diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /js/src/jit/arm/Assembler-arm.cpp | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/arm/Assembler-arm.cpp')
-rw-r--r-- | js/src/jit/arm/Assembler-arm.cpp | 2809 |
1 files changed, 2809 insertions, 0 deletions
diff --git a/js/src/jit/arm/Assembler-arm.cpp b/js/src/jit/arm/Assembler-arm.cpp new file mode 100644 index 0000000000..7ccc3aa6f7 --- /dev/null +++ b/js/src/jit/arm/Assembler-arm.cpp @@ -0,0 +1,2809 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm/Assembler-arm.h" + +#include "mozilla/DebugOnly.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/Maybe.h" +#include "mozilla/Sprintf.h" + +#include "gc/Marking.h" +#include "jit/arm/disasm/Disasm-arm.h" +#include "jit/arm/MacroAssembler-arm.h" +#include "jit/AutoWritableJitCode.h" +#include "jit/ExecutableAllocator.h" +#include "jit/MacroAssembler.h" +#include "vm/Realm.h" + +using namespace js; +using namespace js::jit; + +using mozilla::CountLeadingZeroes32; +using mozilla::DebugOnly; + +using LabelDoc = DisassemblerSpew::LabelDoc; +using LiteralDoc = DisassemblerSpew::LiteralDoc; + +void dbg_break() {} + +// The ABIArgGenerator is used for making system ABI calls and for inter-wasm +// calls. The system ABI can either be SoftFp or HardFp, and inter-wasm calls +// are always HardFp calls. The initialization defaults to HardFp, and the ABI +// choice is made before any system ABI calls with the method "setUseHardFp". +ABIArgGenerator::ABIArgGenerator() + : intRegIndex_(0), + floatRegIndex_(0), + stackOffset_(0), + current_(), + useHardFp_(true) {} + +// See the "Parameter Passing" section of the "Procedure Call Standard for the +// ARM Architecture" documentation. +ABIArg ABIArgGenerator::softNext(MIRType type) { + switch (type) { + case MIRType::Int32: + case MIRType::Pointer: + case MIRType::RefOrNull: + case MIRType::StackResults: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Int64: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(uint64_t) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + case MIRType::Float32: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Double: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(double) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(double); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + default: + MOZ_CRASH("Unexpected argument type"); + } + + return current_; +} + +ABIArg ABIArgGenerator::hardNext(MIRType type) { + switch (type) { + case MIRType::Int32: + case MIRType::Pointer: + case MIRType::RefOrNull: + case MIRType::StackResults: + if (intRegIndex_ == NumIntArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_)); + intRegIndex_++; + break; + case MIRType::Int64: + // Make sure to use an even register index. Increase to next even number + // when odd. + intRegIndex_ = (intRegIndex_ + 1) & ~1; + if (intRegIndex_ == NumIntArgRegs) { + // Align the stack on 8 bytes. + static const uint32_t align = sizeof(uint64_t) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(Register::FromCode(intRegIndex_), + Register::FromCode(intRegIndex_ + 1)); + intRegIndex_ += 2; + break; + case MIRType::Float32: + if (floatRegIndex_ == NumFloatArgRegs) { + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint32_t); + break; + } + current_ = ABIArg(VFPRegister(floatRegIndex_, VFPRegister::Single)); + floatRegIndex_++; + break; + case MIRType::Double: + // Double register are composed of 2 float registers, thus we have to + // skip any float register which cannot be used in a pair of float + // registers in which a double value can be stored. + floatRegIndex_ = (floatRegIndex_ + 1) & ~1; + if (floatRegIndex_ == NumFloatArgRegs) { + static const uint32_t align = sizeof(double) - 1; + stackOffset_ = (stackOffset_ + align) & ~align; + current_ = ABIArg(stackOffset_); + stackOffset_ += sizeof(uint64_t); + break; + } + current_ = ABIArg(VFPRegister(floatRegIndex_ >> 1, VFPRegister::Double)); + floatRegIndex_ += 2; + break; + default: + MOZ_CRASH("Unexpected argument type"); + } + + return current_; +} + +ABIArg ABIArgGenerator::next(MIRType type) { + if (useHardFp_) { + return hardNext(type); + } + return softNext(type); +} + +bool js::jit::IsUnaligned(const wasm::MemoryAccessDesc& access) { + if (!access.align()) { + return false; + } + + if (access.type() == Scalar::Float64 && access.align() >= 4) { + return false; + } + + return access.align() < access.byteSize(); +} + +// Encode a standard register when it is being used as src1, the dest, and an +// extra register. These should never be called with an InvalidReg. +uint32_t js::jit::RT(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::RN(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 16; +} + +uint32_t js::jit::RD(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::RM(Register r) { + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 8; +} + +// Encode a standard register when it is being used as src1, the dest, and an +// extra register. For these, an InvalidReg is used to indicate a optional +// register that has been omitted. +uint32_t js::jit::maybeRT(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +uint32_t js::jit::maybeRN(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 16; +} + +uint32_t js::jit::maybeRD(Register r) { + if (r == InvalidReg) { + return 0; + } + + MOZ_ASSERT((r.code() & ~0xf) == 0); + return r.code() << 12; +} + +Register js::jit::toRD(Instruction i) { + return Register::FromCode((i.encode() >> 12) & 0xf); +} +Register js::jit::toR(Instruction i) { + return Register::FromCode(i.encode() & 0xf); +} + +Register js::jit::toRM(Instruction i) { + return Register::FromCode((i.encode() >> 8) & 0xf); +} + +Register js::jit::toRN(Instruction i) { + return Register::FromCode((i.encode() >> 16) & 0xf); +} + +uint32_t js::jit::VD(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 15,14,13,12, 22. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 22 | s.block << 12; +} +uint32_t js::jit::VN(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 19,18,17,16, 7. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 7 | s.block << 16; +} +uint32_t js::jit::VM(VFPRegister vr) { + if (vr.isMissing()) { + return 0; + } + + // Bits 5, 3,2,1,0. + VFPRegister::VFPRegIndexSplit s = vr.encode(); + return s.bit << 5 | s.block; +} + +VFPRegister::VFPRegIndexSplit jit::VFPRegister::encode() { + MOZ_ASSERT(!_isInvalid); + + switch (kind) { + case Double: + return VFPRegIndexSplit(code_ & 0xf, code_ >> 4); + case Single: + return VFPRegIndexSplit(code_ >> 1, code_ & 1); + default: + // VFP register treated as an integer, NOT a gpr. + return VFPRegIndexSplit(code_ >> 1, code_ & 1); + } +} + +bool InstDTR::IsTHIS(const Instruction& i) { + return (i.encode() & IsDTRMask) == (uint32_t)IsDTR; +} + +InstDTR* InstDTR::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstDTR*)&i; + } + return nullptr; +} + +bool InstLDR::IsTHIS(const Instruction& i) { + return (i.encode() & IsDTRMask) == (uint32_t)IsDTR; +} + +InstLDR* InstLDR::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstLDR*)&i; + } + return nullptr; +} + +InstNOP* InstNOP::AsTHIS(Instruction& i) { + if (IsTHIS(i)) { + return (InstNOP*)&i; + } + return nullptr; +} + +bool InstNOP::IsTHIS(const Instruction& i) { + return (i.encode() & 0x0fffffff) == NopInst; +} + +bool InstBranchReg::IsTHIS(const Instruction& i) { + return InstBXReg::IsTHIS(i) || InstBLXReg::IsTHIS(i); +} + +InstBranchReg* InstBranchReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBranchReg*)&i; + } + return nullptr; +} +void InstBranchReg::extractDest(Register* dest) { *dest = toR(*this); } +bool InstBranchReg::checkDest(Register dest) { return dest == toR(*this); } + +bool InstBranchImm::IsTHIS(const Instruction& i) { + return InstBImm::IsTHIS(i) || InstBLImm::IsTHIS(i); +} + +InstBranchImm* InstBranchImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBranchImm*)&i; + } + return nullptr; +} + +void InstBranchImm::extractImm(BOffImm* dest) { *dest = BOffImm(*this); } + +bool InstBXReg::IsTHIS(const Instruction& i) { + return (i.encode() & IsBRegMask) == IsBX; +} + +InstBXReg* InstBXReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBXReg*)&i; + } + return nullptr; +} + +bool InstBLXReg::IsTHIS(const Instruction& i) { + return (i.encode() & IsBRegMask) == IsBLX; +} +InstBLXReg* InstBLXReg::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBLXReg*)&i; + } + return nullptr; +} + +bool InstBImm::IsTHIS(const Instruction& i) { + return (i.encode() & IsBImmMask) == IsB; +} +InstBImm* InstBImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBImm*)&i; + } + return nullptr; +} + +bool InstBLImm::IsTHIS(const Instruction& i) { + return (i.encode() & IsBImmMask) == IsBL; +} +InstBLImm* InstBLImm::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstBLImm*)&i; + } + return nullptr; +} + +bool InstMovWT::IsTHIS(Instruction& i) { + return InstMovW::IsTHIS(i) || InstMovT::IsTHIS(i); +} +InstMovWT* InstMovWT::AsTHIS(Instruction& i) { + if (IsTHIS(i)) { + return (InstMovWT*)&i; + } + return nullptr; +} + +void InstMovWT::extractImm(Imm16* imm) { *imm = Imm16(*this); } +bool InstMovWT::checkImm(Imm16 imm) { + return imm.decode() == Imm16(*this).decode(); +} + +void InstMovWT::extractDest(Register* dest) { *dest = toRD(*this); } +bool InstMovWT::checkDest(Register dest) { return dest == toRD(*this); } + +bool InstMovW::IsTHIS(const Instruction& i) { + return (i.encode() & IsWTMask) == IsW; +} + +InstMovW* InstMovW::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMovW*)&i; + } + return nullptr; +} +InstMovT* InstMovT::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMovT*)&i; + } + return nullptr; +} + +bool InstMovT::IsTHIS(const Instruction& i) { + return (i.encode() & IsWTMask) == IsT; +} + +InstALU* InstALU::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstALU*)&i; + } + return nullptr; +} +bool InstALU::IsTHIS(const Instruction& i) { + return (i.encode() & ALUMask) == 0; +} +void InstALU::extractOp(ALUOp* ret) { *ret = ALUOp(encode() & (0xf << 21)); } +bool InstALU::checkOp(ALUOp op) { + ALUOp mine; + extractOp(&mine); + return mine == op; +} +void InstALU::extractDest(Register* ret) { *ret = toRD(*this); } +bool InstALU::checkDest(Register rd) { return rd == toRD(*this); } +void InstALU::extractOp1(Register* ret) { *ret = toRN(*this); } +bool InstALU::checkOp1(Register rn) { return rn == toRN(*this); } +Operand2 InstALU::extractOp2() { return Operand2(encode()); } + +InstCMP* InstCMP::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstCMP*)&i; + } + return nullptr; +} + +bool InstCMP::IsTHIS(const Instruction& i) { + return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkDest(r0) && + InstALU::AsTHIS(i)->checkOp(OpCmp); +} + +InstMOV* InstMOV::AsTHIS(const Instruction& i) { + if (IsTHIS(i)) { + return (InstMOV*)&i; + } + return nullptr; +} + +bool InstMOV::IsTHIS(const Instruction& i) { + return InstALU::IsTHIS(i) && InstALU::AsTHIS(i)->checkOp1(r0) && + InstALU::AsTHIS(i)->checkOp(OpMov); +} + +Op2Reg Operand2::toOp2Reg() const { return *(Op2Reg*)this; } + +Imm16::Imm16(Instruction& inst) + : lower_(inst.encode() & 0xfff), + upper_(inst.encode() >> 16), + invalid_(0xfff) {} + +Imm16::Imm16(uint32_t imm) + : lower_(imm & 0xfff), pad_(0), upper_((imm >> 12) & 0xf), invalid_(0) { + MOZ_ASSERT(decode() == imm); +} + +Imm16::Imm16() : invalid_(0xfff) {} + +void Assembler::finish() { + flush(); + MOZ_ASSERT(!isFinished); + isFinished = true; +} + +bool Assembler::appendRawCode(const uint8_t* code, size_t numBytes) { + flush(); + return m_buffer.appendRawCode(code, numBytes); +} + +bool Assembler::reserve(size_t size) { + // This buffer uses fixed-size chunks so there's no point in reserving + // now vs. on-demand. + return !oom(); +} + +bool Assembler::swapBuffer(wasm::Bytes& bytes) { + // For now, specialize to the one use case. As long as wasm::Bytes is a + // Vector, not a linked-list of chunks, there's not much we can do other + // than copy. + MOZ_ASSERT(bytes.empty()); + if (!bytes.resize(bytesNeeded())) { + return false; + } + m_buffer.executableCopy(bytes.begin()); + return true; +} + +void Assembler::executableCopy(uint8_t* buffer) { + MOZ_ASSERT(isFinished); + m_buffer.executableCopy(buffer); +} + +class RelocationIterator { + CompactBufferReader reader_; + // Offset in bytes. + uint32_t offset_; + + public: + explicit RelocationIterator(CompactBufferReader& reader) : reader_(reader) {} + + bool read() { + if (!reader_.more()) { + return false; + } + offset_ = reader_.readUnsigned(); + return true; + } + + uint32_t offset() const { return offset_; } +}; + +template <class Iter> +const uint32_t* Assembler::GetCF32Target(Iter* iter) { + Instruction* inst1 = iter->cur(); + + if (inst1->is<InstBranchImm>()) { + // See if we have a simple case, b #offset. + BOffImm imm; + InstBranchImm* jumpB = inst1->as<InstBranchImm>(); + jumpB->extractImm(&imm); + return imm.getDest(inst1)->raw(); + } + + if (inst1->is<InstMovW>()) { + // See if we have the complex case: + // movw r_temp, #imm1 + // movt r_temp, #imm2 + // bx r_temp + // OR + // movw r_temp, #imm1 + // movt r_temp, #imm2 + // str pc, [sp] + // bx r_temp + + Imm16 targ_bot; + Imm16 targ_top; + Register temp; + + // Extract both the temp register and the bottom immediate. + InstMovW* bottom = inst1->as<InstMovW>(); + bottom->extractImm(&targ_bot); + bottom->extractDest(&temp); + + // Extract the top part of the immediate. + Instruction* inst2 = iter->next(); + MOZ_ASSERT(inst2->is<InstMovT>()); + InstMovT* top = inst2->as<InstMovT>(); + top->extractImm(&targ_top); + + // Make sure they are being loaded into the same register. + MOZ_ASSERT(top->checkDest(temp)); + + // Make sure we're branching to the same register. +#ifdef DEBUG + // A toggled call sometimes has a NOP instead of a branch for the third + // instruction. No way to assert that it's valid in that situation. + Instruction* inst3 = iter->next(); + if (!inst3->is<InstNOP>()) { + InstBranchReg* realBranch = nullptr; + if (inst3->is<InstBranchReg>()) { + realBranch = inst3->as<InstBranchReg>(); + } else { + Instruction* inst4 = iter->next(); + realBranch = inst4->as<InstBranchReg>(); + } + MOZ_ASSERT(realBranch->checkDest(temp)); + } +#endif + + uint32_t* dest = (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16)); + return dest; + } + + if (inst1->is<InstLDR>()) { + return *(uint32_t**)inst1->as<InstLDR>()->dest(); + } + + MOZ_CRASH("unsupported branch relocation"); +} + +uintptr_t Assembler::GetPointer(uint8_t* instPtr) { + InstructionIterator iter((Instruction*)instPtr); + uintptr_t ret = (uintptr_t)GetPtr32Target(iter, nullptr, nullptr); + return ret; +} + +const uint32_t* Assembler::GetPtr32Target(InstructionIterator start, + Register* dest, RelocStyle* style) { + Instruction* load1 = start.cur(); + Instruction* load2 = start.next(); + + if (load1->is<InstMovW>() && load2->is<InstMovT>()) { + if (style) { + *style = L_MOVWT; + } + + // See if we have the complex case: + // movw r_temp, #imm1 + // movt r_temp, #imm2 + + Imm16 targ_bot; + Imm16 targ_top; + Register temp; + + // Extract both the temp register and the bottom immediate. + InstMovW* bottom = load1->as<InstMovW>(); + bottom->extractImm(&targ_bot); + bottom->extractDest(&temp); + + // Extract the top part of the immediate. + InstMovT* top = load2->as<InstMovT>(); + top->extractImm(&targ_top); + + // Make sure they are being loaded into the same register. + MOZ_ASSERT(top->checkDest(temp)); + + if (dest) { + *dest = temp; + } + + uint32_t* value = + (uint32_t*)(targ_bot.decode() | (targ_top.decode() << 16)); + return value; + } + + if (load1->is<InstLDR>()) { + if (style) { + *style = L_LDR; + } + if (dest) { + *dest = toRD(*load1); + } + return *(uint32_t**)load1->as<InstLDR>()->dest(); + } + + MOZ_CRASH("unsupported relocation"); +} + +static JitCode* CodeFromJump(InstructionIterator* jump) { + uint8_t* target = (uint8_t*)Assembler::GetCF32Target(jump); + return JitCode::FromExecutable(target); +} + +void Assembler::TraceJumpRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + RelocationIterator iter(reader); + while (iter.read()) { + InstructionIterator institer((Instruction*)(code->raw() + iter.offset())); + JitCode* child = CodeFromJump(&institer); + TraceManuallyBarrieredEdge(trc, &child, "rel32"); + } +} + +static void TraceOneDataRelocation(JSTracer* trc, + mozilla::Maybe<AutoWritableJitCode>& awjc, + JitCode* code, InstructionIterator iter) { + Register dest; + Assembler::RelocStyle rs; + const void* prior = Assembler::GetPtr32Target(iter, &dest, &rs); + void* ptr = const_cast<void*>(prior); + + // No barrier needed since these are constants. + TraceManuallyBarrieredGenericPointerEdge( + trc, reinterpret_cast<gc::Cell**>(&ptr), "jit-masm-ptr"); + + if (ptr != prior) { + if (awjc.isNothing()) { + awjc.emplace(code); + } + + MacroAssemblerARM::ma_mov_patch(Imm32(int32_t(ptr)), dest, + Assembler::Always, rs, iter); + } +} + +/* static */ +void Assembler::TraceDataRelocations(JSTracer* trc, JitCode* code, + CompactBufferReader& reader) { + mozilla::Maybe<AutoWritableJitCode> awjc; + while (reader.more()) { + size_t offset = reader.readUnsigned(); + InstructionIterator iter((Instruction*)(code->raw() + offset)); + TraceOneDataRelocation(trc, awjc, code, iter); + } +} + +void Assembler::copyJumpRelocationTable(uint8_t* dest) { + if (jumpRelocations_.length()) { + memcpy(dest, jumpRelocations_.buffer(), jumpRelocations_.length()); + } +} + +void Assembler::copyDataRelocationTable(uint8_t* dest) { + if (dataRelocations_.length()) { + memcpy(dest, dataRelocations_.buffer(), dataRelocations_.length()); + } +} + +void Assembler::processCodeLabels(uint8_t* rawCode) { + for (const CodeLabel& label : codeLabels_) { + Bind(rawCode, label); + } +} + +void Assembler::writeCodePointer(CodeLabel* label) { + m_buffer.assertNoPoolAndNoNops(); + BufferOffset off = writeInst(-1); + label->patchAt()->bind(off.getOffset()); +} + +void Assembler::Bind(uint8_t* rawCode, const CodeLabel& label) { + size_t offset = label.patchAt().offset(); + size_t target = label.target().offset(); + *reinterpret_cast<const void**>(rawCode + offset) = rawCode + target; +} + +Assembler::Condition Assembler::InvertCondition(Condition cond) { + const uint32_t ConditionInversionBit = 0x10000000; + return Condition(ConditionInversionBit ^ cond); +} + +Assembler::Condition Assembler::UnsignedCondition(Condition cond) { + switch (cond) { + case Zero: + case NonZero: + return cond; + case LessThan: + case Below: + return Below; + case LessThanOrEqual: + case BelowOrEqual: + return BelowOrEqual; + case GreaterThan: + case Above: + return Above; + case AboveOrEqual: + case GreaterThanOrEqual: + return AboveOrEqual; + default: + MOZ_CRASH("unexpected condition"); + } +} + +Assembler::Condition Assembler::ConditionWithoutEqual(Condition cond) { + switch (cond) { + case LessThan: + case LessThanOrEqual: + return LessThan; + case Below: + case BelowOrEqual: + return Below; + case GreaterThan: + case GreaterThanOrEqual: + return GreaterThan; + case Above: + case AboveOrEqual: + return Above; + default: + MOZ_CRASH("unexpected condition"); + } +} + +Assembler::DoubleCondition Assembler::InvertCondition(DoubleCondition cond) { + const uint32_t ConditionInversionBit = 0x10000000; + return DoubleCondition(ConditionInversionBit ^ cond); +} + +Imm8::TwoImm8mData Imm8::EncodeTwoImms(uint32_t imm) { + // In the ideal case, we are looking for a number that (in binary) looks + // like: + // 0b((00)*)n_1((00)*)n_2((00)*) + // left n1 mid n2 + // where both n_1 and n_2 fit into 8 bits. + // Since this is being done with rotates, we also need to handle the case + // that one of these numbers is in fact split between the left and right + // sides, in which case the constant will look like: + // 0bn_1a((00)*)n_2((00)*)n_1b + // n1a mid n2 rgh n1b + // Also remember, values are rotated by multiples of two, and left, mid or + // right can have length zero. + uint32_t imm1, imm2; + int left = CountLeadingZeroes32(imm) & 0x1E; + uint32_t no_n1 = imm & ~(0xff << (24 - left)); + + // Not technically needed: this case only happens if we can encode as a + // single imm8m. There is a perfectly reasonable encoding in this case, but + // we shouldn't encourage people to do things like this. + if (no_n1 == 0) { + return TwoImm8mData(); + } + + int mid = CountLeadingZeroes32(no_n1) & 0x1E; + uint32_t no_n2 = + no_n1 & ~((0xff << ((24 - mid) & 0x1f)) | 0xff >> ((8 + mid) & 0x1f)); + + if (no_n2 == 0) { + // We hit the easy case, no wraparound. + // Note: a single constant *may* look like this. + int imm1shift = left + 8; + int imm2shift = mid + 8; + imm1 = (imm >> (32 - imm1shift)) & 0xff; + if (imm2shift >= 32) { + imm2shift = 0; + // This assert does not always hold, in fact, this would lead to + // some incredibly subtle bugs. + // assert((imm & 0xff) == no_n1); + imm2 = no_n1; + } else { + imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff; + MOZ_ASSERT(((no_n1 >> (32 - imm2shift)) | (no_n1 << imm2shift)) == imm2); + } + MOZ_ASSERT((imm1shift & 0x1) == 0); + MOZ_ASSERT((imm2shift & 0x1) == 0); + return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1), + datastore::Imm8mData(imm2, imm2shift >> 1)); + } + + // Either it wraps, or it does not fit. If we initially chopped off more + // than 8 bits, then it won't fit. + if (left >= 8) { + return TwoImm8mData(); + } + + int right = 32 - (CountLeadingZeroes32(no_n2) & 30); + // All remaining set bits *must* fit into the lower 8 bits. + // The right == 8 case should be handled by the previous case. + if (right > 8) { + return TwoImm8mData(); + } + + // Make sure the initial bits that we removed for no_n1 fit into the + // 8-(32-right) leftmost bits. + if (((imm & (0xff << (24 - left))) << (8 - right)) != 0) { + // BUT we may have removed more bits than we needed to for no_n1 + // 0x04104001 e.g. we can encode 0x104 with a single op, then 0x04000001 + // with a second, but we try to encode 0x0410000 and find that we need a + // second op for 0x4000, and 0x1 cannot be included in the encoding of + // 0x04100000. + no_n1 = imm & ~((0xff >> (8 - right)) | (0xff << (24 + right))); + mid = CountLeadingZeroes32(no_n1) & 30; + no_n2 = no_n1 & ~((0xff << ((24 - mid) & 31)) | 0xff >> ((8 + mid) & 31)); + if (no_n2 != 0) { + return TwoImm8mData(); + } + } + + // Now assemble all of this information into a two coherent constants it is + // a rotate right from the lower 8 bits. + int imm1shift = 8 - right; + imm1 = 0xff & ((imm << imm1shift) | (imm >> (32 - imm1shift))); + MOZ_ASSERT((imm1shift & ~0x1e) == 0); + // left + 8 + mid is the position of the leftmost bit of n_2. + // We needed to rotate 0x000000ab right by 8 in order to get 0xab000000, + // then shift again by the leftmost bit in order to get the constant that we + // care about. + int imm2shift = mid + 8; + imm2 = ((imm >> (32 - imm2shift)) | (imm << imm2shift)) & 0xff; + MOZ_ASSERT((imm1shift & 0x1) == 0); + MOZ_ASSERT((imm2shift & 0x1) == 0); + return TwoImm8mData(datastore::Imm8mData(imm1, imm1shift >> 1), + datastore::Imm8mData(imm2, imm2shift >> 1)); +} + +ALUOp jit::ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm, + Register* negDest) { + // Find an alternate ALUOp to get the job done, and use a different imm. + *negDest = dest; + switch (op) { + case OpMov: + *imm = Imm32(~imm->value); + return OpMvn; + case OpMvn: + *imm = Imm32(~imm->value); + return OpMov; + case OpAnd: + *imm = Imm32(~imm->value); + return OpBic; + case OpBic: + *imm = Imm32(~imm->value); + return OpAnd; + case OpAdd: + *imm = Imm32(-imm->value); + return OpSub; + case OpSub: + *imm = Imm32(-imm->value); + return OpAdd; + case OpCmp: + *imm = Imm32(-imm->value); + return OpCmn; + case OpCmn: + *imm = Imm32(-imm->value); + return OpCmp; + case OpTst: + MOZ_ASSERT(dest == InvalidReg); + *imm = Imm32(~imm->value); + *negDest = scratch; + return OpBic; + // orr has orn on thumb2 only. + default: + return OpInvalid; + } +} + +bool jit::can_dbl(ALUOp op) { + // Some instructions can't be processed as two separate instructions such as + // and, and possibly add (when we're setting ccodes). There is also some + // hilarity with *reading* condition codes. For example, adc dest, src1, + // 0xfff; (add with carry) can be split up into adc dest, src1, 0xf00; add + // dest, dest, 0xff, since "reading" the condition code increments the + // result by one conditionally, that only needs to be done on one of the two + // instructions. + switch (op) { + case OpBic: + case OpAdd: + case OpSub: + case OpEor: + case OpOrr: + return true; + default: + return false; + } +} + +bool jit::condsAreSafe(ALUOp op) { + // Even when we are setting condition codes, sometimes we can get away with + // splitting an operation into two. For example, if our immediate is + // 0x00ff00ff, and the operation is eors we can split this in half, since x + // ^ 0x00ff0000 ^ 0x000000ff should set all of its condition codes exactly + // the same as x ^ 0x00ff00ff. However, if the operation were adds, we + // cannot split this in half. If the source on the add is 0xfff00ff0, the + // result sholud be 0xef10ef, but do we set the overflow bit or not? + // Depending on which half is performed first (0x00ff0000 or 0x000000ff) the + // V bit will be set differently, and *not* updating the V bit would be + // wrong. Theoretically, the following should work: + // adds r0, r1, 0x00ff0000; + // addsvs r0, r1, 0x000000ff; + // addvc r0, r1, 0x000000ff; + // But this is 3 instructions, and at that point, we might as well use + // something else. + switch (op) { + case OpBic: + case OpOrr: + case OpEor: + return true; + default: + return false; + } +} + +ALUOp jit::getDestVariant(ALUOp op) { + // All of the compare operations are dest-less variants of a standard + // operation. Given the dest-less variant, return the dest-ful variant. + switch (op) { + case OpCmp: + return OpSub; + case OpCmn: + return OpAdd; + case OpTst: + return OpAnd; + case OpTeq: + return OpEor; + default: + return op; + } +} + +O2RegImmShift jit::O2Reg(Register r) { return O2RegImmShift(r, LSL, 0); } + +O2RegImmShift jit::lsl(Register r, int amt) { + MOZ_ASSERT(0 <= amt && amt <= 31); + return O2RegImmShift(r, LSL, amt); +} + +O2RegImmShift jit::lsr(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 32); + return O2RegImmShift(r, LSR, amt); +} + +O2RegImmShift jit::ror(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 31); + return O2RegImmShift(r, ROR, amt); +} +O2RegImmShift jit::rol(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 31); + return O2RegImmShift(r, ROR, 32 - amt); +} + +O2RegImmShift jit::asr(Register r, int amt) { + MOZ_ASSERT(1 <= amt && amt <= 32); + return O2RegImmShift(r, ASR, amt); +} + +O2RegRegShift jit::lsl(Register r, Register amt) { + return O2RegRegShift(r, LSL, amt); +} + +O2RegRegShift jit::lsr(Register r, Register amt) { + return O2RegRegShift(r, LSR, amt); +} + +O2RegRegShift jit::ror(Register r, Register amt) { + return O2RegRegShift(r, ROR, amt); +} + +O2RegRegShift jit::asr(Register r, Register amt) { + return O2RegRegShift(r, ASR, amt); +} + +static js::jit::DoubleEncoder doubleEncoder; + +/* static */ +const js::jit::VFPImm js::jit::VFPImm::One(0x3FF00000); + +js::jit::VFPImm::VFPImm(uint32_t top) { + data_ = -1; + datastore::Imm8VFPImmData tmp; + if (doubleEncoder.lookup(top, &tmp)) { + data_ = tmp.encode(); + } +} + +BOffImm::BOffImm(const Instruction& inst) : data_(inst.encode() & 0x00ffffff) {} + +Instruction* BOffImm::getDest(Instruction* src) const { + // TODO: It is probably worthwhile to verify that src is actually a branch. + // NOTE: This does not explicitly shift the offset of the destination left by + // 2, since it is indexing into an array of instruction sized objects. + return &src[((int32_t(data_) << 8) >> 8) + 2]; +} + +const js::jit::DoubleEncoder::DoubleEntry js::jit::DoubleEncoder::table[256] = { +#include "jit/arm/DoubleEntryTable.tbl" +}; + +// VFPRegister implementation +VFPRegister VFPRegister::doubleOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + MOZ_ASSERT(which == 0); + if (kind != Double) { + return VFPRegister(code_ >> 1, Double); + } + return *this; +} +VFPRegister VFPRegister::singleOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, Single); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, Single); +} + +static_assert( + FloatRegisters::TotalDouble <= 16, + "We assume that every Double register also has an Integer personality"); + +VFPRegister VFPRegister::sintOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, Int); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, Int); +} +VFPRegister VFPRegister::uintOverlay(unsigned int which) const { + MOZ_ASSERT(!_isInvalid); + if (kind == Double) { + // There are no corresponding float registers for d16-d31. + MOZ_ASSERT(code_ < 16); + MOZ_ASSERT(which < 2); + return VFPRegister((code_ << 1) + which, UInt); + } + MOZ_ASSERT(which == 0); + return VFPRegister(code_, UInt); +} + +bool Assembler::oom() const { + return AssemblerShared::oom() || m_buffer.oom() || jumpRelocations_.oom() || + dataRelocations_.oom(); +} + +// Size of the instruction stream, in bytes. Including pools. This function +// expects all pools that need to be placed have been placed. If they haven't +// then we need to go an flush the pools :( +size_t Assembler::size() const { return m_buffer.size(); } +// Size of the relocation table, in bytes. +size_t Assembler::jumpRelocationTableBytes() const { + return jumpRelocations_.length(); +} +size_t Assembler::dataRelocationTableBytes() const { + return dataRelocations_.length(); +} + +// Size of the data table, in bytes. +size_t Assembler::bytesNeeded() const { + return size() + jumpRelocationTableBytes() + dataRelocationTableBytes(); +} + +// Allocate memory for a branch instruction, it will be overwritten +// subsequently and should not be disassembled. + +BufferOffset Assembler::allocBranchInst() { + return m_buffer.putInt(Always | InstNOP::NopInst); +} + +void Assembler::WriteInstStatic(uint32_t x, uint32_t* dest) { + MOZ_ASSERT(dest != nullptr); + *dest = x; +} + +void Assembler::haltingAlign(int alignment) { + // HLT with payload 0xBAAD + m_buffer.align(alignment, 0xE1000070 | (0xBAA << 8) | 0xD); +} + +void Assembler::nopAlign(int alignment) { m_buffer.align(alignment); } + +BufferOffset Assembler::as_nop() { return writeInst(0xe320f000); } + +static uint32_t EncodeAlu(Register dest, Register src1, Operand2 op2, ALUOp op, + SBit s, Assembler::Condition c) { + return (int)op | (int)s | (int)c | op2.encode() | + ((dest == InvalidReg) ? 0 : RD(dest)) | + ((src1 == InvalidReg) ? 0 : RN(src1)); +} + +BufferOffset Assembler::as_alu(Register dest, Register src1, Operand2 op2, + ALUOp op, SBit s, Condition c) { + return writeInst(EncodeAlu(dest, src1, op2, op, s, c)); +} + +BufferOffset Assembler::as_mov(Register dest, Operand2 op2, SBit s, + Condition c) { + return as_alu(dest, InvalidReg, op2, OpMov, s, c); +} + +/* static */ +void Assembler::as_alu_patch(Register dest, Register src1, Operand2 op2, + ALUOp op, SBit s, Condition c, uint32_t* pos) { + WriteInstStatic(EncodeAlu(dest, src1, op2, op, s, c), pos); +} + +/* static */ +void Assembler::as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c, + uint32_t* pos) { + as_alu_patch(dest, InvalidReg, op2, OpMov, s, c, pos); +} + +BufferOffset Assembler::as_mvn(Register dest, Operand2 op2, SBit s, + Condition c) { + return as_alu(dest, InvalidReg, op2, OpMvn, s, c); +} + +// Logical operations. +BufferOffset Assembler::as_and(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAnd, s, c); +} +BufferOffset Assembler::as_bic(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpBic, s, c); +} +BufferOffset Assembler::as_eor(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpEor, s, c); +} +BufferOffset Assembler::as_orr(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpOrr, s, c); +} + +// Reverse byte operations. +BufferOffset Assembler::as_rev(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'0011'0000 | + RD(dest) | src.code()); +} +BufferOffset Assembler::as_rev16(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1011'1111'0000'1111'1011'0000 | + RD(dest) | src.code()); +} +BufferOffset Assembler::as_revsh(Register dest, Register src, Condition c) { + return writeInst((int)c | 0b0000'0110'1111'1111'0000'1111'1011'0000 | + RD(dest) | src.code()); +} + +// Mathematical operations. +BufferOffset Assembler::as_adc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAdc, s, c); +} +BufferOffset Assembler::as_add(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpAdd, s, c); +} +BufferOffset Assembler::as_sbc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpSbc, s, c); +} +BufferOffset Assembler::as_sub(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpSub, s, c); +} +BufferOffset Assembler::as_rsb(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpRsb, s, c); +} +BufferOffset Assembler::as_rsc(Register dest, Register src1, Operand2 op2, + SBit s, Condition c) { + return as_alu(dest, src1, op2, OpRsc, s, c); +} + +// Test operations. +BufferOffset Assembler::as_cmn(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpCmn, SetCC, c); +} +BufferOffset Assembler::as_cmp(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpCmp, SetCC, c); +} +BufferOffset Assembler::as_teq(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpTeq, SetCC, c); +} +BufferOffset Assembler::as_tst(Register src1, Operand2 op2, Condition c) { + return as_alu(InvalidReg, src1, op2, OpTst, SetCC, c); +} + +static constexpr Register NoAddend{Registers::pc}; + +static const int SignExtend = 0x06000070; + +enum SignExtend { + SxSxtb = 10 << 20, + SxSxth = 11 << 20, + SxUxtb = 14 << 20, + SxUxth = 15 << 20 +}; + +// Sign extension operations. +BufferOffset Assembler::as_sxtb(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxSxtb | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_sxth(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxSxth | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_uxtb(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxUxtb | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} +BufferOffset Assembler::as_uxth(Register dest, Register src, int rotate, + Condition c) { + return writeInst((int)c | SignExtend | SxUxth | RN(NoAddend) | RD(dest) | + ((rotate & 3) << 10) | src.code()); +} + +static uint32_t EncodeMovW(Register dest, Imm16 imm, Assembler::Condition c) { + MOZ_ASSERT(HasMOVWT()); + return 0x03000000 | c | imm.encode() | RD(dest); +} + +static uint32_t EncodeMovT(Register dest, Imm16 imm, Assembler::Condition c) { + MOZ_ASSERT(HasMOVWT()); + return 0x03400000 | c | imm.encode() | RD(dest); +} + +// Not quite ALU worthy, but these are useful none the less. These also have +// the isue of these being formatted completly differently from the standard ALU +// operations. +BufferOffset Assembler::as_movw(Register dest, Imm16 imm, Condition c) { + return writeInst(EncodeMovW(dest, imm, c)); +} + +/* static */ +void Assembler::as_movw_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos) { + WriteInstStatic(EncodeMovW(dest, imm, c), (uint32_t*)pos); +} + +BufferOffset Assembler::as_movt(Register dest, Imm16 imm, Condition c) { + return writeInst(EncodeMovT(dest, imm, c)); +} + +/* static */ +void Assembler::as_movt_patch(Register dest, Imm16 imm, Condition c, + Instruction* pos) { + WriteInstStatic(EncodeMovT(dest, imm, c), (uint32_t*)pos); +} + +static const int mull_tag = 0x90; + +BufferOffset Assembler::as_genmul(Register dhi, Register dlo, Register rm, + Register rn, MULOp op, SBit s, Condition c) { + return writeInst(RN(dhi) | maybeRD(dlo) | RM(rm) | rn.code() | op | s | c | + mull_tag); +} +BufferOffset Assembler::as_mul(Register dest, Register src1, Register src2, + SBit s, Condition c) { + return as_genmul(dest, InvalidReg, src1, src2, OpmMul, s, c); +} +BufferOffset Assembler::as_mla(Register dest, Register acc, Register src1, + Register src2, SBit s, Condition c) { + return as_genmul(dest, acc, src1, src2, OpmMla, s, c); +} +BufferOffset Assembler::as_umaal(Register destHI, Register destLO, + Register src1, Register src2, Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmaal, LeaveCC, c); +} +BufferOffset Assembler::as_mls(Register dest, Register acc, Register src1, + Register src2, Condition c) { + return as_genmul(dest, acc, src1, src2, OpmMls, LeaveCC, c); +} + +BufferOffset Assembler::as_umull(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmull, s, c); +} + +BufferOffset Assembler::as_umlal(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmUmlal, s, c); +} + +BufferOffset Assembler::as_smull(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmSmull, s, c); +} + +BufferOffset Assembler::as_smlal(Register destHI, Register destLO, + Register src1, Register src2, SBit s, + Condition c) { + return as_genmul(destHI, destLO, src1, src2, OpmSmlal, s, c); +} + +BufferOffset Assembler::as_sdiv(Register rd, Register rn, Register rm, + Condition c) { + return writeInst(0x0710f010 | c | RN(rd) | RM(rm) | rn.code()); +} + +BufferOffset Assembler::as_udiv(Register rd, Register rn, Register rm, + Condition c) { + return writeInst(0x0730f010 | c | RN(rd) | RM(rm) | rn.code()); +} + +BufferOffset Assembler::as_clz(Register dest, Register src, Condition c) { + MOZ_ASSERT(src != pc && dest != pc); + return writeInst(RD(dest) | src.code() | c | 0x016f0f10); +} + +// Data transfer instructions: ldr, str, ldrb, strb. Using an int to +// differentiate between 8 bits and 32 bits is overkill, but meh. + +static uint32_t EncodeDtr(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Assembler::Condition c) { + MOZ_ASSERT(mode == Offset || (rt != addr.getBase() && pc != addr.getBase())); + MOZ_ASSERT(size == 32 || size == 8); + return 0x04000000 | ls | (size == 8 ? 0x00400000 : 0) | mode | c | RT(rt) | + addr.encode(); +} + +BufferOffset Assembler::as_dtr(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c) { + return writeInst(EncodeDtr(ls, size, mode, rt, addr, c)); +} + +/* static */ +void Assembler::as_dtr_patch(LoadStore ls, int size, Index mode, Register rt, + DTRAddr addr, Condition c, uint32_t* dest) { + WriteInstStatic(EncodeDtr(ls, size, mode, rt, addr, c), dest); +} + +class PoolHintData { + public: + enum LoadType { + // Set 0 to bogus, since that is the value most likely to be + // accidentally left somewhere. + PoolBOGUS = 0, + PoolDTR = 1, + PoolBranch = 2, + PoolVDTR = 3 + }; + + private: + uint32_t index_ : 16; + uint32_t cond_ : 4; + uint32_t loadType_ : 2; + uint32_t destReg_ : 5; + uint32_t destType_ : 1; + uint32_t ONES : 4; + + static const uint32_t ExpectedOnes = 0xfu; + + public: + void init(uint32_t index, Assembler::Condition cond, LoadType lt, + Register destReg) { + index_ = index; + MOZ_ASSERT(index_ == index); + cond_ = cond >> 28; + MOZ_ASSERT(cond_ == cond >> 28); + loadType_ = lt; + ONES = ExpectedOnes; + destReg_ = destReg.code(); + destType_ = 0; + } + void init(uint32_t index, Assembler::Condition cond, LoadType lt, + const VFPRegister& destReg) { + MOZ_ASSERT(destReg.isFloat()); + index_ = index; + MOZ_ASSERT(index_ == index); + cond_ = cond >> 28; + MOZ_ASSERT(cond_ == cond >> 28); + loadType_ = lt; + ONES = ExpectedOnes; + destReg_ = destReg.id(); + destType_ = destReg.isDouble(); + } + Assembler::Condition getCond() const { + return Assembler::Condition(cond_ << 28); + } + + Register getReg() const { return Register::FromCode(destReg_); } + VFPRegister getVFPReg() const { + VFPRegister r = VFPRegister( + destReg_, destType_ ? VFPRegister::Double : VFPRegister::Single); + return r; + } + + int32_t getIndex() const { return index_; } + void setIndex(uint32_t index) { + MOZ_ASSERT(ONES == ExpectedOnes && loadType_ != PoolBOGUS); + index_ = index; + MOZ_ASSERT(index_ == index); + } + + LoadType getLoadType() const { + // If this *was* a PoolBranch, but the branch has already been bound + // then this isn't going to look like a real poolhintdata, but we still + // want to lie about it so everyone knows it *used* to be a branch. + if (ONES != ExpectedOnes) { + return PoolHintData::PoolBranch; + } + return static_cast<LoadType>(loadType_); + } + + bool isValidPoolHint() const { + // Most instructions cannot have a condition that is 0xf. Notable + // exceptions are blx and the entire NEON instruction set. For the + // purposes of pool loads, and possibly patched branches, the possible + // instructions are ldr and b, neither of which can have a condition + // code of 0xf. + return ONES == ExpectedOnes; + } +}; + +union PoolHintPun { + PoolHintData phd; + uint32_t raw; +}; + +// Handles all of the other integral data transferring functions: ldrsb, ldrsh, +// ldrd, etc. The size is given in bits. +BufferOffset Assembler::as_extdtr(LoadStore ls, int size, bool IsSigned, + Index mode, Register rt, EDtrAddr addr, + Condition c) { + int extra_bits2 = 0; + int extra_bits1 = 0; + switch (size) { + case 8: + MOZ_ASSERT(IsSigned); + MOZ_ASSERT(ls != IsStore); + extra_bits1 = 0x1; + extra_bits2 = 0x2; + break; + case 16: + // 'case 32' doesn't need to be handled, it is handled by the default + // ldr/str. + extra_bits2 = 0x01; + extra_bits1 = (ls == IsStore) ? 0 : 1; + if (IsSigned) { + MOZ_ASSERT(ls != IsStore); + extra_bits2 |= 0x2; + } + break; + case 64: + extra_bits2 = (ls == IsStore) ? 0x3 : 0x2; + extra_bits1 = 0; + break; + default: + MOZ_CRASH("unexpected size in as_extdtr"); + } + return writeInst(extra_bits2 << 5 | extra_bits1 << 20 | 0x90 | addr.encode() | + RT(rt) | mode | c); +} + +BufferOffset Assembler::as_dtm(LoadStore ls, Register rn, uint32_t mask, + DTMMode mode, DTMWriteBack wb, Condition c) { + return writeInst(0x08000000 | RN(rn) | ls | mode | mask | c | wb); +} + +BufferOffset Assembler::allocLiteralLoadEntry( + size_t numInst, unsigned numPoolEntries, PoolHintPun& php, uint8_t* data, + const LiteralDoc& doc, ARMBuffer::PoolEntry* pe, bool loadToPC) { + uint8_t* inst = (uint8_t*)&php.raw; + + MOZ_ASSERT(inst); + MOZ_ASSERT(numInst == 1); // Or fix the disassembly + + BufferOffset offs = + m_buffer.allocEntry(numInst, numPoolEntries, inst, data, pe); + propagateOOM(offs.assigned()); +#ifdef JS_DISASM_ARM + Instruction* instruction = m_buffer.getInstOrNull(offs); + if (instruction) { + spewLiteralLoad(php, loadToPC, instruction, doc); + } +#endif + return offs; +} + +// This is also used for instructions that might be resolved into branches, +// or might not. If dest==pc then it is effectively a branch. + +BufferOffset Assembler::as_Imm32Pool(Register dest, uint32_t value, + Condition c) { + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolDTR, dest); + BufferOffset offs = allocLiteralLoadEntry( + 1, 1, php, (uint8_t*)&value, LiteralDoc(value), nullptr, dest == pc); + return offs; +} + +/* static */ +void Assembler::WritePoolEntry(Instruction* addr, Condition c, uint32_t data) { + MOZ_ASSERT(addr->is<InstLDR>()); + *addr->as<InstLDR>()->dest() = data; + MOZ_ASSERT(addr->extractCond() == c); +} + +BufferOffset Assembler::as_FImm64Pool(VFPRegister dest, double d, Condition c) { + MOZ_ASSERT(dest.isDouble()); + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolVDTR, dest); + return allocLiteralLoadEntry(1, 2, php, (uint8_t*)&d, LiteralDoc(d)); +} + +BufferOffset Assembler::as_FImm32Pool(VFPRegister dest, float f, Condition c) { + // Insert floats into the double pool as they have the same limitations on + // immediate offset. This wastes 4 bytes padding per float. An alternative + // would be to have a separate pool for floats. + MOZ_ASSERT(dest.isSingle()); + PoolHintPun php; + php.phd.init(0, c, PoolHintData::PoolVDTR, dest); + return allocLiteralLoadEntry(1, 1, php, (uint8_t*)&f, LiteralDoc(f)); +} + +// Pool callbacks stuff: +void Assembler::InsertIndexIntoTag(uint8_t* load_, uint32_t index) { + uint32_t* load = (uint32_t*)load_; + PoolHintPun php; + php.raw = *load; + php.phd.setIndex(index); + *load = php.raw; +} + +// patchConstantPoolLoad takes the address of the instruction that wants to be +// patched, and the address of the start of the constant pool, and figures +// things out from there. +void Assembler::PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr) { + PoolHintData data = *(PoolHintData*)loadAddr; + uint32_t* instAddr = (uint32_t*)loadAddr; + int offset = (char*)constPoolAddr - (char*)loadAddr; + switch (data.getLoadType()) { + case PoolHintData::PoolBOGUS: + MOZ_CRASH("bogus load type!"); + case PoolHintData::PoolDTR: + Assembler::as_dtr_patch( + IsLoad, 32, Offset, data.getReg(), + DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)), + data.getCond(), instAddr); + break; + case PoolHintData::PoolBranch: + // Either this used to be a poolBranch, and the label was already bound, + // so it was replaced with a real branch, or this may happen in the + // future. If this is going to happen in the future, then the actual + // bits that are written here don't matter (except the condition code, + // since that is always preserved across patchings) but if it does not + // get bound later, then we want to make sure this is a load from the + // pool entry (and the pool entry should be nullptr so it will crash). + if (data.isValidPoolHint()) { + Assembler::as_dtr_patch( + IsLoad, 32, Offset, pc, + DTRAddr(pc, DtrOffImm(offset + 4 * data.getIndex() - 8)), + data.getCond(), instAddr); + } + break; + case PoolHintData::PoolVDTR: { + VFPRegister dest = data.getVFPReg(); + int32_t imm = offset + (data.getIndex() * 4) - 8; + MOZ_ASSERT(-1024 < imm && imm < 1024); + Assembler::as_vdtr_patch(IsLoad, dest, VFPAddr(pc, VFPOffImm(imm)), + data.getCond(), instAddr); + break; + } + } +} + +// Atomic instruction stuff: + +BufferOffset Assembler::as_ldrexd(Register rt, Register rt2, Register rn, + Condition c) { + MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1); + MOZ_ASSERT(rt.code() != 14 && rn.code() != 15); + return writeInst(0x01b00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrex(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01900f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrexh(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01f00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_ldrexb(Register rt, Register rn, Condition c) { + MOZ_ASSERT(rt.code() != 15 && rn.code() != 15); + return writeInst(0x01d00f9f | (int)c | RT(rt) | RN(rn)); +} + +BufferOffset Assembler::as_strexd(Register rd, Register rt, Register rt2, + Register rn, Condition c) { + MOZ_ASSERT(!(rt.code() & 1) && rt2.code() == rt.code() + 1); + MOZ_ASSERT(rt.code() != 14 && rn.code() != 15 && rd.code() != 15); + MOZ_ASSERT(rd != rn && rd != rt && rd != rt2); + return writeInst(0x01a00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strex(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01800f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strexh(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01e00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_strexb(Register rd, Register rt, Register rn, + Condition c) { + MOZ_ASSERT(rd != rn && rd != rt); // True restriction on Cortex-A7 (RPi2) + return writeInst(0x01c00f90 | (int)c | RD(rd) | RN(rn) | rt.code()); +} + +BufferOffset Assembler::as_clrex() { return writeInst(0xf57ff01f); } + +// Memory barrier stuff: + +BufferOffset Assembler::as_dmb(BarrierOption option) { + return writeInst(0xf57ff050U | (int)option); +} +BufferOffset Assembler::as_dsb(BarrierOption option) { + return writeInst(0xf57ff040U | (int)option); +} +BufferOffset Assembler::as_isb() { + return writeInst(0xf57ff06fU); // option == SY +} +BufferOffset Assembler::as_dsb_trap() { + // DSB is "mcr 15, 0, r0, c7, c10, 4". + // See eg https://bugs.kde.org/show_bug.cgi?id=228060. + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070f9a); +} +BufferOffset Assembler::as_dmb_trap() { + // DMB is "mcr 15, 0, r0, c7, c10, 5". + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070fba); +} +BufferOffset Assembler::as_isb_trap() { + // ISB is "mcr 15, 0, r0, c7, c5, 4". + // ARMv7 manual, "VMSA CP15 c7 register summary". + // Flagged as "legacy" starting with ARMv8, may be disabled on chip, see + // ARMv8 manual E2.7.3 and G3.18.16. + return writeInst(0xee070f94); +} + +BufferOffset Assembler::as_csdb() { + // NOP (see as_nop) on architectures where this instruction is not defined. + // + // https://developer.arm.com/-/media/developer/pdf/Cache_Speculation_Side-channels_22Feb18.pdf + // CSDB A32: 1110_0011_0010_0000_1111_0000_0001_0100 + return writeInst(0xe320f000 | 0x14); +} + +// Control flow stuff: + +// bx can *only* branch to a register, never to an immediate. +BufferOffset Assembler::as_bx(Register r, Condition c) { + BufferOffset ret = writeInst(((int)c) | OpBx | r.code()); + return ret; +} + +void Assembler::WritePoolGuard(BufferOffset branch, Instruction* dest, + BufferOffset afterPool) { + BOffImm off = afterPool.diffB<BOffImm>(branch); + if (off.isInvalid()) { + MOZ_CRASH("BOffImm invalid"); + } + *dest = InstBImm(off, Always); +} + +// Branch can branch to an immediate *or* to a register. +// Branches to immediates are pc relative, branches to registers are absolute. +BufferOffset Assembler::as_b(BOffImm off, Condition c, Label* documentation) { + return writeBranchInst(((int)c) | OpB | off.encode(), + refLabel(documentation)); +} + +BufferOffset Assembler::as_b(Label* l, Condition c) { + if (l->bound()) { + // Note only one instruction is emitted here, the NOP is overwritten. + BufferOffset ret = allocBranchInst(); + if (oom()) { + return BufferOffset(); + } + + BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + as_b(offset, c, ret); +#ifdef JS_DISASM_ARM + spewBranch(m_buffer.getInstOrNull(ret), refLabel(l)); +#endif + return ret; + } + + if (oom()) { + return BufferOffset(); + } + + BufferOffset ret; + if (l->used()) { + int32_t old = l->offset(); + MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old), + "Buffer size limit should prevent this"); + ret = as_b(BOffImm(old), c, l); + } else { + BOffImm inv; + ret = as_b(inv, c, l); + } + + if (oom()) { + return BufferOffset(); + } + + l->use(ret.getOffset()); + return ret; +} + +BufferOffset Assembler::as_b(BOffImm off, Condition c, BufferOffset inst) { + // JS_DISASM_ARM NOTE: Can't disassemble here, because numerous callers use + // this to patchup old code. Must disassemble in caller where it makes sense. + // Not many callers. + *editSrc(inst) = InstBImm(off, c); + return inst; +} + +// blx can go to either an immediate or a register. +// When blx'ing to a register, we change processor state depending on the low +// bit of the register when blx'ing to an immediate, we *always* change +// processor state. + +BufferOffset Assembler::as_blx(Register r, Condition c) { + return writeInst(((int)c) | OpBlx | r.code()); +} + +// bl can only branch to an pc-relative immediate offset +// It cannot change the processor state. +BufferOffset Assembler::as_bl(BOffImm off, Condition c, Label* documentation) { + return writeBranchInst(((int)c) | OpBl | off.encode(), + refLabel(documentation)); +} + +BufferOffset Assembler::as_bl(Label* l, Condition c) { + if (l->bound()) { + // Note only one instruction is emitted here, the NOP is overwritten. + BufferOffset ret = allocBranchInst(); + if (oom()) { + return BufferOffset(); + } + + BOffImm offset = BufferOffset(l).diffB<BOffImm>(ret); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + + as_bl(offset, c, ret); +#ifdef JS_DISASM_ARM + spewBranch(m_buffer.getInstOrNull(ret), refLabel(l)); +#endif + return ret; + } + + if (oom()) { + return BufferOffset(); + } + + BufferOffset ret; + // See if the list was empty. + if (l->used()) { + int32_t old = l->offset(); + MOZ_RELEASE_ASSERT(BOffImm::IsInRange(old), + "Buffer size limit should prevent this"); + ret = as_bl(BOffImm(old), c, l); + } else { + BOffImm inv; + ret = as_bl(inv, c, l); + } + + if (oom()) { + return BufferOffset(); + } + + l->use(ret.getOffset()); + return ret; +} + +BufferOffset Assembler::as_bl(BOffImm off, Condition c, BufferOffset inst) { + *editSrc(inst) = InstBLImm(off, c); + return inst; +} + +BufferOffset Assembler::as_mrs(Register r, Condition c) { + return writeInst(0x010f0000 | int(c) | RD(r)); +} + +BufferOffset Assembler::as_msr(Register r, Condition c) { + // Hardcode the 'mask' field to 0b11 for now. It is bits 18 and 19, which + // are the two high bits of the 'c' in this constant. + MOZ_ASSERT((r.code() & ~0xf) == 0); + return writeInst(0x012cf000 | int(c) | r.code()); +} + +// VFP instructions! +enum vfp_tags { VfpTag = 0x0C000A00, VfpArith = 0x02000000 }; + +BufferOffset Assembler::writeVFPInst(vfp_size sz, uint32_t blob) { + MOZ_ASSERT((sz & blob) == 0); + MOZ_ASSERT((VfpTag & blob) == 0); + return writeInst(VfpTag | sz | blob); +} + +/* static */ +void Assembler::WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest) { + MOZ_ASSERT((sz & blob) == 0); + MOZ_ASSERT((VfpTag & blob) == 0); + WriteInstStatic(VfpTag | sz | blob, dest); +} + +// Unityped variants: all registers hold the same (ieee754 single/double) +// notably not included are vcvt; vmov vd, #imm; vmov rt, vn. +BufferOffset Assembler::as_vfp_float(VFPRegister vd, VFPRegister vn, + VFPRegister vm, VFPOp op, Condition c) { + // Make sure we believe that all of our operands are the same kind. + MOZ_ASSERT_IF(!vn.isMissing(), vd.equiv(vn)); + MOZ_ASSERT_IF(!vm.isMissing(), vd.equiv(vm)); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, VD(vd) | VN(vn) | VM(vm) | op | VfpArith | c); +} + +BufferOffset Assembler::as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvAdd, c); +} + +BufferOffset Assembler::as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvDiv, c); +} + +BufferOffset Assembler::as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvMul, c); +} + +BufferOffset Assembler::as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvMul, c); +} + +BufferOffset Assembler::as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + MOZ_CRASH("Feature NYI"); +} + +BufferOffset Assembler::as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + MOZ_CRASH("Feature NYI"); +} + +BufferOffset Assembler::as_vneg(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvNeg, c); +} + +BufferOffset Assembler::as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvSqrt, c); +} + +BufferOffset Assembler::as_vabs(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvAbs, c); +} + +BufferOffset Assembler::as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm, + Condition c) { + return as_vfp_float(vd, vn, vm, OpvSub, c); +} + +BufferOffset Assembler::as_vcmp(VFPRegister vd, VFPRegister vm, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vm, OpvCmp, c); +} + +BufferOffset Assembler::as_vcmpz(VFPRegister vd, Condition c) { + return as_vfp_float(vd, NoVFPRegister, NoVFPRegister, OpvCmpz, c); +} + +// Specifically, a move between two same sized-registers. +BufferOffset Assembler::as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c) { + return as_vfp_float(vd, NoVFPRegister, vsrc, OpvMov, c); +} + +// Transfer between Core and VFP. + +// Unlike the next function, moving between the core registers and vfp registers +// can't be *that* properly typed. Namely, since I don't want to munge the type +// VFPRegister to also include core registers. Thus, the core and vfp registers +// are passed in based on their type, and src/dest is determined by the +// float2core. + +BufferOffset Assembler::as_vxfer(Register vt1, Register vt2, VFPRegister vm, + FloatToCore_ f2c, Condition c, int idx) { + vfp_size sz = IsSingle; + if (vm.isDouble()) { + // Technically, this can be done with a vmov à la ARM ARM under vmov + // however, that requires at least an extra bit saying if the operation + // should be performed on the lower or upper half of the double. Moving + // a single to/from 2N/2N+1 isn't equivalent, since there are 32 single + // registers, and 32 double registers so there is no way to encode the + // last 16 double registers. + sz = IsDouble; + MOZ_ASSERT(idx == 0 || idx == 1); + // If we are transferring a single half of the double then it must be + // moving a VFP reg to a core reg. + MOZ_ASSERT_IF(vt2 == InvalidReg, f2c == FloatToCore); + idx = idx << 21; + } else { + MOZ_ASSERT(idx == 0); + } + + if (vt2 == InvalidReg) { + return writeVFPInst( + sz, WordTransfer | f2c | c | RT(vt1) | maybeRN(vt2) | VN(vm) | idx); + } + + // We are doing a 64 bit transfer. + return writeVFPInst( + sz, DoubleTransfer | f2c | c | RT(vt1) | maybeRN(vt2) | VM(vm) | idx); +} + +enum vcvt_destFloatness { VcvtToInteger = 1 << 18, VcvtToFloat = 0 << 18 }; +enum vcvt_toZero { + VcvtToZero = + 1 << 7, // Use the default rounding mode, which rounds truncates. + VcvtToFPSCR = 0 << 7 // Use whatever rounding mode the fpscr specifies. +}; +enum vcvt_Signedness { + VcvtToSigned = 1 << 16, + VcvtToUnsigned = 0 << 16, + VcvtFromSigned = 1 << 7, + VcvtFromUnsigned = 0 << 7 +}; + +// Our encoding actually allows just the src and the dest (and their types) to +// uniquely specify the encoding that we are going to use. +BufferOffset Assembler::as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR, + Condition c) { + // Unlike other cases, the source and dest types cannot be the same. + MOZ_ASSERT(!vd.equiv(vm)); + vfp_size sz = IsDouble; + if (vd.isFloat() && vm.isFloat()) { + // Doing a float -> float conversion. + if (vm.isSingle()) { + sz = IsSingle; + } + return writeVFPInst(sz, c | 0x02B700C0 | VM(vm) | VD(vd)); + } + + // At least one of the registers should be a float. + vcvt_destFloatness destFloat; + vcvt_Signedness opSign; + vcvt_toZero doToZero = VcvtToFPSCR; + MOZ_ASSERT(vd.isFloat() || vm.isFloat()); + if (vd.isSingle() || vm.isSingle()) { + sz = IsSingle; + } + + if (vd.isFloat()) { + destFloat = VcvtToFloat; + opSign = (vm.isSInt()) ? VcvtFromSigned : VcvtFromUnsigned; + } else { + destFloat = VcvtToInteger; + opSign = (vd.isSInt()) ? VcvtToSigned : VcvtToUnsigned; + doToZero = useFPSCR ? VcvtToFPSCR : VcvtToZero; + } + return writeVFPInst( + sz, c | 0x02B80040 | VD(vd) | VM(vm) | destFloat | opSign | doToZero); +} + +BufferOffset Assembler::as_vcvtFixed(VFPRegister vd, bool isSigned, + uint32_t fixedPoint, bool toFixed, + Condition c) { + MOZ_ASSERT(vd.isFloat()); + uint32_t sx = 0x1; + vfp_size sf = vd.isDouble() ? IsDouble : IsSingle; + int32_t imm5 = fixedPoint; + imm5 = (sx ? 32 : 16) - imm5; + MOZ_ASSERT(imm5 >= 0); + imm5 = imm5 >> 1 | (imm5 & 1) << 5; + return writeVFPInst(sf, 0x02BA0040 | VD(vd) | toFixed << 18 | sx << 7 | + (!isSigned) << 16 | imm5 | c); +} + +// Transfer between VFP and memory. +static uint32_t EncodeVdtr(LoadStore ls, VFPRegister vd, VFPAddr addr, + Assembler::Condition c) { + return ls | 0x01000000 | addr.encode() | VD(vd) | c; +} + +BufferOffset Assembler::as_vdtr( + LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c /* vfp doesn't have a wb option */) { + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, EncodeVdtr(ls, vd, addr, c)); +} + +/* static */ +void Assembler::as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr, + Condition c, uint32_t* dest) { + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + WriteVFPInstStatic(sz, EncodeVdtr(ls, vd, addr, c), dest); +} + +// VFP's ldm/stm work differently from the standard arm ones. You can only +// transfer a range. + +BufferOffset Assembler::as_vdtm(LoadStore st, Register rn, VFPRegister vd, + int length, + /* also has update conditions */ Condition c) { + MOZ_ASSERT(length <= 16 && length >= 0); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + + if (vd.isDouble()) { + length *= 2; + } + + return writeVFPInst(sz, dtmLoadStore | RN(rn) | VD(vd) | length | dtmMode | + dtmUpdate | dtmCond); +} + +BufferOffset Assembler::as_vimm(VFPRegister vd, VFPImm imm, Condition c) { + MOZ_ASSERT(imm.isValid()); + vfp_size sz = vd.isDouble() ? IsDouble : IsSingle; + return writeVFPInst(sz, c | imm.encode() | VD(vd) | 0x02B00000); +} + +BufferOffset Assembler::as_vmrs(Register r, Condition c) { + return writeInst(c | 0x0ef10a10 | RT(r)); +} + +BufferOffset Assembler::as_vmsr(Register r, Condition c) { + return writeInst(c | 0x0ee10a10 | RT(r)); +} + +bool Assembler::nextLink(BufferOffset b, BufferOffset* next) { + Instruction branch = *editSrc(b); + MOZ_ASSERT(branch.is<InstBranchImm>()); + + BOffImm destOff; + branch.as<InstBranchImm>()->extractImm(&destOff); + if (destOff.isInvalid()) { + return false; + } + + // Propagate the next link back to the caller, by constructing a new + // BufferOffset into the space they provided. + new (next) BufferOffset(destOff.decode()); + return true; +} + +void Assembler::bind(Label* label, BufferOffset boff) { +#ifdef JS_DISASM_ARM + spew_.spewBind(label); +#endif + if (oom()) { + // Ensure we always bind the label. This matches what we do on + // x86/x64 and silences the assert in ~Label. + label->bind(0); + return; + } + + if (label->used()) { + bool more; + // If our caller didn't give us an explicit target to bind to then we + // want to bind to the location of the next instruction. + BufferOffset dest = boff.assigned() ? boff : nextOffset(); + BufferOffset b(label); + do { + BufferOffset next; + more = nextLink(b, &next); + Instruction branch = *editSrc(b); + Condition c = branch.extractCond(); + BOffImm offset = dest.diffB<BOffImm>(b); + MOZ_RELEASE_ASSERT(!offset.isInvalid(), + "Buffer size limit should prevent this"); + if (branch.is<InstBImm>()) { + as_b(offset, c, b); + } else if (branch.is<InstBLImm>()) { + as_bl(offset, c, b); + } else { + MOZ_CRASH("crazy fixup!"); + } + b = next; + } while (more); + } + label->bind(nextOffset().getOffset()); + MOZ_ASSERT(!oom()); +} + +void Assembler::retarget(Label* label, Label* target) { +#ifdef JS_DISASM_ARM + spew_.spewRetarget(label, target); +#endif + if (label->used() && !oom()) { + if (target->bound()) { + bind(label, BufferOffset(target)); + } else if (target->used()) { + // The target is not bound but used. Prepend label's branch list + // onto target's. + BufferOffset labelBranchOffset(label); + BufferOffset next; + + // Find the head of the use chain for label. + while (nextLink(labelBranchOffset, &next)) { + labelBranchOffset = next; + } + + // Then patch the head of label's use chain to the tail of target's + // use chain, prepending the entire use chain of target. + Instruction branch = *editSrc(labelBranchOffset); + Condition c = branch.extractCond(); + int32_t prev = target->offset(); + target->use(label->offset()); + if (branch.is<InstBImm>()) { + as_b(BOffImm(prev), c, labelBranchOffset); + } else if (branch.is<InstBLImm>()) { + as_bl(BOffImm(prev), c, labelBranchOffset); + } else { + MOZ_CRASH("crazy fixup!"); + } + } else { + // The target is unbound and unused. We can just take the head of + // the list hanging off of label, and dump that into target. + target->use(label->offset()); + } + } + label->reset(); +} + +static int stopBKPT = -1; +void Assembler::as_bkpt() { + // This is a count of how many times a breakpoint instruction has been + // generated. It is embedded into the instruction for debugging + // purposes. Gdb will print "bkpt xxx" when you attempt to dissassemble a + // breakpoint with the number xxx embedded into it. If this breakpoint is + // being hit, then you can run (in gdb): + // >b dbg_break + // >b main + // >commands + // >set stopBKPT = xxx + // >c + // >end + // which will set a breakpoint on the function dbg_break above set a + // scripted breakpoint on main that will set the (otherwise unmodified) + // value to the number of the breakpoint, so dbg_break will actuall be + // called and finally, when you run the executable, execution will halt when + // that breakpoint is generated. + static int hit = 0; + if (stopBKPT == hit) { + dbg_break(); + } + writeInst(0xe1200070 | (hit & 0xf) | ((hit & 0xfff0) << 4)); + hit++; +} + +BufferOffset Assembler::as_illegal_trap() { + // Encoding of the permanently-undefined 'udf' instruction, with the imm16 + // set to 0. + return writeInst(0xe7f000f0); +} + +void Assembler::flushBuffer() { m_buffer.flushPool(); } + +void Assembler::enterNoPool(size_t maxInst) { m_buffer.enterNoPool(maxInst); } + +void Assembler::leaveNoPool() { m_buffer.leaveNoPool(); } + +void Assembler::enterNoNops() { m_buffer.enterNoNops(); } + +void Assembler::leaveNoNops() { m_buffer.leaveNoNops(); } + +struct PoolHeader : Instruction { + struct Header { + // The size should take into account the pool header. + // The size is in units of Instruction (4 bytes), not byte. + uint32_t size : 15; + uint32_t isNatural : 1; + uint32_t ONES : 16; + + Header(int size_, bool isNatural_) + : size(size_), isNatural(isNatural_), ONES(0xffff) {} + + explicit Header(const Instruction* i) { + static_assert(sizeof(Header) == sizeof(uint32_t)); + memcpy(this, i, sizeof(Header)); + MOZ_ASSERT(ONES == 0xffff); + } + + uint32_t raw() const { + static_assert(sizeof(Header) == sizeof(uint32_t)); + uint32_t dest; + memcpy(&dest, this, sizeof(Header)); + return dest; + } + }; + + PoolHeader(int size_, bool isNatural_) + : Instruction(Header(size_, isNatural_).raw(), true) {} + + uint32_t size() const { + Header tmp(this); + return tmp.size; + } + uint32_t isNatural() const { + Header tmp(this); + return tmp.isNatural; + } + + static bool IsTHIS(const Instruction& i) { + return (*i.raw() & 0xffff0000) == 0xffff0000; + } + static const PoolHeader* AsTHIS(const Instruction& i) { + if (!IsTHIS(i)) { + return nullptr; + } + return static_cast<const PoolHeader*>(&i); + } +}; + +void Assembler::WritePoolHeader(uint8_t* start, Pool* p, bool isNatural) { + static_assert(sizeof(PoolHeader) == 4, + "PoolHandler must have the correct size."); + uint8_t* pool = start + 4; + // Go through the usual rigmarole to get the size of the pool. + pool += p->getPoolSize(); + uint32_t size = pool - start; + MOZ_ASSERT((size & 3) == 0); + size = size >> 2; + MOZ_ASSERT(size < (1 << 15)); + PoolHeader header(size, isNatural); + *(PoolHeader*)start = header; +} + +// The size of an arbitrary 32-bit call in the instruction stream. On ARM this +// sequence is |pc = ldr pc - 4; imm32| given that we never reach the imm32. +uint32_t Assembler::PatchWrite_NearCallSize() { return sizeof(uint32_t); } + +void Assembler::PatchWrite_NearCall(CodeLocationLabel start, + CodeLocationLabel toCall) { + Instruction* inst = (Instruction*)start.raw(); + // Overwrite whatever instruction used to be here with a call. Since the + // destination is in the same function, it will be within range of the + // 24 << 2 byte bl instruction. + uint8_t* dest = toCall.raw(); + new (inst) InstBLImm(BOffImm(dest - (uint8_t*)inst), Always); +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + PatchedImmPtr newValue, + PatchedImmPtr expectedValue) { + Instruction* ptr = reinterpret_cast<Instruction*>(label.raw()); + + Register dest; + Assembler::RelocStyle rs; + + { + InstructionIterator iter(ptr); + DebugOnly<const uint32_t*> val = GetPtr32Target(iter, &dest, &rs); + MOZ_ASSERT(uint32_t((const uint32_t*)val) == uint32_t(expectedValue.value)); + } + + // Patch over actual instructions. + { + InstructionIterator iter(ptr); + MacroAssembler::ma_mov_patch(Imm32(int32_t(newValue.value)), dest, Always, + rs, iter); + } +} + +void Assembler::PatchDataWithValueCheck(CodeLocationLabel label, + ImmPtr newValue, ImmPtr expectedValue) { + PatchDataWithValueCheck(label, PatchedImmPtr(newValue.value), + PatchedImmPtr(expectedValue.value)); +} + +// This just stomps over memory with 32 bits of raw data. Its purpose is to +// overwrite the call of JITed code with 32 bits worth of an offset. This will +// is only meant to function on code that has been invalidated, so it should be +// totally safe. Since that instruction will never be executed again, a ICache +// flush should not be necessary +void Assembler::PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm) { + // Raw is going to be the return address. + uint32_t* raw = (uint32_t*)label.raw(); + // Overwrite the 4 bytes before the return address, which will end up being + // the call instruction. + *(raw - 1) = imm.value; +} + +uint8_t* Assembler::NextInstruction(uint8_t* inst_, uint32_t* count) { + if (count != nullptr) { + *count += sizeof(Instruction); + } + + InstructionIterator iter(reinterpret_cast<Instruction*>(inst_)); + return reinterpret_cast<uint8_t*>(iter.next()); +} + +static bool InstIsGuard(Instruction* inst, const PoolHeader** ph) { + Assembler::Condition c = inst->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) { + return false; + } + // See if the next instruction is a pool header. + *ph = (inst + 1)->as<const PoolHeader>(); + return *ph != nullptr; +} + +static bool InstIsGuard(BufferInstructionIterator& iter, + const PoolHeader** ph) { + Instruction* inst = iter.cur(); + Assembler::Condition c = inst->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!(inst->is<InstBXReg>() || inst->is<InstBImm>())) { + return false; + } + // See if the next instruction is a pool header. + *ph = iter.peek()->as<const PoolHeader>(); + return *ph != nullptr; +} + +template <class T> +static bool InstIsBNop(const T& iter) { + // In some special situations, it is necessary to insert a NOP into the + // instruction stream that nobody knows about, since nobody should know + // about it, make sure it gets skipped when Instruction::next() is called. + // this generates a very specific nop, namely a branch to the next + // instruction. + const Instruction* cur = iter.cur(); + Assembler::Condition c = cur->extractCond(); + if (c != Assembler::Always) { + return false; + } + if (!cur->is<InstBImm>()) { + return false; + } + InstBImm* b = cur->as<InstBImm>(); + BOffImm offset; + b->extractImm(&offset); + return offset.decode() == 4; +} + +Instruction* InstructionIterator::maybeSkipAutomaticInstructions() { + // If the current instruction was automatically-inserted, skip past it. + const PoolHeader* ph; + + // Loop until an intentionally-placed instruction is found. + while (true) { + if (InstIsGuard(cur(), &ph)) { + // Don't skip a natural guard. + if (ph->isNatural()) { + return cur(); + } + advanceRaw(1 + ph->size()); + } else if (InstIsBNop<InstructionIterator>(*this)) { + advanceRaw(1); + } else { + return cur(); + } + } +} + +Instruction* BufferInstructionIterator::maybeSkipAutomaticInstructions() { + const PoolHeader* ph; + // If this is a guard, and the next instruction is a header, always work + // around the pool. If it isn't a guard, then start looking ahead. + if (InstIsGuard(*this, &ph)) { + // Don't skip a natural guard. + if (ph->isNatural()) { + return cur(); + } + advance(sizeof(Instruction) * ph->size()); + return next(); + } + if (InstIsBNop<BufferInstructionIterator>(*this)) { + return next(); + } + return cur(); +} + +// Cases to be handled: +// 1) no pools or branches in sight => return this+1 +// 2) branch to next instruction => return this+2, because a nop needed to be +// inserted into the stream. +// 3) this+1 is an artificial guard for a pool => return first instruction +// after the pool +// 4) this+1 is a natural guard => return the branch +// 5) this is a branch, right before a pool => return first instruction after +// the pool +// in assembly form: +// 1) add r0, r0, r0 <= this +// add r1, r1, r1 <= returned value +// add r2, r2, r2 +// +// 2) add r0, r0, r0 <= this +// b foo +// foo: +// add r2, r2, r2 <= returned value +// +// 3) add r0, r0, r0 <= this +// b after_pool; +// .word 0xffff0002 # bit 15 being 0 indicates that the branch was not +// # requested by the assembler +// 0xdeadbeef # the 2 indicates that there is 1 pool entry, and the +// # pool header +// add r4, r4, r4 <= returned value +// 4) add r0, r0, r0 <= this +// b after_pool <= returned value +// .word 0xffff8002 # bit 15 being 1 indicates that the branch was +// # requested by the assembler +// 0xdeadbeef +// add r4, r4, r4 +// 5) b after_pool <= this +// .word 0xffff8002 # bit 15 has no bearing on the returned value +// 0xdeadbeef +// add r4, r4, r4 <= returned value + +Instruction* InstructionIterator::next() { + const PoolHeader* ph; + + // If the current instruction is followed by a pool header, + // move past the current instruction and the pool. + if (InstIsGuard(cur(), &ph)) { + advanceRaw(1 + ph->size()); + return maybeSkipAutomaticInstructions(); + } + + // The next instruction is then known to not be a PoolHeader. + advanceRaw(1); + return maybeSkipAutomaticInstructions(); +} + +void Assembler::ToggleToJmp(CodeLocationLabel inst_) { + uint32_t* ptr = (uint32_t*)inst_.raw(); + + DebugOnly<Instruction*> inst = (Instruction*)inst_.raw(); + MOZ_ASSERT(inst->is<InstCMP>()); + + // Zero bits 20-27, then set 24-27 to be correct for a branch. + // 20-23 will be party of the B's immediate, and should be 0. + *ptr = (*ptr & ~(0xff << 20)) | (0xa0 << 20); +} + +void Assembler::ToggleToCmp(CodeLocationLabel inst_) { + uint32_t* ptr = (uint32_t*)inst_.raw(); + + DebugOnly<Instruction*> inst = (Instruction*)inst_.raw(); + MOZ_ASSERT(inst->is<InstBImm>()); + + // Ensure that this masking operation doesn't affect the offset of the + // branch instruction when it gets toggled back. + MOZ_ASSERT((*ptr & (0xf << 20)) == 0); + + // Also make sure that the CMP is valid. Part of having a valid CMP is that + // all of the bits describing the destination in most ALU instructions are + // all unset (looks like it is encoding r0). + MOZ_ASSERT(toRD(*inst) == r0); + + // Zero out bits 20-27, then set them to be correct for a compare. + *ptr = (*ptr & ~(0xff << 20)) | (0x35 << 20); +} + +void Assembler::ToggleCall(CodeLocationLabel inst_, bool enabled) { + InstructionIterator iter(reinterpret_cast<Instruction*>(inst_.raw())); + MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>()); + + if (iter.cur()->is<InstMovW>()) { + // If it looks like the start of a movw/movt sequence, then make sure we + // have all of it (and advance the iterator past the full sequence). + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstMovT>()); + } + + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>()); + + if (enabled == iter.cur()->is<InstBLXReg>()) { + // Nothing to do. + return; + } + + Instruction* inst = iter.cur(); + + if (enabled) { + *inst = InstBLXReg(ScratchRegister, Always); + } else { + *inst = InstNOP(); + } +} + +size_t Assembler::ToggledCallSize(uint8_t* code) { + InstructionIterator iter(reinterpret_cast<Instruction*>(code)); + MOZ_ASSERT(iter.cur()->is<InstMovW>() || iter.cur()->is<InstLDR>()); + + if (iter.cur()->is<InstMovW>()) { + // If it looks like the start of a movw/movt sequence, then make sure we + // have all of it (and advance the iterator past the full sequence). + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstMovT>()); + } + + iter.next(); + MOZ_ASSERT(iter.cur()->is<InstNOP>() || iter.cur()->is<InstBLXReg>()); + return uintptr_t(iter.cur()) + 4 - uintptr_t(code); +} + +uint8_t* Assembler::BailoutTableStart(uint8_t* code) { + // The iterator skips over any automatically-inserted instructions. + InstructionIterator iter(reinterpret_cast<Instruction*>(code)); + MOZ_ASSERT(iter.cur()->is<InstBLImm>()); + return reinterpret_cast<uint8_t*>(iter.cur()); +} + +uint32_t Assembler::NopFill = 0; + +uint32_t Assembler::GetNopFill() { + static bool isSet = false; + if (!isSet) { + char* fillStr = getenv("ARM_ASM_NOP_FILL"); + uint32_t fill; + if (fillStr && sscanf(fillStr, "%u", &fill) == 1) { + NopFill = fill; + } + if (NopFill > 8) { + MOZ_CRASH("Nop fill > 8 is not supported"); + } + isSet = true; + } + return NopFill; +} + +uint32_t Assembler::AsmPoolMaxOffset = 1024; + +uint32_t Assembler::GetPoolMaxOffset() { + static bool isSet = false; + if (!isSet) { + char* poolMaxOffsetStr = getenv("ASM_POOL_MAX_OFFSET"); + uint32_t poolMaxOffset; + if (poolMaxOffsetStr && + sscanf(poolMaxOffsetStr, "%u", &poolMaxOffset) == 1) { + AsmPoolMaxOffset = poolMaxOffset; + } + isSet = true; + } + return AsmPoolMaxOffset; +} + +SecondScratchRegisterScope::SecondScratchRegisterScope(MacroAssembler& masm) + : AutoRegisterScope(masm, masm.getSecondScratchReg()) {} + +#ifdef JS_DISASM_ARM + +/* static */ +void Assembler::disassembleInstruction(const Instruction* i, + DisasmBuffer& buffer) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + uint8_t* loc = reinterpret_cast<uint8_t*>(const_cast<uint32_t*>(i->raw())); + dasm.InstructionDecode(buffer, loc); +} + +void Assembler::initDisassembler() { + // The line is normally laid out like this: + // + // xxxxxxxx ldr r, op ; comment + // + // where xx...x is the instruction bit pattern. + // + // Labels are laid out by themselves to line up with the instructions above + // and below: + // + // nnnn: + // + // Branch targets are normally on the same line as the branch instruction, + // but when they cannot be they will be on a line by themselves, indented + // significantly: + // + // -> label + + spew_.setLabelIndent(" "); // 10 + spew_.setTargetIndent(" "); // 20 +} + +void Assembler::finishDisassembler() { spew_.spewOrphans(); } + +// Labels are named as they are encountered by adding names to a +// table, using the Label address as the key. This is made tricky by +// the (memory for) Label objects being reused, but reused label +// objects are recognizable from being marked as not used or not +// bound. See spew_.refLabel(). +// +// In a number of cases there is no information about the target, and +// we just end up printing "patchable constant load to PC". This is +// true especially for jumps to bailout handlers (which have no +// names). See allocLiteralLoadEntry() and its callers. In some cases +// (loop back edges) some information about the intended target may be +// propagated from higher levels, and if so it's printed here. + +void Assembler::spew(Instruction* i) { + if (spew_.isDisabled() || !i) { + return; + } + + DisasmBuffer buffer; + disassembleInstruction(i, buffer); + spew_.spew("%s", buffer.start()); +} + +// If a target label is known, always print that and do not attempt to +// disassemble the branch operands, as they will often be encoding +// metainformation (pointers for a chain of jump instructions), and +// not actual branch targets. + +void Assembler::spewBranch(Instruction* i, const LabelDoc& target) { + if (spew_.isDisabled() || !i) { + return; + } + + DisasmBuffer buffer; + disassembleInstruction(i, buffer); + + char labelBuf[128]; + labelBuf[0] = 0; + + bool haveTarget = target.valid; + if (!haveTarget) { + SprintfLiteral(labelBuf, " -> (link-time target)"); + } + + if (InstBranchImm::IsTHIS(*i)) { + InstBranchImm* bimm = InstBranchImm::AsTHIS(*i); + BOffImm destOff; + bimm->extractImm(&destOff); + if (destOff.isInvalid() || haveTarget) { + // The target information in the instruction is likely garbage, so remove + // it. The target label will in any case be printed if we have it. + // + // The format of the instruction disassembly is [0-9a-f]{8}\s+\S+\s+.*, + // where the \S+ string is the opcode. Strip everything after the opcode, + // and attach the label if we have it. + int i; + for (i = 8; i < buffer.length() && buffer[i] == ' '; i++) { + } + for (; i < buffer.length() && buffer[i] != ' '; i++) { + } + buffer[i] = 0; + if (haveTarget) { + SprintfLiteral(labelBuf, " -> %d%s", target.doc, + !target.bound ? "f" : ""); + haveTarget = false; + } + } + } + spew_.spew("%s%s", buffer.start(), labelBuf); + + if (haveTarget) { + spew_.spewRef(target); + } +} + +void Assembler::spewLiteralLoad(PoolHintPun& php, bool loadToPC, + const Instruction* i, const LiteralDoc& doc) { + if (spew_.isDisabled()) { + return; + } + + char litbuf[2048]; + spew_.formatLiteral(doc, litbuf, sizeof(litbuf)); + + // See patchConstantPoolLoad, above. We assemble the instruction into a + // buffer with a zero offset, as documentation, but the offset will be + // patched later. + + uint32_t inst; + PoolHintData& data = php.phd; + switch (php.phd.getLoadType()) { + case PoolHintData::PoolDTR: + Assembler::as_dtr_patch(IsLoad, 32, Offset, data.getReg(), + DTRAddr(pc, DtrOffImm(0)), data.getCond(), &inst); + break; + case PoolHintData::PoolBranch: + if (data.isValidPoolHint()) { + Assembler::as_dtr_patch(IsLoad, 32, Offset, pc, + DTRAddr(pc, DtrOffImm(0)), data.getCond(), + &inst); + } + break; + case PoolHintData::PoolVDTR: + Assembler::as_vdtr_patch(IsLoad, data.getVFPReg(), + VFPAddr(pc, VFPOffImm(0)), data.getCond(), + &inst); + break; + + default: + MOZ_CRASH(); + } + + DisasmBuffer buffer; + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(&inst)); + spew_.spew("%s ; .const %s", buffer.start(), litbuf); +} + +#endif // JS_DISASM_ARM |