summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/jdcoefct.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 14:29:10 +0000
commit2aa4a82499d4becd2284cdb482213d541b8804dd (patch)
treeb80bf8bf13c3766139fbacc530efd0dd9d54394c /media/libjpeg/jdcoefct.c
parentInitial commit. (diff)
downloadfirefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz
firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libjpeg/jdcoefct.c')
-rw-r--r--media/libjpeg/jdcoefct.c694
1 files changed, 694 insertions, 0 deletions
diff --git a/media/libjpeg/jdcoefct.c b/media/libjpeg/jdcoefct.c
new file mode 100644
index 0000000000..2ba6aa11e4
--- /dev/null
+++ b/media/libjpeg/jdcoefct.c
@@ -0,0 +1,694 @@
+/*
+ * jdcoefct.c
+ *
+ * This file was part of the Independent JPEG Group's software:
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * libjpeg-turbo Modifications:
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2010, 2015-2016, D. R. Commander.
+ * Copyright (C) 2015, 2020, Google, Inc.
+ * For conditions of distribution and use, see the accompanying README.ijg
+ * file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#include "jinclude.h"
+#include "jdcoefct.h"
+#include "jpegcomp.h"
+
+
+/* Forward declarations */
+METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf);
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
+METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf);
+#endif
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF(void)
+start_input_pass(j_decompress_ptr cinfo)
+{
+ cinfo->input_iMCU_row = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF(void)
+start_output_pass(j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+
+ /* If multipass, check to see whether to use block smoothing on this pass */
+ if (coef->pub.coef_arrays != NULL) {
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+ coef->pub.decompress_data = decompress_smooth_data;
+ else
+ coef->pub.decompress_data = decompress_data;
+ }
+#endif
+ cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(int)
+decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, useful_width;
+ JSAMPARRAY output_ptr;
+ JDIMENSION start_col, output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Loop to process as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
+ jzero_far((void *)coef->MCU_buffer[0],
+ (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
+ if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+
+ /* Only perform the IDCT on blocks that are contained within the desired
+ * cropping region.
+ */
+ if (MCU_col_num >= cinfo->master->first_iMCU_col &&
+ MCU_col_num <= cinfo->master->last_iMCU_col) {
+ /* Determine where data should go in output_buf and do the IDCT thing.
+ * We skip dummy blocks at the right and bottom edges (but blkn gets
+ * incremented past them!). Note the inner loop relies on having
+ * allocated the MCU_buffer[] blocks sequentially.
+ */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed) {
+ blkn += compptr->MCU_blocks;
+ continue;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+ useful_width = (MCU_col_num < last_MCU_col) ?
+ compptr->MCU_width : compptr->last_col_width;
+ output_ptr = output_buf[compptr->component_index] +
+ yoffset * compptr->_DCT_scaled_size;
+ start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
+ compptr->MCU_sample_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (cinfo->input_iMCU_row < last_iMCU_row ||
+ yoffset + yindex < compptr->last_row_height) {
+ output_col = start_col;
+ for (xindex = 0; xindex < useful_width; xindex++) {
+ (*inverse_DCT) (cinfo, compptr,
+ (JCOEFPTR)coef->MCU_buffer[blkn + xindex],
+ output_ptr, output_col);
+ output_col += compptr->_DCT_scaled_size;
+ }
+ }
+ blkn += compptr->MCU_width;
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ cinfo->output_iMCU_row++;
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF(int)
+dummy_consume_data(j_decompress_ptr cinfo)
+{
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF(int)
+consume_data(j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
+ cinfo->input_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION)compptr->v_samp_factor, TRUE);
+ /* Note: entropy decoder expects buffer to be zeroed,
+ * but this is handled automatically by the memory manager
+ * because we requested a pre-zeroed array.
+ */
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to fetch the MCU. */
+ if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF(int)
+decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num;
+ int ci, block_row, block_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number < cinfo->output_scan_number ||
+ (cinfo->input_scan_number == cinfo->output_scan_number &&
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed)
+ continue;
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ cinfo->output_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION)compptr->v_samp_factor, FALSE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
+ output_col = 0;
+ for (block_num = cinfo->master->first_MCU_col[ci];
+ block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
+ output_col);
+ buffer_ptr++;
+ output_col += compptr->_DCT_scaled_size;
+ }
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing as described by section K.8
+ * of the JPEG standard: the first 5 AC coefficients are estimated from
+ * the DC values of a DCT block and its 8 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/* Natural-order array positions of the first 5 zigzag-order coefficients */
+#define Q01_POS 1
+#define Q10_POS 8
+#define Q20_POS 16
+#define Q11_POS 9
+#define Q02_POS 2
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL(boolean)
+smoothing_ok(j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ boolean smoothing_useful = FALSE;
+ int ci, coefi;
+ jpeg_component_info *compptr;
+ JQUANT_TBL *qtable;
+ int *coef_bits;
+ int *coef_bits_latch;
+
+ if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
+ return FALSE;
+
+ /* Allocate latch area if not already done */
+ if (coef->coef_bits_latch == NULL)
+ coef->coef_bits_latch = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ cinfo->num_components *
+ (SAVED_COEFS * sizeof(int)));
+ coef_bits_latch = coef->coef_bits_latch;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* All components' quantization values must already be latched. */
+ if ((qtable = compptr->quant_table) == NULL)
+ return FALSE;
+ /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+ if (qtable->quantval[0] == 0 ||
+ qtable->quantval[Q01_POS] == 0 ||
+ qtable->quantval[Q10_POS] == 0 ||
+ qtable->quantval[Q20_POS] == 0 ||
+ qtable->quantval[Q11_POS] == 0 ||
+ qtable->quantval[Q02_POS] == 0)
+ return FALSE;
+ /* DC values must be at least partly known for all components. */
+ coef_bits = cinfo->coef_bits[ci];
+ if (coef_bits[0] < 0)
+ return FALSE;
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+ for (coefi = 1; coefi <= 5; coefi++) {
+ coef_bits_latch[coefi] = coef_bits[coefi];
+ if (coef_bits[coefi] != 0)
+ smoothing_useful = TRUE;
+ }
+ coef_bits_latch += SAVED_COEFS;
+ }
+
+ return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF(int)
+decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num, last_block_column;
+ int ci, block_row, block_rows, access_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+ boolean first_row, last_row;
+ JCOEF *workspace;
+ int *coef_bits;
+ JQUANT_TBL *quanttbl;
+ JLONG Q00, Q01, Q02, Q10, Q11, Q20, num;
+ int DC1, DC2, DC3, DC4, DC5, DC6, DC7, DC8, DC9;
+ int Al, pred;
+
+ /* Keep a local variable to avoid looking it up more than once */
+ workspace = coef->workspace;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ !cinfo->inputctl->eoi_reached) {
+ if (cinfo->input_scan_number == cinfo->output_scan_number) {
+ /* If input is working on current scan, we ordinarily want it to
+ * have completed the current row. But if input scan is DC,
+ * we want it to keep one row ahead so that next block row's DC
+ * values are up to date.
+ */
+ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
+ break;
+ }
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed)
+ continue;
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 2; /* this and next iMCU row */
+ last_row = FALSE;
+ } else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ access_rows = block_rows; /* this iMCU row only */
+ last_row = TRUE;
+ }
+ /* Align the virtual buffer for this component. */
+ if (cinfo->output_iMCU_row > 0) {
+ access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+ (JDIMENSION)access_rows, FALSE);
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */
+ first_row = FALSE;
+ } else {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
+ first_row = TRUE;
+ }
+ /* Fetch component-dependent info */
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+ quanttbl = compptr->quant_table;
+ Q00 = quanttbl->quantval[0];
+ Q01 = quanttbl->quantval[Q01_POS];
+ Q10 = quanttbl->quantval[Q10_POS];
+ Q20 = quanttbl->quantval[Q20_POS];
+ Q11 = quanttbl->quantval[Q11_POS];
+ Q02 = quanttbl->quantval[Q02_POS];
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
+ if (first_row && block_row == 0)
+ prev_block_row = buffer_ptr;
+ else
+ prev_block_row = buffer[block_row - 1] +
+ cinfo->master->first_MCU_col[ci];
+ if (last_row && block_row == block_rows - 1)
+ next_block_row = buffer_ptr;
+ else
+ next_block_row = buffer[block_row + 1] +
+ cinfo->master->first_MCU_col[ci];
+ /* We fetch the surrounding DC values using a sliding-register approach.
+ * Initialize all nine here so as to do the right thing on narrow pics.
+ */
+ DC1 = DC2 = DC3 = (int)prev_block_row[0][0];
+ DC4 = DC5 = DC6 = (int)buffer_ptr[0][0];
+ DC7 = DC8 = DC9 = (int)next_block_row[0][0];
+ output_col = 0;
+ last_block_column = compptr->width_in_blocks - 1;
+ for (block_num = cinfo->master->first_MCU_col[ci];
+ block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
+ /* Fetch current DCT block into workspace so we can modify it. */
+ jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
+ /* Update DC values */
+ if (block_num < last_block_column) {
+ DC3 = (int)prev_block_row[1][0];
+ DC6 = (int)buffer_ptr[1][0];
+ DC9 = (int)next_block_row[1][0];
+ }
+ /* Compute coefficient estimates per K.8.
+ * An estimate is applied only if coefficient is still zero,
+ * and is not known to be fully accurate.
+ */
+ /* AC01 */
+ if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
+ num = 36 * Q00 * (DC4 - DC6);
+ if (num >= 0) {
+ pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[1] = (JCOEF)pred;
+ }
+ /* AC10 */
+ if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
+ num = 36 * Q00 * (DC2 - DC8);
+ if (num >= 0) {
+ pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[8] = (JCOEF)pred;
+ }
+ /* AC20 */
+ if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
+ num = 9 * Q00 * (DC2 + DC8 - 2 * DC5);
+ if (num >= 0) {
+ pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[16] = (JCOEF)pred;
+ }
+ /* AC11 */
+ if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
+ num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+ if (num >= 0) {
+ pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[9] = (JCOEF)pred;
+ }
+ /* AC02 */
+ if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
+ num = 9 * Q00 * (DC4 + DC6 - 2 * DC5);
+ if (num >= 0) {
+ pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[2] = (JCOEF)pred;
+ }
+ /* OK, do the IDCT */
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
+ output_col);
+ /* Advance for next column */
+ DC1 = DC2; DC2 = DC3;
+ DC4 = DC5; DC5 = DC6;
+ DC7 = DC8; DC8 = DC9;
+ buffer_ptr++, prev_block_row++, next_block_row++;
+ output_col += compptr->_DCT_scaled_size;
+ }
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ sizeof(my_coef_controller));
+ cinfo->coef = (struct jpeg_d_coef_controller *)coef;
+ coef->pub.start_input_pass = start_input_pass;
+ coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ coef->coef_bits_latch = NULL;
+#endif
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ /* Note we ask for a pre-zeroed array. */
+ int ci, access_rows;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* If block smoothing could be used, need a bigger window */
+ if (cinfo->progressive_mode)
+ access_rows *= 3;
+#endif
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
+ (JDIMENSION)jround_up((long)compptr->width_in_blocks,
+ (long)compptr->h_samp_factor),
+ (JDIMENSION)jround_up((long)compptr->height_in_blocks,
+ (long)compptr->v_samp_factor),
+ (JDIMENSION)access_rows);
+ }
+ coef->pub.consume_data = consume_data;
+ coef->pub.decompress_data = decompress_data;
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->pub.consume_data = dummy_consume_data;
+ coef->pub.decompress_data = decompress_onepass;
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+ }
+
+ /* Allocate the workspace buffer */
+ coef->workspace = (JCOEF *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ sizeof(JCOEF) * DCTSIZE2);
+}