(newChars.get(), chars, startIndex, length, length);
+ if (readChars < length) {
+ size_t actualLength = ToUpperCaseLength(chars, readChars, length);
+
+ *resultLength = actualLength;
+ if (!newChars.maybeRealloc(cx, length, actualLength)) {
+ return false;
+ }
+
+ MOZ_ALWAYS_TRUE(length == ToUpperCaseImpl(newChars.get(), chars, readChars,
+ length, actualLength));
+ }
+
+ return true;
+}
+
+template <typename CharT>
+static JSString* ToUpperCase(JSContext* cx, JSLinearString* str) {
+ using Latin1Buffer = InlineCharBuffer<Latin1Char>;
+ using TwoByteBuffer = InlineCharBuffer<char16_t>;
+
+ mozilla::MaybeOneOf<Latin1Buffer, TwoByteBuffer> newChars;
+ const size_t length = str->length();
+ size_t resultLength;
+ {
+ AutoCheckCannotGC nogc;
+ const CharT* chars = str->chars<CharT>(nogc);
+
+ // Most one element Latin-1 strings can be directly retrieved from the
+ // static strings cache.
+ if constexpr (std::is_same_v<CharT, Latin1Char>) {
+ if (length == 1) {
+ Latin1Char c = chars[0];
+ if (c != unicode::MICRO_SIGN &&
+ c != unicode::LATIN_SMALL_LETTER_Y_WITH_DIAERESIS &&
+ c != unicode::LATIN_SMALL_LETTER_SHARP_S) {
+ char16_t upper = unicode::ToUpperCase(c);
+ MOZ_ASSERT(upper <= JSString::MAX_LATIN1_CHAR);
+ MOZ_ASSERT(StaticStrings::hasUnit(upper));
+
+ return cx->staticStrings().getUnit(upper);
+ }
+
+ MOZ_ASSERT(unicode::ToUpperCase(c) > JSString::MAX_LATIN1_CHAR ||
+ ToUpperCaseHasSpecialCasing(c));
+ }
+ }
+
+ // Look for the first character that changes when uppercased.
+ size_t i = 0;
+ for (; i < length; i++) {
+ CharT c = chars[i];
+ if constexpr (!std::is_same_v<CharT, Latin1Char>) {
+ if (unicode::IsLeadSurrogate(c) && i + 1 < length) {
+ CharT trail = chars[i + 1];
+ if (unicode::IsTrailSurrogate(trail)) {
+ if (unicode::ChangesWhenUpperCasedNonBMP(c, trail)) {
+ break;
+ }
+
+ i++;
+ continue;
+ }
+ }
+ }
+ if (unicode::ChangesWhenUpperCased(c)) {
+ break;
+ }
+ if (MOZ_UNLIKELY(c > 0x7f && ToUpperCaseHasSpecialCasing(c))) {
+ break;
+ }
+ }
+
+ // If no character needs to change, return the input string.
+ if (i == length) {
+ return str;
+ }
+
+ // The string changes when uppercased, so we must create a new string.
+ // Can it be Latin-1?
+ //
+ // If the original string is Latin-1, it can -- unless the string
+ // contains U+00B5 MICRO SIGN or U+00FF SMALL LETTER Y WITH DIAERESIS,
+ // the only Latin-1 codepoints that don't uppercase within Latin-1.
+ // Search for those codepoints to decide whether the new string can be
+ // Latin-1.
+ // If the original string is a two-byte string, its uppercase form is
+ // so rarely Latin-1 that we don't even consider creating a new
+ // Latin-1 string.
+ if constexpr (std::is_same_v<CharT, Latin1Char>) {
+ bool resultIsLatin1 = true;
+ for (size_t j = i; j < length; j++) {
+ Latin1Char c = chars[j];
+ if (c == unicode::MICRO_SIGN ||
+ c == unicode::LATIN_SMALL_LETTER_Y_WITH_DIAERESIS) {
+ MOZ_ASSERT(unicode::ToUpperCase(c) > JSString::MAX_LATIN1_CHAR);
+ resultIsLatin1 = false;
+ break;
+ } else {
+ MOZ_ASSERT(unicode::ToUpperCase(c) <= JSString::MAX_LATIN1_CHAR);
+ }
+ }
+
+ if (resultIsLatin1) {
+ newChars.construct<Latin1Buffer>();
+
+ if (!ToUpperCase(cx, newChars.ref<Latin1Buffer>(), chars, i, length,
+ &resultLength)) {
+ return nullptr;
+ }
+ } else {
+ newChars.construct<TwoByteBuffer>();
+
+ if (!ToUpperCase(cx, newChars.ref<TwoByteBuffer>(), chars, i, length,
+ &resultLength)) {
+ return nullptr;
+ }
+ }
+ } else {
+ newChars.construct<TwoByteBuffer>();
+
+ if (!ToUpperCase(cx, newChars.ref<TwoByteBuffer>(), chars, i, length,
+ &resultLength)) {
+ return nullptr;
+ }
+ }
+ }
+
+ return newChars.constructed<Latin1Buffer>()
+ ? newChars.ref<Latin1Buffer>().toStringDontDeflate(cx,
+ resultLength)
+ : newChars.ref<TwoByteBuffer>().toStringDontDeflate(cx,
+ resultLength);
+}
+
+JSString* js::StringToUpperCase(JSContext* cx, HandleString string) {
+ JSLinearString* linear = string->ensureLinear(cx);
+ if (!linear) {
+ return nullptr;
+ }
+
+ if (linear->hasLatin1Chars()) {
+ return ToUpperCase<Latin1Char>(cx, linear);
+ }
+ return ToUpperCase<char16_t>(cx, linear);
+}
+
+static bool str_toUpperCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(cx,
+ ToStringForStringFunction(cx, "toUpperCase", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ JSString* result = StringToUpperCase(cx, str);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#if JS_HAS_INTL_API
+// String.prototype.toLocaleUpperCase is self-hosted when Intl is exposed,
+// with core functionality performed by the intrinsic below.
+
+bool js::intl_toLocaleUpperCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ MOZ_ASSERT(args.length() == 2);
+ MOZ_ASSERT(args[0].isString());
+ MOZ_ASSERT(args[1].isString());
+
+ RootedString string(cx, args[0].toString());
+
+ const char* locale = CaseMappingLocale(cx, args[1].toString());
+ if (!locale) {
+ return false;
+ }
+
+ // Call String.prototype.toUpperCase() for language independent casing.
+ if (intl::StringsAreEqual(locale, "")) {
+ JSString* str = js::StringToUpperCase(cx, string);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+ }
+
+ AutoStableStringChars inputChars(cx);
+ if (!inputChars.initTwoByte(cx, string)) {
+ return false;
+ }
+ mozilla::Range<const char16_t> input = inputChars.twoByteRange();
+
+ // Note: maximum case mapping length is three characters, so the result
+ // length might be > INT32_MAX. ICU will fail in this case.
+ static_assert(JSString::MAX_LENGTH <= INT32_MAX,
+ "String length must fit in int32_t for ICU");
+
+ static const size_t INLINE_CAPACITY = js::intl::INITIAL_CHAR_BUFFER_SIZE;
+
+ Vector<char16_t, INLINE_CAPACITY> chars(cx);
+ if (!chars.resize(std::max(INLINE_CAPACITY, input.length()))) {
+ return false;
+ }
+
+ int32_t size = intl::CallICU(
+ cx,
+ [&input, locale](UChar* chars, int32_t size, UErrorCode* status) {
+ return u_strToUpper(chars, size, input.begin().get(), input.length(),
+ locale, status);
+ },
+ chars);
+ if (size < 0) {
+ return false;
+ }
+
+ JSString* result = NewStringCopyN<CanGC>(cx, chars.begin(), size);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#else
+
+// When the Intl API is not exposed, String.prototype.toUpperCase is implemented
+// in C++.
+static bool str_toLocaleUpperCase(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(
+ cx, ToStringForStringFunction(cx, "toLocaleUpperCase", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ /*
+ * Forcefully ignore the first (or any) argument and return toUpperCase(),
+ * ECMA has reserved that argument, presumably for defining the locale.
+ */
+ if (cx->runtime()->localeCallbacks &&
+ cx->runtime()->localeCallbacks->localeToUpperCase) {
+ RootedValue result(cx);
+ if (!cx->runtime()->localeCallbacks->localeToUpperCase(cx, str, &result)) {
+ return false;
+ }
+
+ args.rval().set(result);
+ return true;
+ }
+
+ RootedLinearString linear(cx, str->ensureLinear(cx));
+ if (!linear) {
+ return false;
+ }
+
+ JSString* result = StringToUpperCase(cx, linear);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+#endif // JS_HAS_INTL_API
+
+#if JS_HAS_INTL_API
+
+// String.prototype.localeCompare is self-hosted when Intl functionality is
+// exposed, and the only intrinsics it requires are provided in the
+// implementation of Intl.Collator.
+
+#else
+
+// String.prototype.localeCompare is implemented in C++ (delegating to
+// JSLocaleCallbacks) when Intl functionality is not exposed.
+static bool str_localeCompare(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedString str(
+ cx, ToStringForStringFunction(cx, "localeCompare", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ RootedString thatStr(cx, ToString<CanGC>(cx, args.get(0)));
+ if (!thatStr) {
+ return false;
+ }
+
+ if (cx->runtime()->localeCallbacks &&
+ cx->runtime()->localeCallbacks->localeCompare) {
+ RootedValue result(cx);
+ if (!cx->runtime()->localeCallbacks->localeCompare(cx, str, thatStr,
+ &result)) {
+ return false;
+ }
+
+ args.rval().set(result);
+ return true;
+ }
+
+ int32_t result;
+ if (!CompareStrings(cx, str, thatStr, &result)) {
+ return false;
+ }
+
+ args.rval().setInt32(result);
+ return true;
+}
+
+#endif // JS_HAS_INTL_API
+
+#if JS_HAS_INTL_API
+
+// ES2017 draft rev 45e890512fd77add72cc0ee742785f9f6f6482de
+// 21.1.3.12 String.prototype.normalize ( [ form ] )
+//
+// String.prototype.normalize is only implementable if ICU's normalization
+// functionality is available.
+static bool str_normalize(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1-2.
+ RootedString str(cx,
+ ToStringForStringFunction(cx, "normalize", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ enum NormalizationForm { NFC, NFD, NFKC, NFKD };
+
+ NormalizationForm form;
+ if (!args.hasDefined(0)) {
+ // Step 3.
+ form = NFC;
+ } else {
+ // Step 4.
+ JSLinearString* formStr = ArgToLinearString(cx, args, 0);
+ if (!formStr) {
+ return false;
+ }
+
+ // Step 5.
+ if (EqualStrings(formStr, cx->names().NFC)) {
+ form = NFC;
+ } else if (EqualStrings(formStr, cx->names().NFD)) {
+ form = NFD;
+ } else if (EqualStrings(formStr, cx->names().NFKC)) {
+ form = NFKC;
+ } else if (EqualStrings(formStr, cx->names().NFKD)) {
+ form = NFKD;
+ } else {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_INVALID_NORMALIZE_FORM);
+ return false;
+ }
+ }
+
+ // Latin-1 strings are already in Normalization Form C.
+ if (form == NFC && str->hasLatin1Chars()) {
+ // Step 7.
+ args.rval().setString(str);
+ return true;
+ }
+
+ // Step 6.
+ AutoStableStringChars stableChars(cx);
+ if (!stableChars.initTwoByte(cx, str)) {
+ return false;
+ }
+
+ mozilla::Range<const char16_t> srcChars = stableChars.twoByteRange();
+
+ // The unorm2_getXXXInstance() methods return a shared instance which must
+ // not be deleted.
+ UErrorCode status = U_ZERO_ERROR;
+ const UNormalizer2* normalizer;
+ if (form == NFC) {
+ normalizer = unorm2_getNFCInstance(&status);
+ } else if (form == NFD) {
+ normalizer = unorm2_getNFDInstance(&status);
+ } else if (form == NFKC) {
+ normalizer = unorm2_getNFKCInstance(&status);
+ } else {
+ MOZ_ASSERT(form == NFKD);
+ normalizer = unorm2_getNFKDInstance(&status);
+ }
+ if (U_FAILURE(status)) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_INTERNAL_INTL_ERROR);
+ return false;
+ }
+
+ int32_t spanLengthInt = unorm2_spanQuickCheckYes(
+ normalizer, srcChars.begin().get(), srcChars.length(), &status);
+ if (U_FAILURE(status)) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_INTERNAL_INTL_ERROR);
+ return false;
+ }
+ MOZ_ASSERT(0 <= spanLengthInt && size_t(spanLengthInt) <= srcChars.length());
+ size_t spanLength = size_t(spanLengthInt);
+
+ // Return if the input string is already normalized.
+ if (spanLength == srcChars.length()) {
+ // Step 7.
+ args.rval().setString(str);
+ return true;
+ }
+
+ static const size_t INLINE_CAPACITY = js::intl::INITIAL_CHAR_BUFFER_SIZE;
+
+ Vector<char16_t, INLINE_CAPACITY> chars(cx);
+ if (!chars.resize(std::max(INLINE_CAPACITY, srcChars.length()))) {
+ return false;
+ }
+
+ // Copy the already normalized prefix.
+ if (spanLength > 0) {
+ PodCopy(chars.begin(), srcChars.begin().get(), spanLength);
+ }
+
+ int32_t size = intl::CallICU(
+ cx,
+ [normalizer, &srcChars, spanLength](UChar* chars, uint32_t size,
+ UErrorCode* status) {
+ mozilla::RangedPtr<const char16_t> remainingStart =
+ srcChars.begin() + spanLength;
+ size_t remainingLength = srcChars.length() - spanLength;
+
+ return unorm2_normalizeSecondAndAppend(normalizer, chars, spanLength,
+ size, remainingStart.get(),
+ remainingLength, status);
+ },
+ chars);
+ if (size < 0) {
+ return false;
+ }
+
+ JSString* ns = NewStringCopyN<CanGC>(cx, chars.begin(), size);
+ if (!ns) {
+ return false;
+ }
+
+ // Step 7.
+ args.rval().setString(ns);
+ return true;
+}
+
+#endif // JS_HAS_INTL_API
+
+static bool str_charAt(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(cx);
+ size_t i;
+ if (args.thisv().isString() && args.length() != 0 && args[0].isInt32()) {
+ str = args.thisv().toString();
+ i = size_t(args[0].toInt32());
+ if (i >= str->length()) {
+ goto out_of_range;
+ }
+ } else {
+ str = ToStringForStringFunction(cx, "charAt", args.thisv());
+ if (!str) {
+ return false;
+ }
+
+ double d = 0.0;
+ if (args.length() > 0 && !ToInteger(cx, args[0], &d)) {
+ return false;
+ }
+
+ if (d < 0 || str->length() <= d) {
+ goto out_of_range;
+ }
+ i = size_t(d);
+ }
+
+ str = cx->staticStrings().getUnitStringForElement(cx, str, i);
+ if (!str) {
+ return false;
+ }
+ args.rval().setString(str);
+ return true;
+
+out_of_range:
+ args.rval().setString(cx->runtime()->emptyString);
+ return true;
+}
+
+bool js::str_charCodeAt_impl(JSContext* cx, HandleString string,
+ HandleValue index, MutableHandleValue res) {
+ size_t i;
+ if (index.isInt32()) {
+ i = index.toInt32();
+ if (i >= string->length()) {
+ goto out_of_range;
+ }
+ } else {
+ double d = 0.0;
+ if (!ToInteger(cx, index, &d)) {
+ return false;
+ }
+ // check whether d is negative as size_t is unsigned
+ if (d < 0 || string->length() <= d) {
+ goto out_of_range;
+ }
+ i = size_t(d);
+ }
+ char16_t c;
+ if (!string->getChar(cx, i, &c)) {
+ return false;
+ }
+ res.setInt32(c);
+ return true;
+
+out_of_range:
+ res.setNaN();
+ return true;
+}
+
+bool js::str_charCodeAt(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedString str(cx);
+ RootedValue index(cx);
+ if (args.thisv().isString()) {
+ str = args.thisv().toString();
+ } else {
+ str = ToStringForStringFunction(cx, "charCodeAt", args.thisv());
+ if (!str) {
+ return false;
+ }
+ }
+ if (args.length() != 0) {
+ index = args[0];
+ } else {
+ index.setInt32(0);
+ }
+
+ return js::str_charCodeAt_impl(cx, str, index, args.rval());
+}
+
+/*
+ * Boyer-Moore-Horspool superlinear search for pat:patlen in text:textlen.
+ * The patlen argument must be positive and no greater than sBMHPatLenMax.
+ *
+ * Return the index of pat in text, or -1 if not found.
+ */
+static const uint32_t sBMHCharSetSize = 256; /* ISO-Latin-1 */
+static const uint32_t sBMHPatLenMax = 255; /* skip table element is uint8_t */
+static const int sBMHBadPattern =
+ -2; /* return value if pat is not ISO-Latin-1 */
+
+template <typename TextChar, typename PatChar>
+static int BoyerMooreHorspool(const TextChar* text, uint32_t textLen,
+ const PatChar* pat, uint32_t patLen) {
+ MOZ_ASSERT(0 < patLen && patLen <= sBMHPatLenMax);
+
+ uint8_t skip[sBMHCharSetSize];
+ for (uint32_t i = 0; i < sBMHCharSetSize; i++) {
+ skip[i] = uint8_t(patLen);
+ }
+
+ uint32_t patLast = patLen - 1;
+ for (uint32_t i = 0; i < patLast; i++) {
+ char16_t c = pat[i];
+ if (c >= sBMHCharSetSize) {
+ return sBMHBadPattern;
+ }
+ skip[c] = uint8_t(patLast - i);
+ }
+
+ for (uint32_t k = patLast; k < textLen;) {
+ for (uint32_t i = k, j = patLast;; i--, j--) {
+ if (text[i] != pat[j]) {
+ break;
+ }
+ if (j == 0) {
+ return static_cast<int>(i); /* safe: max string size */
+ }
+ }
+
+ char16_t c = text[k];
+ k += (c >= sBMHCharSetSize) ? patLen : skip[c];
+ }
+ return -1;
+}
+
+template <typename TextChar, typename PatChar>
+struct MemCmp {
+ using Extent = uint32_t;
+ static MOZ_ALWAYS_INLINE Extent computeExtent(const PatChar*,
+ uint32_t patLen) {
+ return (patLen - 1) * sizeof(PatChar);
+ }
+ static MOZ_ALWAYS_INLINE bool match(const PatChar* p, const TextChar* t,
+ Extent extent) {
+ MOZ_ASSERT(sizeof(TextChar) == sizeof(PatChar));
+ return memcmp(p, t, extent) == 0;
+ }
+};
+
+template <typename TextChar, typename PatChar>
+struct ManualCmp {
+ using Extent = const PatChar*;
+ static MOZ_ALWAYS_INLINE Extent computeExtent(const PatChar* pat,
+ uint32_t patLen) {
+ return pat + patLen;
+ }
+ static MOZ_ALWAYS_INLINE bool match(const PatChar* p, const TextChar* t,
+ Extent extent) {
+ for (; p != extent; ++p, ++t) {
+ if (*p != *t) {
+ return false;
+ }
+ }
+ return true;
+ }
+};
+
+template <typename TextChar, typename PatChar>
+static const TextChar* FirstCharMatcherUnrolled(const TextChar* text,
+ uint32_t n, const PatChar pat) {
+ const TextChar* textend = text + n;
+ const TextChar* t = text;
+
+ switch ((textend - t) & 7) {
+ case 0:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 7:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 6:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 5:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 4:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 3:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 2:
+ if (*t++ == pat) return t - 1;
+ [[fallthrough]];
+ case 1:
+ if (*t++ == pat) return t - 1;
+ }
+ while (textend != t) {
+ if (t[0] == pat) return t;
+ if (t[1] == pat) return t + 1;
+ if (t[2] == pat) return t + 2;
+ if (t[3] == pat) return t + 3;
+ if (t[4] == pat) return t + 4;
+ if (t[5] == pat) return t + 5;
+ if (t[6] == pat) return t + 6;
+ if (t[7] == pat) return t + 7;
+ t += 8;
+ }
+ return nullptr;
+}
+
+static const char* FirstCharMatcher8bit(const char* text, uint32_t n,
+ const char pat) {
+ return reinterpret_cast<const char*>(memchr(text, pat, n));
+}
+
+template <class InnerMatch, typename TextChar, typename PatChar>
+static int Matcher(const TextChar* text, uint32_t textlen, const PatChar* pat,
+ uint32_t patlen) {
+ MOZ_ASSERT(patlen > 0);
+
+ if (sizeof(TextChar) == 1 && sizeof(PatChar) > 1 && pat[0] > 0xff) {
+ return -1;
+ }
+
+ const typename InnerMatch::Extent extent =
+ InnerMatch::computeExtent(pat, patlen);
+
+ uint32_t i = 0;
+ uint32_t n = textlen - patlen + 1;
+ while (i < n) {
+ const TextChar* pos;
+
+ if (sizeof(TextChar) == 1) {
+ MOZ_ASSERT(pat[0] <= 0xff);
+ pos = (TextChar*)FirstCharMatcher8bit((char*)text + i, n - i, pat[0]);
+ } else {
+ pos = FirstCharMatcherUnrolled(text + i, n - i, char16_t(pat[0]));
+ }
+
+ if (pos == nullptr) {
+ return -1;
+ }
+
+ i = static_cast<uint32_t>(pos - text);
+ if (InnerMatch::match(pat + 1, text + i + 1, extent)) {
+ return i;
+ }
+
+ i += 1;
+ }
+ return -1;
+}
+
+template <typename TextChar, typename PatChar>
+static MOZ_ALWAYS_INLINE int StringMatch(const TextChar* text, uint32_t textLen,
+ const PatChar* pat, uint32_t patLen) {
+ if (patLen == 0) {
+ return 0;
+ }
+ if (textLen < patLen) {
+ return -1;
+ }
+
+#if defined(__i386__) || defined(_M_IX86) || defined(__i386)
+ /*
+ * Given enough registers, the unrolled loop below is faster than the
+ * following loop. 32-bit x86 does not have enough registers.
+ */
+ if (patLen == 1) {
+ const PatChar p0 = *pat;
+ const TextChar* end = text + textLen;
+ for (const TextChar* c = text; c != end; ++c) {
+ if (*c == p0) {
+ return c - text;
+ }
+ }
+ return -1;
+ }
+#endif
+
+ /*
+ * If the text or pattern string is short, BMH will be more expensive than
+ * the basic linear scan due to initialization cost and a more complex loop
+ * body. While the correct threshold is input-dependent, we can make a few
+ * conservative observations:
+ * - When |textLen| is "big enough", the initialization time will be
+ * proportionally small, so the worst-case slowdown is minimized.
+ * - When |patLen| is "too small", even the best case for BMH will be
+ * slower than a simple scan for large |textLen| due to the more complex
+ * loop body of BMH.
+ * From this, the values for "big enough" and "too small" are determined
+ * empirically. See bug 526348.
+ */
+ if (textLen >= 512 && patLen >= 11 && patLen <= sBMHPatLenMax) {
+ int index = BoyerMooreHorspool(text, textLen, pat, patLen);
+ if (index != sBMHBadPattern) {
+ return index;
+ }
+ }
+
+ /*
+ * For big patterns with large potential overlap we want the SIMD-optimized
+ * speed of memcmp. For small patterns, a simple loop is faster. We also can't
+ * use memcmp if one of the strings is TwoByte and the other is Latin-1.
+ */
+ return (patLen > 128 && std::is_same_v<TextChar, PatChar>)
+ ? Matcher<MemCmp<TextChar, PatChar>, TextChar, PatChar>(
+ text, textLen, pat, patLen)
+ : Matcher<ManualCmp<TextChar, PatChar>, TextChar, PatChar>(
+ text, textLen, pat, patLen);
+}
+
+static int32_t StringMatch(JSLinearString* text, JSLinearString* pat,
+ uint32_t start = 0) {
+ MOZ_ASSERT(start <= text->length());
+ uint32_t textLen = text->length() - start;
+ uint32_t patLen = pat->length();
+
+ int match;
+ AutoCheckCannotGC nogc;
+ if (text->hasLatin1Chars()) {
+ const Latin1Char* textChars = text->latin1Chars(nogc) + start;
+ if (pat->hasLatin1Chars()) {
+ match = StringMatch(textChars, textLen, pat->latin1Chars(nogc), patLen);
+ } else {
+ match = StringMatch(textChars, textLen, pat->twoByteChars(nogc), patLen);
+ }
+ } else {
+ const char16_t* textChars = text->twoByteChars(nogc) + start;
+ if (pat->hasLatin1Chars()) {
+ match = StringMatch(textChars, textLen, pat->latin1Chars(nogc), patLen);
+ } else {
+ match = StringMatch(textChars, textLen, pat->twoByteChars(nogc), patLen);
+ }
+ }
+
+ return (match == -1) ? -1 : start + match;
+}
+
+static const size_t sRopeMatchThresholdRatioLog2 = 4;
+
+int js::StringFindPattern(JSLinearString* text, JSLinearString* pat,
+ size_t start) {
+ return StringMatch(text, pat, start);
+}
+
+// When an algorithm does not need a string represented as a single linear
+// array of characters, this range utility may be used to traverse the string a
+// sequence of linear arrays of characters. This avoids flattening ropes.
+class StringSegmentRange {
+ // If malloc() shows up in any profiles from this vector, we can add a new
+ // StackAllocPolicy which stashes a reusable freed-at-gc buffer in the cx.
+ using StackVector = JS::GCVector<JSString*, 16>;
+ Rooted<StackVector> stack;
+ RootedLinearString cur;
+
+ bool settle(JSString* str) {
+ while (str->isRope()) {
+ JSRope& rope = str->asRope();
+ if (!stack.append(rope.rightChild())) {
+ return false;
+ }
+ str = rope.leftChild();
+ }
+ cur = &str->asLinear();
+ return true;
+ }
+
+ public:
+ explicit StringSegmentRange(JSContext* cx)
+ : stack(cx, StackVector(cx)), cur(cx) {}
+
+ MOZ_MUST_USE bool init(JSString* str) {
+ MOZ_ASSERT(stack.empty());
+ return settle(str);
+ }
+
+ bool empty() const { return cur == nullptr; }
+
+ JSLinearString* front() const {
+ MOZ_ASSERT(!cur->isRope());
+ return cur;
+ }
+
+ MOZ_MUST_USE bool popFront() {
+ MOZ_ASSERT(!empty());
+ if (stack.empty()) {
+ cur = nullptr;
+ return true;
+ }
+ return settle(stack.popCopy());
+ }
+};
+
+typedef Vector<JSLinearString*, 16, SystemAllocPolicy> LinearStringVector;
+
+template <typename TextChar, typename PatChar>
+static int RopeMatchImpl(const AutoCheckCannotGC& nogc,
+ LinearStringVector& strings, const PatChar* pat,
+ size_t patLen) {
+ /* Absolute offset from the beginning of the logical text string. */
+ int pos = 0;
+
+ for (JSLinearString** outerp = strings.begin(); outerp != strings.end();
+ ++outerp) {
+ /* Try to find a match within 'outer'. */
+ JSLinearString* outer = *outerp;
+ const TextChar* chars = outer->chars<TextChar>(nogc);
+ size_t len = outer->length();
+ int matchResult = StringMatch(chars, len, pat, patLen);
+ if (matchResult != -1) {
+ /* Matched! */
+ return pos + matchResult;
+ }
+
+ /* Try to find a match starting in 'outer' and running into other nodes. */
+ const TextChar* const text = chars + (patLen > len ? 0 : len - patLen + 1);
+ const TextChar* const textend = chars + len;
+ const PatChar p0 = *pat;
+ const PatChar* const p1 = pat + 1;
+ const PatChar* const patend = pat + patLen;
+ for (const TextChar* t = text; t != textend;) {
+ if (*t++ != p0) {
+ continue;
+ }
+
+ JSLinearString** innerp = outerp;
+ const TextChar* ttend = textend;
+ const TextChar* tt = t;
+ for (const PatChar* pp = p1; pp != patend; ++pp, ++tt) {
+ while (tt == ttend) {
+ if (++innerp == strings.end()) {
+ return -1;
+ }
+
+ JSLinearString* inner = *innerp;
+ tt = inner->chars<TextChar>(nogc);
+ ttend = tt + inner->length();
+ }
+ if (*pp != *tt) {
+ goto break_continue;
+ }
+ }
+
+ /* Matched! */
+ return pos + (t - chars) - 1; /* -1 because of *t++ above */
+
+ break_continue:;
+ }
+
+ pos += len;
+ }
+
+ return -1;
+}
+
+/*
+ * RopeMatch takes the text to search and the pattern to search for in the text.
+ * RopeMatch returns false on OOM and otherwise returns the match index through
+ * the 'match' outparam (-1 for not found).
+ */
+static bool RopeMatch(JSContext* cx, JSRope* text, JSLinearString* pat,
+ int* match) {
+ uint32_t patLen = pat->length();
+ if (patLen == 0) {
+ *match = 0;
+ return true;
+ }
+ if (text->length() < patLen) {
+ *match = -1;
+ return true;
+ }
+
+ /*
+ * List of leaf nodes in the rope. If we run out of memory when trying to
+ * append to this list, we can still fall back to StringMatch, so use the
+ * system allocator so we don't report OOM in that case.
+ */
+ LinearStringVector strings;
+
+ /*
+ * We don't want to do rope matching if there is a poor node-to-char ratio,
+ * since this means spending a lot of time in the match loop below. We also
+ * need to build the list of leaf nodes. Do both here: iterate over the
+ * nodes so long as there are not too many.
+ *
+ * We also don't use rope matching if the rope contains both Latin-1 and
+ * TwoByte nodes, to simplify the match algorithm.
+ */
+ {
+ size_t threshold = text->length() >> sRopeMatchThresholdRatioLog2;
+ StringSegmentRange r(cx);
+ if (!r.init(text)) {
+ return false;
+ }
+
+ bool textIsLatin1 = text->hasLatin1Chars();
+ while (!r.empty()) {
+ if (threshold-- == 0 || r.front()->hasLatin1Chars() != textIsLatin1 ||
+ !strings.append(r.front())) {
+ JSLinearString* linear = text->ensureLinear(cx);
+ if (!linear) {
+ return false;
+ }
+
+ *match = StringMatch(linear, pat);
+ return true;
+ }
+ if (!r.popFront()) {
+ return false;
+ }
+ }
+ }
+
+ AutoCheckCannotGC nogc;
+ if (text->hasLatin1Chars()) {
+ if (pat->hasLatin1Chars()) {
+ *match = RopeMatchImpl<Latin1Char>(nogc, strings, pat->latin1Chars(nogc),
+ patLen);
+ } else {
+ *match = RopeMatchImpl<Latin1Char>(nogc, strings, pat->twoByteChars(nogc),
+ patLen);
+ }
+ } else {
+ if (pat->hasLatin1Chars()) {
+ *match = RopeMatchImpl<char16_t>(nogc, strings, pat->latin1Chars(nogc),
+ patLen);
+ } else {
+ *match = RopeMatchImpl<char16_t>(nogc, strings, pat->twoByteChars(nogc),
+ patLen);
+ }
+ }
+
+ return true;
+}
+
+static MOZ_ALWAYS_INLINE bool ReportErrorIfFirstArgIsRegExp(
+ JSContext* cx, const CallArgs& args) {
+ // Only call IsRegExp if the first argument is definitely an object, so we
+ // don't pay the cost of an additional function call in the common case.
+ if (args.length() == 0 || !args[0].isObject()) {
+ return true;
+ }
+
+ bool isRegExp;
+ if (!IsRegExp(cx, args[0], &isRegExp)) {
+ return false;
+ }
+
+ if (isRegExp) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_INVALID_ARG_TYPE, "first", "",
+ "Regular Expression");
+ return false;
+ }
+ return true;
+}
+
+// ES2018 draft rev de77aaeffce115deaf948ed30c7dbe4c60983c0c
+// 21.1.3.7 String.prototype.includes ( searchString [ , position ] )
+bool js::str_includes(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1-2.
+ RootedString str(cx, ToStringForStringFunction(cx, "includes", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ // Steps 3-4.
+ if (!ReportErrorIfFirstArgIsRegExp(cx, args)) {
+ return false;
+ }
+
+ // Step 5.
+ RootedLinearString searchStr(cx, ArgToLinearString(cx, args, 0));
+ if (!searchStr) {
+ return false;
+ }
+
+ // Step 6.
+ uint32_t pos = 0;
+ if (args.hasDefined(1)) {
+ if (args[1].isInt32()) {
+ int i = args[1].toInt32();
+ pos = (i < 0) ? 0U : uint32_t(i);
+ } else {
+ double d;
+ if (!ToInteger(cx, args[1], &d)) {
+ return false;
+ }
+ pos = uint32_t(std::min(std::max(d, 0.0), double(UINT32_MAX)));
+ }
+ }
+
+ // Step 7.
+ uint32_t textLen = str->length();
+
+ // Step 8.
+ uint32_t start = std::min(pos, textLen);
+
+ // Steps 9-10.
+ JSLinearString* text = str->ensureLinear(cx);
+ if (!text) {
+ return false;
+ }
+
+ args.rval().setBoolean(StringMatch(text, searchStr, start) != -1);
+ return true;
+}
+
+/* ES6 20120927 draft 15.5.4.7. */
+bool js::str_indexOf(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1, 2, and 3
+ RootedString str(cx, ToStringForStringFunction(cx, "indexOf", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ // Steps 4 and 5
+ RootedLinearString searchStr(cx, ArgToLinearString(cx, args, 0));
+ if (!searchStr) {
+ return false;
+ }
+
+ // Steps 6 and 7
+ uint32_t pos = 0;
+ if (args.hasDefined(1)) {
+ if (args[1].isInt32()) {
+ int i = args[1].toInt32();
+ pos = (i < 0) ? 0U : uint32_t(i);
+ } else {
+ double d;
+ if (!ToInteger(cx, args[1], &d)) {
+ return false;
+ }
+ pos = uint32_t(std::min(std::max(d, 0.0), double(UINT32_MAX)));
+ }
+ }
+
+ // Step 8
+ uint32_t textLen = str->length();
+
+ // Step 9
+ uint32_t start = std::min(pos, textLen);
+
+ if (str == searchStr) {
+ // AngularJS often invokes "false".indexOf("false"). This check should
+ // be cheap enough to not hurt anything else.
+ args.rval().setInt32(start == 0 ? 0 : -1);
+ return true;
+ }
+
+ // Steps 10 and 11
+ JSLinearString* text = str->ensureLinear(cx);
+ if (!text) {
+ return false;
+ }
+
+ args.rval().setInt32(StringMatch(text, searchStr, start));
+ return true;
+}
+
+template <typename TextChar, typename PatChar>
+static int32_t LastIndexOfImpl(const TextChar* text, size_t textLen,
+ const PatChar* pat, size_t patLen,
+ size_t start) {
+ MOZ_ASSERT(patLen > 0);
+ MOZ_ASSERT(patLen <= textLen);
+ MOZ_ASSERT(start <= textLen - patLen);
+
+ const PatChar p0 = *pat;
+ const PatChar* patNext = pat + 1;
+ const PatChar* patEnd = pat + patLen;
+
+ for (const TextChar* t = text + start; t >= text; --t) {
+ if (*t == p0) {
+ const TextChar* t1 = t + 1;
+ for (const PatChar* p1 = patNext; p1 < patEnd; ++p1, ++t1) {
+ if (*t1 != *p1) {
+ goto break_continue;
+ }
+ }
+
+ return static_cast<int32_t>(t - text);
+ }
+ break_continue:;
+ }
+
+ return -1;
+}
+
+// ES2017 draft rev 6859bb9ccaea9c6ede81d71e5320e3833b92cb3e
+// 21.1.3.9 String.prototype.lastIndexOf ( searchString [ , position ] )
+static bool str_lastIndexOf(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1-2.
+ RootedString str(cx,
+ ToStringForStringFunction(cx, "lastIndexOf", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ // Step 3.
+ RootedLinearString searchStr(cx, ArgToLinearString(cx, args, 0));
+ if (!searchStr) {
+ return false;
+ }
+
+ // Step 6.
+ size_t len = str->length();
+
+ // Step 8.
+ size_t searchLen = searchStr->length();
+
+ // Steps 4-5, 7.
+ int start = len - searchLen; // Start searching here
+ if (args.hasDefined(1)) {
+ if (args[1].isInt32()) {
+ int i = args[1].toInt32();
+ if (i <= 0) {
+ start = 0;
+ } else if (i < start) {
+ start = i;
+ }
+ } else {
+ double d;
+ if (!ToNumber(cx, args[1], &d)) {
+ return false;
+ }
+ if (!IsNaN(d)) {
+ d = JS::ToInteger(d);
+ if (d <= 0) {
+ start = 0;
+ } else if (d < start) {
+ start = int(d);
+ }
+ }
+ }
+ }
+
+ if (str == searchStr) {
+ args.rval().setInt32(0);
+ return true;
+ }
+
+ if (searchLen > len) {
+ args.rval().setInt32(-1);
+ return true;
+ }
+
+ if (searchLen == 0) {
+ args.rval().setInt32(start);
+ return true;
+ }
+ MOZ_ASSERT(0 <= start && size_t(start) < len);
+
+ JSLinearString* text = str->ensureLinear(cx);
+ if (!text) {
+ return false;
+ }
+
+ // Step 9.
+ int32_t res;
+ AutoCheckCannotGC nogc;
+ if (text->hasLatin1Chars()) {
+ const Latin1Char* textChars = text->latin1Chars(nogc);
+ if (searchStr->hasLatin1Chars()) {
+ res = LastIndexOfImpl(textChars, len, searchStr->latin1Chars(nogc),
+ searchLen, start);
+ } else {
+ res = LastIndexOfImpl(textChars, len, searchStr->twoByteChars(nogc),
+ searchLen, start);
+ }
+ } else {
+ const char16_t* textChars = text->twoByteChars(nogc);
+ if (searchStr->hasLatin1Chars()) {
+ res = LastIndexOfImpl(textChars, len, searchStr->latin1Chars(nogc),
+ searchLen, start);
+ } else {
+ res = LastIndexOfImpl(textChars, len, searchStr->twoByteChars(nogc),
+ searchLen, start);
+ }
+ }
+
+ args.rval().setInt32(res);
+ return true;
+}
+
+// ES2018 draft rev de77aaeffce115deaf948ed30c7dbe4c60983c0c
+// 21.1.3.20 String.prototype.startsWith ( searchString [ , position ] )
+bool js::str_startsWith(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1-2.
+ RootedString str(cx,
+ ToStringForStringFunction(cx, "startsWith", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ // Steps 3-4.
+ if (!ReportErrorIfFirstArgIsRegExp(cx, args)) {
+ return false;
+ }
+
+ // Step 5.
+ RootedLinearString searchStr(cx, ArgToLinearString(cx, args, 0));
+ if (!searchStr) {
+ return false;
+ }
+
+ // Step 6.
+ uint32_t pos = 0;
+ if (args.hasDefined(1)) {
+ if (args[1].isInt32()) {
+ int i = args[1].toInt32();
+ pos = (i < 0) ? 0U : uint32_t(i);
+ } else {
+ double d;
+ if (!ToInteger(cx, args[1], &d)) {
+ return false;
+ }
+ pos = uint32_t(std::min(std::max(d, 0.0), double(UINT32_MAX)));
+ }
+ }
+
+ // Step 7.
+ uint32_t textLen = str->length();
+
+ // Step 8.
+ uint32_t start = std::min(pos, textLen);
+
+ // Step 9.
+ uint32_t searchLen = searchStr->length();
+
+ // Step 10.
+ if (searchLen + start < searchLen || searchLen + start > textLen) {
+ args.rval().setBoolean(false);
+ return true;
+ }
+
+ // Steps 11-12.
+ JSLinearString* text = str->ensureLinear(cx);
+ if (!text) {
+ return false;
+ }
+
+ args.rval().setBoolean(HasSubstringAt(text, searchStr, start));
+ return true;
+}
+
+// ES2018 draft rev de77aaeffce115deaf948ed30c7dbe4c60983c0c
+// 21.1.3.6 String.prototype.endsWith ( searchString [ , endPosition ] )
+bool js::str_endsWith(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Steps 1-2.
+ RootedString str(cx, ToStringForStringFunction(cx, "endsWith", args.thisv()));
+ if (!str) {
+ return false;
+ }
+
+ // Steps 3-4.
+ if (!ReportErrorIfFirstArgIsRegExp(cx, args)) {
+ return false;
+ }
+
+ // Step 5.
+ RootedLinearString searchStr(cx, ArgToLinearString(cx, args, 0));
+ if (!searchStr) {
+ return false;
+ }
+
+ // Step 6.
+ uint32_t textLen = str->length();
+
+ // Step 7.
+ uint32_t pos = textLen;
+ if (args.hasDefined(1)) {
+ if (args[1].isInt32()) {
+ int i = args[1].toInt32();
+ pos = (i < 0) ? 0U : uint32_t(i);
+ } else {
+ double d;
+ if (!ToInteger(cx, args[1], &d)) {
+ return false;
+ }
+ pos = uint32_t(std::min(std::max(d, 0.0), double(UINT32_MAX)));
+ }
+ }
+
+ // Step 8.
+ uint32_t end = std::min(pos, textLen);
+
+ // Step 9.
+ uint32_t searchLen = searchStr->length();
+
+ // Step 11 (reordered).
+ if (searchLen > end) {
+ args.rval().setBoolean(false);
+ return true;
+ }
+
+ // Step 10.
+ uint32_t start = end - searchLen;
+
+ // Steps 12-13.
+ JSLinearString* text = str->ensureLinear(cx);
+ if (!text) {
+ return false;
+ }
+
+ args.rval().setBoolean(HasSubstringAt(text, searchStr, start));
+ return true;
+}
+
+template <typename CharT>
+static void TrimString(const CharT* chars, bool trimStart, bool trimEnd,
+ size_t length, size_t* pBegin, size_t* pEnd) {
+ size_t begin = 0, end = length;
+
+ if (trimStart) {
+ while (begin < length && unicode::IsSpace(chars[begin])) {
+ ++begin;
+ }
+ }
+
+ if (trimEnd) {
+ while (end > begin && unicode::IsSpace(chars[end - 1])) {
+ --end;
+ }
+ }
+
+ *pBegin = begin;
+ *pEnd = end;
+}
+
+static bool TrimString(JSContext* cx, const CallArgs& args, const char* funName,
+ bool trimStart, bool trimEnd) {
+ JSString* str = ToStringForStringFunction(cx, funName, args.thisv());
+ if (!str) {
+ return false;
+ }
+
+ JSLinearString* linear = str->ensureLinear(cx);
+ if (!linear) {
+ return false;
+ }
+
+ size_t length = linear->length();
+ size_t begin, end;
+ if (linear->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ TrimString(linear->latin1Chars(nogc), trimStart, trimEnd, length, &begin,
+ &end);
+ } else {
+ AutoCheckCannotGC nogc;
+ TrimString(linear->twoByteChars(nogc), trimStart, trimEnd, length, &begin,
+ &end);
+ }
+
+ JSLinearString* result = NewDependentString(cx, linear, begin, end - begin);
+ if (!result) {
+ return false;
+ }
+
+ args.rval().setString(result);
+ return true;
+}
+
+static bool str_trim(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return TrimString(cx, args, "trim", true, true);
+}
+
+static bool str_trimStart(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return TrimString(cx, args, "trimStart", true, false);
+}
+
+static bool str_trimEnd(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ return TrimString(cx, args, "trimEnd", false, true);
+}
+
+// Utility for building a rope (lazy concatenation) of strings.
+class RopeBuilder {
+ JSContext* cx;
+ RootedString res;
+
+ RopeBuilder(const RopeBuilder& other) = delete;
+ void operator=(const RopeBuilder& other) = delete;
+
+ public:
+ explicit RopeBuilder(JSContext* cx)
+ : cx(cx), res(cx, cx->runtime()->emptyString) {}
+
+ inline bool append(HandleString str) {
+ res = ConcatStrings<CanGC>(cx, res, str);
+ return !!res;
+ }
+
+ inline JSString* result() { return res; }
+};
+
+namespace {
+
+template <typename CharT>
+static uint32_t FindDollarIndex(const CharT* chars, size_t length) {
+ if (const CharT* p = js_strchr_limit(chars, '$', chars + length)) {
+ uint32_t dollarIndex = p - chars;
+ MOZ_ASSERT(dollarIndex < length);
+ return dollarIndex;
+ }
+ return UINT32_MAX;
+}
+
+} /* anonymous namespace */
+
+/*
+ * Constructs a result string that looks like:
+ *
+ * newstring = string[:matchStart] + repstr + string[matchEnd:]
+ */
+static JSString* BuildFlatReplacement(JSContext* cx, HandleString textstr,
+ HandleLinearString repstr,
+ size_t matchStart, size_t patternLength) {
+ size_t matchEnd = matchStart + patternLength;
+
+ RootedString resultStr(cx, NewDependentString(cx, textstr, 0, matchStart));
+ if (!resultStr) {
+ return nullptr;
+ }
+
+ resultStr = ConcatStrings<CanGC>(cx, resultStr, repstr);
+ if (!resultStr) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(textstr->length() >= matchEnd);
+ RootedString rest(cx, NewDependentString(cx, textstr, matchEnd,
+ textstr->length() - matchEnd));
+ if (!rest) {
+ return nullptr;
+ }
+
+ return ConcatStrings<CanGC>(cx, resultStr, rest);
+}
+
+static JSString* BuildFlatRopeReplacement(JSContext* cx, HandleString textstr,
+ HandleLinearString repstr,
+ size_t match, size_t patternLength) {
+ MOZ_ASSERT(textstr->isRope());
+
+ size_t matchEnd = match + patternLength;
+
+ /*
+ * If we are replacing over a rope, avoid flattening it by iterating
+ * through it, building a new rope.
+ */
+ StringSegmentRange r(cx);
+ if (!r.init(textstr)) {
+ return nullptr;
+ }
+
+ RopeBuilder builder(cx);
+
+ /*
+ * Special case when the pattern string is '', which matches to the
+ * head of the string and doesn't overlap with any component of the rope.
+ */
+ if (patternLength == 0) {
+ MOZ_ASSERT(match == 0);
+ if (!builder.append(repstr)) {
+ return nullptr;
+ }
+ }
+
+ size_t pos = 0;
+ while (!r.empty()) {
+ RootedString str(cx, r.front());
+ size_t len = str->length();
+ size_t strEnd = pos + len;
+ if (pos < matchEnd && strEnd > match) {
+ /*
+ * We need to special-case any part of the rope that overlaps
+ * with the replacement string.
+ */
+ if (match >= pos) {
+ /*
+ * If this part of the rope overlaps with the left side of
+ * the pattern, then it must be the only one to overlap with
+ * the first character in the pattern, so we include the
+ * replacement string here.
+ */
+ RootedString leftSide(cx, NewDependentString(cx, str, 0, match - pos));
+ if (!leftSide || !builder.append(leftSide) || !builder.append(repstr)) {
+ return nullptr;
+ }
+ }
+
+ /*
+ * If str runs off the end of the matched string, append the
+ * last part of str.
+ */
+ if (strEnd > matchEnd) {
+ RootedString rightSide(
+ cx, NewDependentString(cx, str, matchEnd - pos, strEnd - matchEnd));
+ if (!rightSide || !builder.append(rightSide)) {
+ return nullptr;
+ }
+ }
+ } else {
+ if (!builder.append(str)) {
+ return nullptr;
+ }
+ }
+ pos += str->length();
+ if (!r.popFront()) {
+ return nullptr;
+ }
+ }
+
+ return builder.result();
+}
+
+template <typename CharT>
+static bool AppendDollarReplacement(StringBuffer& newReplaceChars,
+ size_t firstDollarIndex, size_t matchStart,
+ size_t matchLimit, JSLinearString* text,
+ const CharT* repChars, size_t repLength) {
+ MOZ_ASSERT(firstDollarIndex < repLength);
+ MOZ_ASSERT(matchStart <= matchLimit);
+ MOZ_ASSERT(matchLimit <= text->length());
+
+ // Move the pre-dollar chunk in bulk.
+ if (!newReplaceChars.append(repChars, firstDollarIndex)) {
+ return false;
+ }
+
+ // Move the rest char-by-char, interpreting dollars as we encounter them.
+ const CharT* repLimit = repChars + repLength;
+ for (const CharT* it = repChars + firstDollarIndex; it < repLimit; ++it) {
+ if (*it != '$' || it == repLimit - 1) {
+ if (!newReplaceChars.append(*it)) {
+ return false;
+ }
+ continue;
+ }
+
+ switch (*(it + 1)) {
+ case '$':
+ // Eat one of the dollars.
+ if (!newReplaceChars.append(*it)) {
+ return false;
+ }
+ break;
+ case '&':
+ if (!newReplaceChars.appendSubstring(text, matchStart,
+ matchLimit - matchStart)) {
+ return false;
+ }
+ break;
+ case '`':
+ if (!newReplaceChars.appendSubstring(text, 0, matchStart)) {
+ return false;
+ }
+ break;
+ case '\'':
+ if (!newReplaceChars.appendSubstring(text, matchLimit,
+ text->length() - matchLimit)) {
+ return false;
+ }
+ break;
+ default:
+ // The dollar we saw was not special (no matter what its mother told
+ // it).
+ if (!newReplaceChars.append(*it)) {
+ return false;
+ }
+ continue;
+ }
+ ++it; // We always eat an extra char in the above switch.
+ }
+
+ return true;
+}
+
+/*
+ * Perform a linear-scan dollar substitution on the replacement text.
+ */
+static JSLinearString* InterpretDollarReplacement(
+ JSContext* cx, HandleString textstrArg, HandleLinearString repstr,
+ uint32_t firstDollarIndex, size_t matchStart, size_t patternLength) {
+ RootedLinearString textstr(cx, textstrArg->ensureLinear(cx));
+ if (!textstr) {
+ return nullptr;
+ }
+
+ size_t matchLimit = matchStart + patternLength;
+
+ /*
+ * Most probably:
+ *
+ * len(newstr) >= len(orig) - len(match) + len(replacement)
+ *
+ * Note that dollar vars _could_ make the resulting text smaller than this.
+ */
+ JSStringBuilder newReplaceChars(cx);
+ if (repstr->hasTwoByteChars() && !newReplaceChars.ensureTwoByteChars()) {
+ return nullptr;
+ }
+
+ if (!newReplaceChars.reserve(textstr->length() - patternLength +
+ repstr->length())) {
+ return nullptr;
+ }
+
+ bool res;
+ if (repstr->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ res = AppendDollarReplacement(newReplaceChars, firstDollarIndex, matchStart,
+ matchLimit, textstr,
+ repstr->latin1Chars(nogc), repstr->length());
+ } else {
+ AutoCheckCannotGC nogc;
+ res = AppendDollarReplacement(newReplaceChars, firstDollarIndex, matchStart,
+ matchLimit, textstr,
+ repstr->twoByteChars(nogc), repstr->length());
+ }
+ if (!res) {
+ return nullptr;
+ }
+
+ return newReplaceChars.finishString();
+}
+
+template <typename StrChar, typename RepChar>
+static bool StrFlatReplaceGlobal(JSContext* cx, JSLinearString* str,
+ JSLinearString* pat, JSLinearString* rep,
+ StringBuffer& sb) {
+ MOZ_ASSERT(str->length() > 0);
+
+ AutoCheckCannotGC nogc;
+ const StrChar* strChars = str->chars<StrChar>(nogc);
+ const RepChar* repChars = rep->chars<RepChar>(nogc);
+
+ // The pattern is empty, so we interleave the replacement string in-between
+ // each character.
+ if (!pat->length()) {
+ CheckedInt<uint32_t> strLength(str->length());
+ CheckedInt<uint32_t> repLength(rep->length());
+ CheckedInt<uint32_t> length = repLength * (strLength - 1) + strLength;
+ if (!length.isValid()) {
+ ReportAllocationOverflow(cx);
+ return false;
+ }
+
+ if (!sb.reserve(length.value())) {
+ return false;
+ }
+
+ for (unsigned i = 0; i < str->length() - 1; ++i, ++strChars) {
+ sb.infallibleAppend(*strChars);
+ sb.infallibleAppend(repChars, rep->length());
+ }
+ sb.infallibleAppend(*strChars);
+ return true;
+ }
+
+ // If it's true, we are sure that the result's length is, at least, the same
+ // length as |str->length()|.
+ if (rep->length() >= pat->length()) {
+ if (!sb.reserve(str->length())) {
+ return false;
+ }
+ }
+
+ uint32_t start = 0;
+ for (;;) {
+ int match = StringMatch(str, pat, start);
+ if (match < 0) {
+ break;
+ }
+ if (!sb.append(strChars + start, match - start)) {
+ return false;
+ }
+ if (!sb.append(repChars, rep->length())) {
+ return false;
+ }
+ start = match + pat->length();
+ }
+
+ if (!sb.append(strChars + start, str->length() - start)) {
+ return false;
+ }
+
+ return true;
+}
+
+// This is identical to "str.split(pattern).join(replacement)" except that we
+// do some deforestation optimization in Ion.
+JSString* js::StringFlatReplaceString(JSContext* cx, HandleString string,
+ HandleString pattern,
+ HandleString replacement) {
+ MOZ_ASSERT(string);
+ MOZ_ASSERT(pattern);
+ MOZ_ASSERT(replacement);
+
+ if (!string->length()) {
+ return string;
+ }
+
+ RootedLinearString linearRepl(cx, replacement->ensureLinear(cx));
+ if (!linearRepl) {
+ return nullptr;
+ }
+
+ RootedLinearString linearPat(cx, pattern->ensureLinear(cx));
+ if (!linearPat) {
+ return nullptr;
+ }
+
+ RootedLinearString linearStr(cx, string->ensureLinear(cx));
+ if (!linearStr) {
+ return nullptr;
+ }
+
+ JSStringBuilder sb(cx);
+ if (linearStr->hasTwoByteChars()) {
+ if (!sb.ensureTwoByteChars()) {
+ return nullptr;
+ }
+ if (linearRepl->hasTwoByteChars()) {
+ if (!StrFlatReplaceGlobal<char16_t, char16_t>(cx, linearStr, linearPat,
+ linearRepl, sb)) {
+ return nullptr;
+ }
+ } else {
+ if (!StrFlatReplaceGlobal<char16_t, Latin1Char>(cx, linearStr, linearPat,
+ linearRepl, sb)) {
+ return nullptr;
+ }
+ }
+ } else {
+ if (linearRepl->hasTwoByteChars()) {
+ if (!sb.ensureTwoByteChars()) {
+ return nullptr;
+ }
+ if (!StrFlatReplaceGlobal<Latin1Char, char16_t>(cx, linearStr, linearPat,
+ linearRepl, sb)) {
+ return nullptr;
+ }
+ } else {
+ if (!StrFlatReplaceGlobal<Latin1Char, Latin1Char>(
+ cx, linearStr, linearPat, linearRepl, sb)) {
+ return nullptr;
+ }
+ }
+ }
+
+ return sb.finishString();
+}
+
+JSString* js::str_replace_string_raw(JSContext* cx, HandleString string,
+ HandleString pattern,
+ HandleString replacement) {
+ RootedLinearString repl(cx, replacement->ensureLinear(cx));
+ if (!repl) {
+ return nullptr;
+ }
+
+ RootedLinearString pat(cx, pattern->ensureLinear(cx));
+ if (!pat) {
+ return nullptr;
+ }
+
+ size_t patternLength = pat->length();
+ int32_t match;
+ uint32_t dollarIndex;
+
+ {
+ AutoCheckCannotGC nogc;
+ dollarIndex =
+ repl->hasLatin1Chars()
+ ? FindDollarIndex(repl->latin1Chars(nogc), repl->length())
+ : FindDollarIndex(repl->twoByteChars(nogc), repl->length());
+ }
+
+ /*
+ * |string| could be a rope, so we want to avoid flattening it for as
+ * long as possible.
+ */
+ if (string->isRope()) {
+ if (!RopeMatch(cx, &string->asRope(), pat, &match)) {
+ return nullptr;
+ }
+ } else {
+ match = StringMatch(&string->asLinear(), pat, 0);
+ }
+
+ if (match < 0) {
+ return string;
+ }
+
+ if (dollarIndex != UINT32_MAX) {
+ repl = InterpretDollarReplacement(cx, string, repl, dollarIndex, match,
+ patternLength);
+ if (!repl) {
+ return nullptr;
+ }
+ } else if (string->isRope()) {
+ return BuildFlatRopeReplacement(cx, string, repl, match, patternLength);
+ }
+ return BuildFlatReplacement(cx, string, repl, match, patternLength);
+}
+
+// https://tc39.es/proposal-string-replaceall/#sec-string.prototype.replaceall
+// Steps 7-16 when functionalReplace is false and searchString is not empty.
+//
+// The steps are quite different, for performance. Loops in steps 11 and 14
+// are fused. GetSubstitution is optimized away when possible.
+template <typename StrChar, typename RepChar>
+static JSString* ReplaceAll(JSContext* cx, JSLinearString* string,
+ JSLinearString* searchString,
+ JSLinearString* replaceString) {
+ // Step 7.
+ const size_t stringLength = string->length();
+ const size_t searchLength = searchString->length();
+ const size_t replaceLength = replaceString->length();
+
+ MOZ_ASSERT(stringLength > 0);
+ MOZ_ASSERT(searchLength > 0);
+ MOZ_ASSERT(stringLength >= searchLength);
+
+ // Step 8 (advanceBy is equal to searchLength when searchLength > 0).
+
+ // Step 9 (not needed in this implementation).
+
+ // Step 10.
+ // Find the first match.
+ int32_t position = StringMatch(string, searchString, 0);
+
+ // Nothing to replace, so return early.
+ if (position < 0) {
+ return string;
+ }
+
+ // Step 11 (moved below).
+
+ // Step 12.
+ uint32_t endOfLastMatch = 0;
+
+ // Step 13.
+ JSStringBuilder result(cx);
+ if constexpr (std::is_same_v<StrChar, char16_t> ||
+ std::is_same_v<RepChar, char16_t>) {
+ if (!result.ensureTwoByteChars()) {
+ return nullptr;
+ }
+ }
+
+ {
+ AutoCheckCannotGC nogc;
+ const StrChar* strChars = string->chars<StrChar>(nogc);
+ const RepChar* repChars = replaceString->chars<RepChar>(nogc);
+
+ uint32_t dollarIndex = FindDollarIndex(repChars, replaceLength);
+
+ // If it's true, we are sure that the result's length is, at least, the same
+ // length as |str->length()|.
+ if (replaceLength >= searchLength) {
+ if (!result.reserve(stringLength)) {
+ return nullptr;
+ }
+ }
+
+ do {
+ // Step 14.c.
+ // Append the substring before the current match.
+ if (!result.append(strChars + endOfLastMatch,
+ position - endOfLastMatch)) {
+ return nullptr;
+ }
+
+ // Steps 14.a-b and 14.d.
+ // Append the replacement.
+ if (dollarIndex != UINT32_MAX) {
+ size_t matchLimit = position + searchLength;
+ if (!AppendDollarReplacement(result, dollarIndex, position, matchLimit,
+ string, repChars, replaceLength)) {
+ return nullptr;
+ }
+ } else {
+ if (!result.append(repChars, replaceLength)) {
+ return nullptr;
+ }
+ }
+
+ // Step 14.e.
+ endOfLastMatch = position + searchLength;
+
+ // Step 11.
+ // Find the next match.
+ position = StringMatch(string, searchString, endOfLastMatch);
+ } while (position >= 0);
+
+ // Step 15.
+ // Append the substring after the last match.
+ if (!result.append(strChars + endOfLastMatch,
+ stringLength - endOfLastMatch)) {
+ return nullptr;
+ }
+ }
+
+ // Step 16.
+ return result.finishString();
+}
+
+// https://tc39.es/proposal-string-replaceall/#sec-string.prototype.replaceall
+// Steps 7-16 when functionalReplace is false and searchString is the empty
+// string.
+//
+// The steps are quite different, for performance. Loops in steps 11 and 14
+// are fused. GetSubstitution is optimized away when possible.
+template <typename StrChar, typename RepChar>
+static JSString* ReplaceAllInterleave(JSContext* cx, JSLinearString* string,
+ JSLinearString* replaceString) {
+ // Step 7.
+ const size_t stringLength = string->length();
+ const size_t replaceLength = replaceString->length();
+
+ // Step 8 (advanceBy is 1 when searchString is the empty string).
+
+ // Steps 9-12 (trivial when searchString is the empty string).
+
+ // Step 13.
+ JSStringBuilder result(cx);
+ if constexpr (std::is_same_v<StrChar, char16_t> ||
+ std::is_same_v<RepChar, char16_t>) {
+ if (!result.ensureTwoByteChars()) {
+ return nullptr;
+ }
+ }
+
+ {
+ AutoCheckCannotGC nogc;
+ const StrChar* strChars = string->chars<StrChar>(nogc);
+ const RepChar* repChars = replaceString->chars<RepChar>(nogc);
+
+ uint32_t dollarIndex = FindDollarIndex(repChars, replaceLength);
+
+ if (dollarIndex != UINT32_MAX) {
+ if (!result.reserve(stringLength)) {
+ return nullptr;
+ }
+ } else {
+ // Compute the exact result length when no substitutions take place.
+ CheckedInt<uint32_t> strLength(stringLength);
+ CheckedInt<uint32_t> repLength(replaceLength);
+ CheckedInt<uint32_t> length = strLength + (strLength + 1) * repLength;
+ if (!length.isValid()) {
+ ReportAllocationOverflow(cx);
+ return nullptr;
+ }
+
+ if (!result.reserve(length.value())) {
+ return nullptr;
+ }
+ }
+
+ auto appendReplacement = [&](size_t match) {
+ if (dollarIndex != UINT32_MAX) {
+ return AppendDollarReplacement(result, dollarIndex, match, match,
+ string, repChars, replaceLength);
+ }
+ return result.append(repChars, replaceLength);
+ };
+
+ for (size_t index = 0; index < stringLength; index++) {
+ // Steps 11, 14.a-b and 14.d.
+ // The empty string matches before each character.
+ if (!appendReplacement(index)) {
+ return nullptr;
+ }
+
+ // Step 14.c.
+ if (!result.append(strChars[index])) {
+ return nullptr;
+ }
+ }
+
+ // Steps 11, 14.a-b and 14.d.
+ // The empty string also matches at the end of the string.
+ if (!appendReplacement(stringLength)) {
+ return nullptr;
+ }
+
+ // Step 15 (not applicable when searchString is the empty string).
+ }
+
+ // Step 16.
+ return result.finishString();
+}
+
+// String.prototype.replaceAll (Stage 3 proposal)
+// https://tc39.es/proposal-string-replaceall/
+//
+// String.prototype.replaceAll ( searchValue, replaceValue )
+//
+// Steps 7-16 when functionalReplace is false.
+JSString* js::str_replaceAll_string_raw(JSContext* cx, HandleString string,
+ HandleString searchString,
+ HandleString replaceString) {
+ const size_t stringLength = string->length();
+ const size_t searchLength = searchString->length();
+
+ // Directly return when we're guaranteed to find no match.
+ if (searchLength > stringLength) {
+ return string;
+ }
+
+ RootedLinearString str(cx, string->ensureLinear(cx));
+ if (!str) {
+ return nullptr;
+ }
+
+ RootedLinearString repl(cx, replaceString->ensureLinear(cx));
+ if (!repl) {
+ return nullptr;
+ }
+
+ RootedLinearString search(cx, searchString->ensureLinear(cx));
+ if (!search) {
+ return nullptr;
+ }
+
+ // The pattern is empty, so we interleave the replacement string in-between
+ // each character.
+ if (searchLength == 0) {
+ if (str->hasTwoByteChars()) {
+ if (repl->hasTwoByteChars()) {
+ return ReplaceAllInterleave<char16_t, char16_t>(cx, str, repl);
+ }
+ return ReplaceAllInterleave<char16_t, Latin1Char>(cx, str, repl);
+ }
+ if (repl->hasTwoByteChars()) {
+ return ReplaceAllInterleave<Latin1Char, char16_t>(cx, str, repl);
+ }
+ return ReplaceAllInterleave<Latin1Char, Latin1Char>(cx, str, repl);
+ }
+
+ MOZ_ASSERT(stringLength > 0);
+
+ if (str->hasTwoByteChars()) {
+ if (repl->hasTwoByteChars()) {
+ return ReplaceAll<char16_t, char16_t>(cx, str, search, repl);
+ }
+ return ReplaceAll<char16_t, Latin1Char>(cx, str, search, repl);
+ }
+ if (repl->hasTwoByteChars()) {
+ return ReplaceAll<Latin1Char, char16_t>(cx, str, search, repl);
+ }
+ return ReplaceAll<Latin1Char, Latin1Char>(cx, str, search, repl);
+}
+
+static ArrayObject* SingleElementStringArray(JSContext* cx,
+ HandleLinearString str) {
+ ArrayObject* array = NewDenseFullyAllocatedArray(cx, 1);
+ if (!array) {
+ return nullptr;
+ }
+ array->setDenseInitializedLength(1);
+ array->initDenseElement(0, StringValue(str));
+ return array;
+}
+
+// ES 2016 draft Mar 25, 2016 21.1.3.17 steps 4, 8, 12-18.
+static ArrayObject* SplitHelper(JSContext* cx, HandleLinearString str,
+ uint32_t limit, HandleLinearString sep) {
+ size_t strLength = str->length();
+ size_t sepLength = sep->length();
+ MOZ_ASSERT(sepLength != 0);
+
+ // Step 12.
+ if (strLength == 0) {
+ // Step 12.a.
+ int match = StringMatch(str, sep, 0);
+
+ // Step 12.b.
+ if (match != -1) {
+ return NewDenseEmptyArray(cx);
+ }
+
+ // Steps 12.c-e.
+ return SingleElementStringArray(cx, str);
+ }
+
+ // Step 3 (reordered).
+ RootedValueVector splits(cx);
+
+ // Step 8 (reordered).
+ size_t lastEndIndex = 0;
+
+ // Step 13.
+ size_t index = 0;
+
+ // Step 14.
+ while (index != strLength) {
+ // Step 14.a.
+ int match = StringMatch(str, sep, index);
+
+ // Step 14.b.
+ //
+ // Our match algorithm differs from the spec in that it returns the
+ // next index at which a match happens. If no match happens we're
+ // done.
+ //
+ // But what if the match is at the end of the string (and the string is
+ // not empty)? Per 14.c.i this shouldn't be a match, so we have to
+ // specially exclude it. Thus this case should hold:
+ //
+ // var a = "abc".split(/\b/);
+ // assertEq(a.length, 1);
+ // assertEq(a[0], "abc");
+ if (match == -1) {
+ break;
+ }
+
+ // Step 14.c.
+ size_t endIndex = match + sepLength;
+
+ // Step 14.c.i.
+ if (endIndex == lastEndIndex) {
+ index++;
+ continue;
+ }
+
+ // Step 14.c.ii.
+ MOZ_ASSERT(lastEndIndex < endIndex);
+ MOZ_ASSERT(sepLength <= strLength);
+ MOZ_ASSERT(lastEndIndex + sepLength <= endIndex);
+
+ // Step 14.c.ii.1.
+ size_t subLength = size_t(endIndex - sepLength - lastEndIndex);
+ JSString* sub = NewDependentString(cx, str, lastEndIndex, subLength);
+
+ // Steps 14.c.ii.2-4.
+ if (!sub || !splits.append(StringValue(sub))) {
+ return nullptr;
+ }
+
+ // Step 14.c.ii.5.
+ if (splits.length() == limit) {
+ return NewDenseCopiedArray(cx, splits.length(), splits.begin());
+ }
+
+ // Step 14.c.ii.6.
+ index = endIndex;
+
+ // Step 14.c.ii.7.
+ lastEndIndex = index;
+ }
+
+ // Step 15.
+ JSString* sub =
+ NewDependentString(cx, str, lastEndIndex, strLength - lastEndIndex);
+
+ // Steps 16-17.
+ if (!sub || !splits.append(StringValue(sub))) {
+ return nullptr;
+ }
+
+ // Step 18.
+ return NewDenseCopiedArray(cx, splits.length(), splits.begin());
+}
+
+// Fast-path for splitting a string into a character array via split("").
+static ArrayObject* CharSplitHelper(JSContext* cx, HandleLinearString str,
+ uint32_t limit) {
+ size_t strLength = str->length();
+ if (strLength == 0) {
+ return NewDenseEmptyArray(cx);
+ }
+
+ js::StaticStrings& staticStrings = cx->staticStrings();
+ uint32_t resultlen = (limit < strLength ? limit : strLength);
+ MOZ_ASSERT(limit > 0 && resultlen > 0,
+ "Neither limit nor strLength is zero, so resultlen is greater "
+ "than zero.");
+
+ RootedArrayObject splits(cx, NewDenseFullyAllocatedArray(cx, resultlen));
+ if (!splits) {
+ return nullptr;
+ }
+
+ if (str->hasLatin1Chars()) {
+ splits->setDenseInitializedLength(resultlen);
+
+ JS::AutoCheckCannotGC nogc;
+ const Latin1Char* latin1Chars = str->latin1Chars(nogc);
+ for (size_t i = 0; i < resultlen; ++i) {
+ Latin1Char c = latin1Chars[i];
+ MOZ_ASSERT(staticStrings.hasUnit(c));
+ splits->initDenseElement(i, StringValue(staticStrings.getUnit(c)));
+ }
+ } else {
+ splits->ensureDenseInitializedLength(0, resultlen);
+
+ for (size_t i = 0; i < resultlen; ++i) {
+ JSString* sub = staticStrings.getUnitStringForElement(cx, str, i);
+ if (!sub) {
+ return nullptr;
+ }
+ splits->initDenseElement(i, StringValue(sub));
+ }
+ }
+
+ return splits;
+}
+
+template <typename TextChar>
+static MOZ_ALWAYS_INLINE ArrayObject* SplitSingleCharHelper(
+ JSContext* cx, HandleLinearString str, const TextChar* text,
+ uint32_t textLen, char16_t patCh) {
+ // Count the number of occurrences of patCh within text.
+ uint32_t count = 0;
+ for (size_t index = 0; index < textLen; index++) {
+ if (static_cast<char16_t>(text[index]) == patCh) {
+ count++;
+ }
+ }
+
+ // Handle zero-occurrence case - return input string in an array.
+ if (count == 0) {
+ return SingleElementStringArray(cx, str);
+ }
+
+ // Create the result array for the substring values.
+ RootedArrayObject splits(cx, NewDenseFullyAllocatedArray(cx, count + 1));
+ if (!splits) {
+ return nullptr;
+ }
+ splits->ensureDenseInitializedLength(0, count + 1);
+
+ // Add substrings.
+ uint32_t splitsIndex = 0;
+ size_t lastEndIndex = 0;
+ for (size_t index = 0; index < textLen; index++) {
+ if (static_cast<char16_t>(text[index]) == patCh) {
+ size_t subLength = size_t(index - lastEndIndex);
+ JSString* sub = NewDependentString(cx, str, lastEndIndex, subLength);
+ if (!sub) {
+ return nullptr;
+ }
+ splits->initDenseElement(splitsIndex++, StringValue(sub));
+ lastEndIndex = index + 1;
+ }
+ }
+
+ // Add substring for tail of string (after last match).
+ JSString* sub =
+ NewDependentString(cx, str, lastEndIndex, textLen - lastEndIndex);
+ if (!sub) {
+ return nullptr;
+ }
+ splits->initDenseElement(splitsIndex++, StringValue(sub));
+
+ return splits;
+}
+
+// ES 2016 draft Mar 25, 2016 21.1.3.17 steps 4, 8, 12-18.
+static ArrayObject* SplitSingleCharHelper(JSContext* cx, HandleLinearString str,
+ char16_t ch) {
+ // Step 12.
+ size_t strLength = str->length();
+
+ AutoStableStringChars linearChars(cx);
+ if (!linearChars.init(cx, str)) {
+ return nullptr;
+ }
+
+ if (linearChars.isLatin1()) {
+ return SplitSingleCharHelper(cx, str, linearChars.latin1Chars(), strLength,
+ ch);
+ }
+
+ return SplitSingleCharHelper(cx, str, linearChars.twoByteChars(), strLength,
+ ch);
+}
+
+// ES 2016 draft Mar 25, 2016 21.1.3.17 steps 4, 8, 12-18.
+ArrayObject* js::StringSplitString(JSContext* cx, HandleString str,
+ HandleString sep, uint32_t limit) {
+ MOZ_ASSERT(limit > 0, "Only called for strictly positive limit.");
+
+ RootedLinearString linearStr(cx, str->ensureLinear(cx));
+ if (!linearStr) {
+ return nullptr;
+ }
+
+ RootedLinearString linearSep(cx, sep->ensureLinear(cx));
+ if (!linearSep) {
+ return nullptr;
+ }
+
+ if (linearSep->length() == 0) {
+ return CharSplitHelper(cx, linearStr, limit);
+ }
+
+ if (linearSep->length() == 1 && limit >= static_cast<uint32_t>(INT32_MAX)) {
+ char16_t ch = linearSep->latin1OrTwoByteChar(0);
+ return SplitSingleCharHelper(cx, linearStr, ch);
+ }
+
+ return SplitHelper(cx, linearStr, limit, linearSep);
+}
+
+static const JSFunctionSpec string_methods[] = {
+ JS_FN(js_toSource_str, str_toSource, 0, 0),
+
+ /* Java-like methods. */
+ JS_INLINABLE_FN(js_toString_str, str_toString, 0, 0, StringToString),
+ JS_INLINABLE_FN(js_valueOf_str, str_toString, 0, 0, StringValueOf),
+ JS_INLINABLE_FN("toLowerCase", str_toLowerCase, 0, 0, StringToLowerCase),
+ JS_INLINABLE_FN("toUpperCase", str_toUpperCase, 0, 0, StringToUpperCase),
+ JS_INLINABLE_FN("charAt", str_charAt, 1, 0, StringCharAt),
+ JS_INLINABLE_FN("charCodeAt", str_charCodeAt, 1, 0, StringCharCodeAt),
+ JS_SELF_HOSTED_FN("substring", "String_substring", 2, 0),
+ JS_SELF_HOSTED_FN("padStart", "String_pad_start", 2, 0),
+ JS_SELF_HOSTED_FN("padEnd", "String_pad_end", 2, 0),
+ JS_SELF_HOSTED_FN("codePointAt", "String_codePointAt", 1, 0),
+ JS_FN("includes", str_includes, 1, 0), JS_FN("indexOf", str_indexOf, 1, 0),
+ JS_FN("lastIndexOf", str_lastIndexOf, 1, 0),
+ JS_FN("startsWith", str_startsWith, 1, 0),
+ JS_FN("endsWith", str_endsWith, 1, 0), JS_FN("trim", str_trim, 0, 0),
+ JS_FN("trimStart", str_trimStart, 0, 0),
+ JS_FN("trimEnd", str_trimEnd, 0, 0),
+#if JS_HAS_INTL_API
+ JS_SELF_HOSTED_FN("toLocaleLowerCase", "String_toLocaleLowerCase", 0, 0),
+ JS_SELF_HOSTED_FN("toLocaleUpperCase", "String_toLocaleUpperCase", 0, 0),
+ JS_SELF_HOSTED_FN("localeCompare", "String_localeCompare", 1, 0),
+#else
+ JS_FN("toLocaleLowerCase", str_toLocaleLowerCase, 0, 0),
+ JS_FN("toLocaleUpperCase", str_toLocaleUpperCase, 0, 0),
+ JS_FN("localeCompare", str_localeCompare, 1, 0),
+#endif
+ JS_SELF_HOSTED_FN("repeat", "String_repeat", 1, 0),
+#if JS_HAS_INTL_API
+ JS_FN("normalize", str_normalize, 0, 0),
+#endif
+
+ /* Perl-ish methods (search is actually Python-esque). */
+ JS_SELF_HOSTED_FN("match", "String_match", 1, 0),
+ JS_SELF_HOSTED_FN("matchAll", "String_matchAll", 1, 0),
+ JS_SELF_HOSTED_FN("search", "String_search", 1, 0),
+ JS_SELF_HOSTED_FN("replace", "String_replace", 2, 0),
+ JS_SELF_HOSTED_FN("replaceAll", "String_replaceAll", 2, 0),
+ JS_SELF_HOSTED_FN("split", "String_split", 2, 0),
+ JS_SELF_HOSTED_FN("substr", "String_substr", 2, 0),
+
+ /* Python-esque sequence methods. */
+ JS_SELF_HOSTED_FN("concat", "String_concat", 1, 0),
+ JS_SELF_HOSTED_FN("slice", "String_slice", 2, 0),
+
+#ifdef NIGHTLY_BUILD
+ JS_SELF_HOSTED_FN("at", "String_at", 1, 0),
+#endif
+
+ /* HTML string methods. */
+ JS_SELF_HOSTED_FN("bold", "String_bold", 0, 0),
+ JS_SELF_HOSTED_FN("italics", "String_italics", 0, 0),
+ JS_SELF_HOSTED_FN("fixed", "String_fixed", 0, 0),
+ JS_SELF_HOSTED_FN("strike", "String_strike", 0, 0),
+ JS_SELF_HOSTED_FN("small", "String_small", 0, 0),
+ JS_SELF_HOSTED_FN("big", "String_big", 0, 0),
+ JS_SELF_HOSTED_FN("blink", "String_blink", 0, 0),
+ JS_SELF_HOSTED_FN("sup", "String_sup", 0, 0),
+ JS_SELF_HOSTED_FN("sub", "String_sub", 0, 0),
+ JS_SELF_HOSTED_FN("anchor", "String_anchor", 1, 0),
+ JS_SELF_HOSTED_FN("link", "String_link", 1, 0),
+ JS_SELF_HOSTED_FN("fontcolor", "String_fontcolor", 1, 0),
+ JS_SELF_HOSTED_FN("fontsize", "String_fontsize", 1, 0),
+
+ JS_SELF_HOSTED_SYM_FN(iterator, "String_iterator", 0, 0), JS_FS_END};
+
+// ES6 rev 27 (2014 Aug 24) 21.1.1
+bool js::StringConstructor(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ RootedString str(cx);
+ if (args.length() > 0) {
+ if (!args.isConstructing() && args[0].isSymbol()) {
+ return js::SymbolDescriptiveString(cx, args[0].toSymbol(), args.rval());
+ }
+
+ str = ToString<CanGC>(cx, args[0]);
+ if (!str) {
+ return false;
+ }
+ } else {
+ str = cx->runtime()->emptyString;
+ }
+
+ if (args.isConstructing()) {
+ RootedObject proto(cx);
+ if (!GetPrototypeFromBuiltinConstructor(cx, args, JSProto_String, &proto)) {
+ return false;
+ }
+
+ StringObject* strobj = StringObject::create(cx, str, proto);
+ if (!strobj) {
+ return false;
+ }
+ args.rval().setObject(*strobj);
+ return true;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+bool js::str_fromCharCode(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ MOZ_ASSERT(args.length() <= ARGS_LENGTH_MAX);
+
+ // Optimize the single-char case.
+ if (args.length() == 1) {
+ return str_fromCharCode_one_arg(cx, args[0], args.rval());
+ }
+
+ // Optimize the case where the result will definitely fit in an inline
+ // string (thin or fat) and so we don't need to malloc the chars. (We could
+ // cover some cases where args.length() goes up to
+ // JSFatInlineString::MAX_LENGTH_LATIN1 if we also checked if the chars are
+ // all Latin-1, but it doesn't seem worth the effort.)
+ InlineCharBuffer<char16_t> chars;
+ if (!chars.maybeAlloc(cx, args.length())) {
+ return false;
+ }
+
+ char16_t* rawChars = chars.get();
+ for (unsigned i = 0; i < args.length(); i++) {
+ uint16_t code;
+ if (!ToUint16(cx, args[i], &code)) {
+ return false;
+ }
+
+ rawChars[i] = char16_t(code);
+ }
+
+ JSString* str = chars.toString(cx, args.length());
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+static inline bool CodeUnitToString(JSContext* cx, uint16_t ucode,
+ MutableHandleValue rval) {
+ if (StaticStrings::hasUnit(ucode)) {
+ rval.setString(cx->staticStrings().getUnit(ucode));
+ return true;
+ }
+
+ char16_t c = char16_t(ucode);
+ JSString* str = NewStringCopyNDontDeflate<CanGC>(cx, &c, 1);
+ if (!str) {
+ return false;
+ }
+
+ rval.setString(str);
+ return true;
+}
+
+bool js::str_fromCharCode_one_arg(JSContext* cx, HandleValue code,
+ MutableHandleValue rval) {
+ uint16_t ucode;
+
+ if (!ToUint16(cx, code, &ucode)) {
+ return false;
+ }
+
+ return CodeUnitToString(cx, ucode, rval);
+}
+
+static MOZ_ALWAYS_INLINE bool ToCodePoint(JSContext* cx, HandleValue code,
+ uint32_t* codePoint) {
+ // String.fromCodePoint, Steps 5.a-b.
+
+ // Fast path for the common case - the input is already an int32.
+ if (code.isInt32()) {
+ int32_t nextCP = code.toInt32();
+ if (nextCP >= 0 && nextCP <= int32_t(unicode::NonBMPMax)) {
+ *codePoint = uint32_t(nextCP);
+ return true;
+ }
+ }
+
+ double nextCP;
+ if (!ToNumber(cx, code, &nextCP)) {
+ return false;
+ }
+
+ // String.fromCodePoint, Steps 5.c-d.
+ if (JS::ToInteger(nextCP) != nextCP || nextCP < 0 ||
+ nextCP > unicode::NonBMPMax) {
+ ToCStringBuf cbuf;
+ if (const char* numStr = NumberToCString(cx, &cbuf, nextCP)) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_NOT_A_CODEPOINT, numStr);
+ }
+ return false;
+ }
+
+ *codePoint = uint32_t(nextCP);
+ return true;
+}
+
+bool js::str_fromCodePoint_one_arg(JSContext* cx, HandleValue code,
+ MutableHandleValue rval) {
+ // Steps 1-4 (omitted).
+
+ // Steps 5.a-d.
+ uint32_t codePoint;
+ if (!ToCodePoint(cx, code, &codePoint)) {
+ return false;
+ }
+
+ // Steps 5.e, 6.
+ if (!unicode::IsSupplementary(codePoint)) {
+ return CodeUnitToString(cx, uint16_t(codePoint), rval);
+ }
+
+ char16_t chars[] = {unicode::LeadSurrogate(codePoint),
+ unicode::TrailSurrogate(codePoint)};
+ JSString* str = NewStringCopyNDontDeflate<CanGC>(cx, chars, 2);
+ if (!str) {
+ return false;
+ }
+
+ rval.setString(str);
+ return true;
+}
+
+static bool str_fromCodePoint_few_args(JSContext* cx, const CallArgs& args) {
+ MOZ_ASSERT(args.length() <= JSFatInlineString::MAX_LENGTH_TWO_BYTE / 2);
+
+ // Steps 1-2 (omitted).
+
+ // Step 3.
+ char16_t elements[JSFatInlineString::MAX_LENGTH_TWO_BYTE];
+
+ // Steps 4-5.
+ unsigned length = 0;
+ for (unsigned nextIndex = 0; nextIndex < args.length(); nextIndex++) {
+ // Steps 5.a-d.
+ uint32_t codePoint;
+ if (!ToCodePoint(cx, args[nextIndex], &codePoint)) {
+ return false;
+ }
+
+ // Step 5.e.
+ unicode::UTF16Encode(codePoint, elements, &length);
+ }
+
+ // Step 6.
+ JSString* str = NewStringCopyN<CanGC>(cx, elements, length);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+// ES2017 draft rev 40edb3a95a475c1b251141ac681b8793129d9a6d
+// 21.1.2.2 String.fromCodePoint(...codePoints)
+bool js::str_fromCodePoint(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Optimize the single code-point case.
+ if (args.length() == 1) {
+ return str_fromCodePoint_one_arg(cx, args[0], args.rval());
+ }
+
+ // Optimize the case where the result will definitely fit in an inline
+ // string (thin or fat) and so we don't need to malloc the chars. (We could
+ // cover some cases where |args.length()| goes up to
+ // JSFatInlineString::MAX_LENGTH_LATIN1 / 2 if we also checked if the chars
+ // are all Latin-1, but it doesn't seem worth the effort.)
+ if (args.length() <= JSFatInlineString::MAX_LENGTH_TWO_BYTE / 2) {
+ return str_fromCodePoint_few_args(cx, args);
+ }
+
+ // Steps 1-2 (omitted).
+
+ // Step 3.
+ static_assert(
+ ARGS_LENGTH_MAX < std::numeric_limits<decltype(args.length())>::max() / 2,
+ "|args.length() * 2| does not overflow");
+ auto elements = cx->make_pod_arena_array<char16_t>(js::StringBufferArena,
+ args.length() * 2);
+ if (!elements) {
+ return false;
+ }
+
+ // Steps 4-5.
+ unsigned length = 0;
+ for (unsigned nextIndex = 0; nextIndex < args.length(); nextIndex++) {
+ // Steps 5.a-d.
+ uint32_t codePoint;
+ if (!ToCodePoint(cx, args[nextIndex], &codePoint)) {
+ return false;
+ }
+
+ // Step 5.e.
+ unicode::UTF16Encode(codePoint, elements.get(), &length);
+ }
+
+ // Step 6.
+ JSString* str = NewString<CanGC>(cx, std::move(elements), length);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+static const JSFunctionSpec string_static_methods[] = {
+ JS_INLINABLE_FN("fromCharCode", js::str_fromCharCode, 1, 0,
+ StringFromCharCode),
+ JS_INLINABLE_FN("fromCodePoint", js::str_fromCodePoint, 1, 0,
+ StringFromCodePoint),
+
+ JS_SELF_HOSTED_FN("raw", "String_static_raw", 1, 0), JS_FS_END};
+
+/* static */
+Shape* StringObject::assignInitialShape(JSContext* cx,
+ Handle<StringObject*> obj) {
+ MOZ_ASSERT(obj->empty());
+
+ return NativeObject::addDataProperty(cx, obj, cx->names().length, LENGTH_SLOT,
+ JSPROP_PERMANENT | JSPROP_READONLY);
+}
+
+JSObject* StringObject::createPrototype(JSContext* cx, JSProtoKey key) {
+ Rooted<JSString*> empty(cx, cx->runtime()->emptyString);
+ Rooted<StringObject*> proto(
+ cx, GlobalObject::createBlankPrototype<StringObject>(cx, cx->global()));
+ if (!proto) {
+ return nullptr;
+ }
+ if (!StringObject::init(cx, proto, empty)) {
+ return nullptr;
+ }
+ return proto;
+}
+
+static bool StringClassFinish(JSContext* cx, HandleObject ctor,
+ HandleObject proto) {
+ HandleNativeObject nativeProto = proto.as<NativeObject>();
+
+ // Create "trimLeft" as an alias for "trimStart".
+ RootedValue trimFn(cx);
+ RootedId trimId(cx, NameToId(cx->names().trimStart));
+ RootedId trimAliasId(cx, NameToId(cx->names().trimLeft));
+ if (!NativeGetProperty(cx, nativeProto, trimId, &trimFn) ||
+ !NativeDefineDataProperty(cx, nativeProto, trimAliasId, trimFn, 0)) {
+ return false;
+ }
+
+ // Create "trimRight" as an alias for "trimEnd".
+ trimId = NameToId(cx->names().trimEnd);
+ trimAliasId = NameToId(cx->names().trimRight);
+ if (!NativeGetProperty(cx, nativeProto, trimId, &trimFn) ||
+ !NativeDefineDataProperty(cx, nativeProto, trimAliasId, trimFn, 0)) {
+ return false;
+ }
+
+ /*
+ * Define escape/unescape, the URI encode/decode functions, and maybe
+ * uneval on the global object.
+ */
+ if (!JS_DefineFunctions(cx, cx->global(), string_functions)) {
+ return false;
+ }
+
+ return true;
+}
+
+const ClassSpec StringObject::classSpec_ = {
+ GenericCreateConstructor<StringConstructor, 1, gc::AllocKind::FUNCTION,
+ &jit::JitInfo_String>,
+ StringObject::createPrototype,
+ string_static_methods,
+ nullptr,
+ string_methods,
+ nullptr,
+ StringClassFinish};
+
+#define ____ false
+
+/*
+ * Uri reserved chars + #:
+ * - 35: #
+ * - 36: $
+ * - 38: &
+ * - 43: +
+ * - 44: ,
+ * - 47: /
+ * - 58: :
+ * - 59: ;
+ * - 61: =
+ * - 63: ?
+ * - 64: @
+ */
+static const bool js_isUriReservedPlusPound[] = {
+ // clang-format off
+/* 0 1 2 3 4 5 6 7 8 9 */
+/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 3 */ ____, ____, ____, ____, ____, true, true, ____, true, ____,
+/* 4 */ ____, ____, ____, true, true, ____, ____, true, ____, ____,
+/* 5 */ ____, ____, ____, ____, ____, ____, ____, ____, true, true,
+/* 6 */ ____, true, ____, true, true, ____, ____, ____, ____, ____,
+/* 7 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 8 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 9 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 10 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 11 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 12 */ ____, ____, ____, ____, ____, ____, ____, ____
+ // clang-format on
+};
+
+/*
+ * Uri unescaped chars:
+ * - 33: !
+ * - 39: '
+ * - 40: (
+ * - 41: )
+ * - 42: *
+ * - 45: -
+ * - 46: .
+ * - 48..57: 0-9
+ * - 65..90: A-Z
+ * - 95: _
+ * - 97..122: a-z
+ * - 126: ~
+ */
+static const bool js_isUriUnescaped[] = {
+ // clang-format off
+/* 0 1 2 3 4 5 6 7 8 9 */
+/* 0 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 1 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 2 */ ____, ____, ____, ____, ____, ____, ____, ____, ____, ____,
+/* 3 */ ____, ____, ____, true, ____, ____, ____, ____, ____, true,
+/* 4 */ true, true, true, ____, ____, true, true, ____, true, true,
+/* 5 */ true, true, true, true, true, true, true, true, ____, ____,
+/* 6 */ ____, ____, ____, ____, ____, true, true, true, true, true,
+/* 7 */ true, true, true, true, true, true, true, true, true, true,
+/* 8 */ true, true, true, true, true, true, true, true, true, true,
+/* 9 */ true, ____, ____, ____, ____, true, ____, true, true, true,
+/* 10 */ true, true, true, true, true, true, true, true, true, true,
+/* 11 */ true, true, true, true, true, true, true, true, true, true,
+/* 12 */ true, true, true, ____, ____, ____, true, ____
+ // clang-format on
+};
+
+#undef ____
+
+static inline bool TransferBufferToString(JSStringBuilder& sb, JSString* str,
+ MutableHandleValue rval) {
+ if (!sb.empty()) {
+ str = sb.finishString();
+ if (!str) {
+ return false;
+ }
+ }
+ rval.setString(str);
+ return true;
+}
+
+/*
+ * ECMA 3, 15.1.3 URI Handling Function Properties
+ *
+ * The following are implementations of the algorithms
+ * given in the ECMA specification for the hidden functions
+ * 'Encode' and 'Decode'.
+ */
+enum EncodeResult { Encode_Failure, Encode_BadUri, Encode_Success };
+
+// Bug 1403318: GCC sometimes inlines this Encode function rather than the
+// caller Encode function. Annotate both functions with MOZ_NEVER_INLINE resp.
+// MOZ_ALWAYS_INLINE to ensure we get the desired inlining behavior.
+template <typename CharT>
+static MOZ_NEVER_INLINE EncodeResult Encode(StringBuffer& sb,
+ const CharT* chars, size_t length,
+ const bool* unescapedSet) {
+ Latin1Char hexBuf[3];
+ hexBuf[0] = '%';
+
+ auto appendEncoded = [&sb, &hexBuf](Latin1Char c) {
+ static const char HexDigits[] = "0123456789ABCDEF"; /* NB: uppercase */
+
+ hexBuf[1] = HexDigits[c >> 4];
+ hexBuf[2] = HexDigits[c & 0xf];
+ return sb.append(hexBuf, 3);
+ };
+
+ auto appendRange = [&sb, chars, length](size_t start, size_t end) {
+ MOZ_ASSERT(start <= end);
+
+ if (start < end) {
+ if (start == 0) {
+ if (!sb.reserve(length)) {
+ return false;
+ }
+ }
+ return sb.append(chars + start, chars + end);
+ }
+ return true;
+ };
+
+ size_t startAppend = 0;
+ for (size_t k = 0; k < length; k++) {
+ CharT c = chars[k];
+ if (c < 128 &&
+ (js_isUriUnescaped[c] || (unescapedSet && unescapedSet[c]))) {
+ continue;
+ } else {
+ if (!appendRange(startAppend, k)) {
+ return Encode_Failure;
+ }
+
+ if constexpr (std::is_same_v<CharT, Latin1Char>) {
+ if (c < 0x80) {
+ if (!appendEncoded(c)) {
+ return Encode_Failure;
+ }
+ } else {
+ if (!appendEncoded(0xC0 | (c >> 6)) ||
+ !appendEncoded(0x80 | (c & 0x3F))) {
+ return Encode_Failure;
+ }
+ }
+ } else {
+ if (unicode::IsTrailSurrogate(c)) {
+ return Encode_BadUri;
+ }
+
+ uint32_t v;
+ if (!unicode::IsLeadSurrogate(c)) {
+ v = c;
+ } else {
+ k++;
+ if (k == length) {
+ return Encode_BadUri;
+ }
+
+ char16_t c2 = chars[k];
+ if (!unicode::IsTrailSurrogate(c2)) {
+ return Encode_BadUri;
+ }
+
+ v = unicode::UTF16Decode(c, c2);
+ }
+
+ uint8_t utf8buf[4];
+ size_t L = OneUcs4ToUtf8Char(utf8buf, v);
+ for (size_t j = 0; j < L; j++) {
+ if (!appendEncoded(utf8buf[j])) {
+ return Encode_Failure;
+ }
+ }
+ }
+
+ startAppend = k + 1;
+ }
+ }
+
+ if (startAppend > 0) {
+ if (!appendRange(startAppend, length)) {
+ return Encode_Failure;
+ }
+ }
+
+ return Encode_Success;
+}
+
+static MOZ_ALWAYS_INLINE bool Encode(JSContext* cx, HandleLinearString str,
+ const bool* unescapedSet,
+ MutableHandleValue rval) {
+ size_t length = str->length();
+ if (length == 0) {
+ rval.setString(cx->runtime()->emptyString);
+ return true;
+ }
+
+ JSStringBuilder sb(cx);
+
+ EncodeResult res;
+ if (str->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ res = Encode(sb, str->latin1Chars(nogc), str->length(), unescapedSet);
+ } else {
+ AutoCheckCannotGC nogc;
+ res = Encode(sb, str->twoByteChars(nogc), str->length(), unescapedSet);
+ }
+
+ if (res == Encode_Failure) {
+ return false;
+ }
+
+ if (res == Encode_BadUri) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_URI);
+ return false;
+ }
+
+ MOZ_ASSERT(res == Encode_Success);
+ return TransferBufferToString(sb, str, rval);
+}
+
+enum DecodeResult { Decode_Failure, Decode_BadUri, Decode_Success };
+
+template <typename CharT>
+static DecodeResult Decode(StringBuffer& sb, const CharT* chars, size_t length,
+ const bool* reservedSet) {
+ auto appendRange = [&sb, chars](size_t start, size_t end) {
+ MOZ_ASSERT(start <= end);
+
+ if (start < end) {
+ return sb.append(chars + start, chars + end);
+ }
+ return true;
+ };
+
+ size_t startAppend = 0;
+ for (size_t k = 0; k < length; k++) {
+ CharT c = chars[k];
+ if (c == '%') {
+ size_t start = k;
+ if ((k + 2) >= length) {
+ return Decode_BadUri;
+ }
+
+ if (!IsAsciiHexDigit(chars[k + 1]) || !IsAsciiHexDigit(chars[k + 2])) {
+ return Decode_BadUri;
+ }
+
+ uint32_t B = AsciiAlphanumericToNumber(chars[k + 1]) * 16 +
+ AsciiAlphanumericToNumber(chars[k + 2]);
+ k += 2;
+ if (B < 128) {
+ Latin1Char ch = Latin1Char(B);
+ if (reservedSet && reservedSet[ch]) {
+ continue;
+ }
+
+ if (!appendRange(startAppend, start)) {
+ return Decode_Failure;
+ }
+ if (!sb.append(ch)) {
+ return Decode_Failure;
+ }
+ } else {
+ int n = 1;
+ while (B & (0x80 >> n)) {
+ n++;
+ }
+
+ if (n == 1 || n > 4) {
+ return Decode_BadUri;
+ }
+
+ uint8_t octets[4];
+ octets[0] = (uint8_t)B;
+ if (k + 3 * (n - 1) >= length) {
+ return Decode_BadUri;
+ }
+
+ for (int j = 1; j < n; j++) {
+ k++;
+ if (chars[k] != '%') {
+ return Decode_BadUri;
+ }
+
+ if (!IsAsciiHexDigit(chars[k + 1]) ||
+ !IsAsciiHexDigit(chars[k + 2])) {
+ return Decode_BadUri;
+ }
+
+ B = AsciiAlphanumericToNumber(chars[k + 1]) * 16 +
+ AsciiAlphanumericToNumber(chars[k + 2]);
+ if ((B & 0xC0) != 0x80) {
+ return Decode_BadUri;
+ }
+
+ k += 2;
+ octets[j] = char(B);
+ }
+
+ if (!appendRange(startAppend, start)) {
+ return Decode_Failure;
+ }
+
+ uint32_t v = JS::Utf8ToOneUcs4Char(octets, n);
+ MOZ_ASSERT(v >= 128);
+ if (v >= unicode::NonBMPMin) {
+ if (v > unicode::NonBMPMax) {
+ return Decode_BadUri;
+ }
+
+ if (!sb.append(unicode::LeadSurrogate(v))) {
+ return Decode_Failure;
+ }
+ if (!sb.append(unicode::TrailSurrogate(v))) {
+ return Decode_Failure;
+ }
+ } else {
+ if (!sb.append(char16_t(v))) {
+ return Decode_Failure;
+ }
+ }
+ }
+
+ startAppend = k + 1;
+ }
+ }
+
+ if (startAppend > 0) {
+ if (!appendRange(startAppend, length)) {
+ return Decode_Failure;
+ }
+ }
+
+ return Decode_Success;
+}
+
+static bool Decode(JSContext* cx, HandleLinearString str,
+ const bool* reservedSet, MutableHandleValue rval) {
+ size_t length = str->length();
+ if (length == 0) {
+ rval.setString(cx->runtime()->emptyString);
+ return true;
+ }
+
+ JSStringBuilder sb(cx);
+
+ DecodeResult res;
+ if (str->hasLatin1Chars()) {
+ AutoCheckCannotGC nogc;
+ res = Decode(sb, str->latin1Chars(nogc), str->length(), reservedSet);
+ } else {
+ AutoCheckCannotGC nogc;
+ res = Decode(sb, str->twoByteChars(nogc), str->length(), reservedSet);
+ }
+
+ if (res == Decode_Failure) {
+ return false;
+ }
+
+ if (res == Decode_BadUri) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_URI);
+ return false;
+ }
+
+ MOZ_ASSERT(res == Decode_Success);
+ return TransferBufferToString(sb, str, rval);
+}
+
+static bool str_decodeURI(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ return Decode(cx, str, js_isUriReservedPlusPound, args.rval());
+}
+
+static bool str_decodeURI_Component(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ return Decode(cx, str, nullptr, args.rval());
+}
+
+static bool str_encodeURI(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ return Encode(cx, str, js_isUriReservedPlusPound, args.rval());
+}
+
+static bool str_encodeURI_Component(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ RootedLinearString str(cx, ArgToLinearString(cx, args, 0));
+ if (!str) {
+ return false;
+ }
+
+ return Encode(cx, str, nullptr, args.rval());
+}
+
+JSString* js::EncodeURI(JSContext* cx, const char* chars, size_t length) {
+ JSStringBuilder sb(cx);
+ EncodeResult result = Encode(sb, reinterpret_cast<const Latin1Char*>(chars),
+ length, js_isUriReservedPlusPound);
+ if (result == EncodeResult::Encode_Failure) {
+ return nullptr;
+ }
+ if (result == EncodeResult::Encode_BadUri) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_URI);
+ return nullptr;
+ }
+ if (sb.empty()) {
+ return NewStringCopyN<CanGC>(cx, chars, length);
+ }
+ return sb.finishString();
+}
+
+static bool FlatStringMatchHelper(JSContext* cx, HandleString str,
+ HandleString pattern, bool* isFlat,
+ int32_t* match) {
+ RootedLinearString linearPattern(cx, pattern->ensureLinear(cx));
+ if (!linearPattern) {
+ return false;
+ }
+
+ static const size_t MAX_FLAT_PAT_LEN = 256;
+ if (linearPattern->length() > MAX_FLAT_PAT_LEN ||
+ StringHasRegExpMetaChars(linearPattern)) {
+ *isFlat = false;
+ return true;
+ }
+
+ *isFlat = true;
+ if (str->isRope()) {
+ if (!RopeMatch(cx, &str->asRope(), linearPattern, match)) {
+ return false;
+ }
+ } else {
+ *match = StringMatch(&str->asLinear(), linearPattern);
+ }
+
+ return true;
+}
+
+static bool BuildFlatMatchArray(JSContext* cx, HandleString str,
+ HandleString pattern, int32_t match,
+ MutableHandleValue rval) {
+ if (match < 0) {
+ rval.setNull();
+ return true;
+ }
+
+ // Get the templateObject that defines the shape and type of the output
+ // object.
+ ArrayObject* templateObject =
+ cx->realm()->regExps.getOrCreateMatchResultTemplateObject(cx);
+ if (!templateObject) {
+ return false;
+ }
+
+ RootedArrayObject arr(
+ cx, NewDenseFullyAllocatedArrayWithTemplate(cx, 1, templateObject));
+ if (!arr) {
+ return false;
+ }
+
+ // Store a Value for each pair.
+ arr->setDenseInitializedLength(1);
+ arr->initDenseElement(0, StringValue(pattern));
+
+ // Set the |index| property. (TemplateObject positions it in slot 0).
+ arr->setSlot(0, Int32Value(match));
+
+ // Set the |input| property. (TemplateObject positions it in slot 1).
+ arr->setSlot(1, StringValue(str));
+
+#ifdef DEBUG
+ RootedValue test(cx);
+ RootedId id(cx, NameToId(cx->names().index));
+ if (!NativeGetProperty(cx, arr, id, &test)) {
+ return false;
+ }
+ MOZ_ASSERT(test == arr->getSlot(0));
+ id = NameToId(cx->names().input);
+ if (!NativeGetProperty(cx, arr, id, &test)) {
+ return false;
+ }
+ MOZ_ASSERT(test == arr->getSlot(1));
+#endif
+
+ rval.setObject(*arr);
+ return true;
+}
+
+#ifdef DEBUG
+static bool CallIsStringOptimizable(JSContext* cx, const char* name,
+ bool* result) {
+ FixedInvokeArgs<0> args(cx);
+
+ RootedValue rval(cx);
+ if (!CallSelfHostedFunction(cx, name, UndefinedHandleValue, args, &rval)) {
+ return false;
+ }
+
+ *result = rval.toBoolean();
+ return true;
+}
+#endif
+
+bool js::FlatStringMatch(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ MOZ_ASSERT(args.length() == 2);
+ MOZ_ASSERT(args[0].isString());
+ MOZ_ASSERT(args[1].isString());
+#ifdef DEBUG
+ bool isOptimizable = false;
+ if (!CallIsStringOptimizable(cx, "IsStringMatchOptimizable",
+ &isOptimizable)) {
+ return false;
+ }
+ MOZ_ASSERT(isOptimizable);
+#endif
+
+ RootedString str(cx, args[0].toString());
+ RootedString pattern(cx, args[1].toString());
+
+ bool isFlat = false;
+ int32_t match = 0;
+ if (!FlatStringMatchHelper(cx, str, pattern, &isFlat, &match)) {
+ return false;
+ }
+
+ if (!isFlat) {
+ args.rval().setUndefined();
+ return true;
+ }
+
+ return BuildFlatMatchArray(cx, str, pattern, match, args.rval());
+}
+
+bool js::FlatStringSearch(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+ MOZ_ASSERT(args.length() == 2);
+ MOZ_ASSERT(args[0].isString());
+ MOZ_ASSERT(args[1].isString());
+#ifdef DEBUG
+ bool isOptimizable = false;
+ if (!CallIsStringOptimizable(cx, "IsStringSearchOptimizable",
+ &isOptimizable)) {
+ return false;
+ }
+ MOZ_ASSERT(isOptimizable);
+#endif
+
+ RootedString str(cx, args[0].toString());
+ RootedString pattern(cx, args[1].toString());
+
+ bool isFlat = false;
+ int32_t match = 0;
+ if (!FlatStringMatchHelper(cx, str, pattern, &isFlat, &match)) {
+ return false;
+ }
+
+ if (!isFlat) {
+ args.rval().setInt32(-2);
+ return true;
+ }
+
+ args.rval().setInt32(match);
+ return true;
+}