diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 14:29:10 +0000 |
commit | 2aa4a82499d4becd2284cdb482213d541b8804dd (patch) | |
tree | b80bf8bf13c3766139fbacc530efd0dd9d54394c /third_party/rust/cranelift-frontend/src/frontend.rs | |
parent | Initial commit. (diff) | |
download | firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.tar.xz firefox-2aa4a82499d4becd2284cdb482213d541b8804dd.zip |
Adding upstream version 86.0.1.upstream/86.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | third_party/rust/cranelift-frontend/src/frontend.rs | 1315 |
1 files changed, 1315 insertions, 0 deletions
diff --git a/third_party/rust/cranelift-frontend/src/frontend.rs b/third_party/rust/cranelift-frontend/src/frontend.rs new file mode 100644 index 0000000000..3b9263301a --- /dev/null +++ b/third_party/rust/cranelift-frontend/src/frontend.rs @@ -0,0 +1,1315 @@ +//! A frontend for building Cranelift IR from other languages. +use crate::ssa::{SSABuilder, SideEffects}; +use crate::variable::Variable; +use cranelift_codegen::cursor::{Cursor, FuncCursor}; +use cranelift_codegen::entity::{EntitySet, SecondaryMap}; +use cranelift_codegen::ir; +use cranelift_codegen::ir::function::DisplayFunction; +use cranelift_codegen::ir::{ + types, AbiParam, Block, DataFlowGraph, ExtFuncData, ExternalName, FuncRef, Function, + GlobalValue, GlobalValueData, Heap, HeapData, Inst, InstBuilder, InstBuilderBase, + InstructionData, JumpTable, JumpTableData, LibCall, MemFlags, SigRef, Signature, StackSlot, + StackSlotData, Type, Value, ValueLabel, ValueLabelAssignments, ValueLabelStart, +}; +use cranelift_codegen::isa::{TargetFrontendConfig, TargetIsa}; +use cranelift_codegen::packed_option::PackedOption; + +/// Structure used for translating a series of functions into Cranelift IR. +/// +/// In order to reduce memory reallocations when compiling multiple functions, +/// `FunctionBuilderContext` holds various data structures which are cleared between +/// functions, rather than dropped, preserving the underlying allocations. +pub struct FunctionBuilderContext { + ssa: SSABuilder, + blocks: SecondaryMap<Block, BlockData>, + types: SecondaryMap<Variable, Type>, +} + +/// Temporary object used to build a single Cranelift IR `Function`. +pub struct FunctionBuilder<'a> { + /// The function currently being built. + /// This field is public so the function can be re-borrowed. + pub func: &'a mut Function, + + /// Source location to assign to all new instructions. + srcloc: ir::SourceLoc, + + func_ctx: &'a mut FunctionBuilderContext, + position: PackedOption<Block>, +} + +#[derive(Clone, Default)] +struct BlockData { + /// A Block is "pristine" iff no instructions have been added since the last + /// call to `switch_to_block()`. + pristine: bool, + + /// A Block is "filled" iff a terminator instruction has been inserted since + /// the last call to `switch_to_block()`. + /// + /// A filled block cannot be pristine. + filled: bool, + + /// Count of parameters not supplied implicitly by the SSABuilder. + user_param_count: usize, +} + +impl FunctionBuilderContext { + /// Creates a FunctionBuilderContext structure. The structure is automatically cleared after + /// each [`FunctionBuilder`](struct.FunctionBuilder.html) completes translating a function. + pub fn new() -> Self { + Self { + ssa: SSABuilder::new(), + blocks: SecondaryMap::new(), + types: SecondaryMap::new(), + } + } + + fn clear(&mut self) { + self.ssa.clear(); + self.blocks.clear(); + self.types.clear(); + } + + fn is_empty(&self) -> bool { + self.ssa.is_empty() && self.blocks.is_empty() && self.types.is_empty() + } +} + +/// Implementation of the [`InstBuilder`](cranelift_codegen::ir::InstBuilder) that has +/// one convenience method per Cranelift IR instruction. +pub struct FuncInstBuilder<'short, 'long: 'short> { + builder: &'short mut FunctionBuilder<'long>, + block: Block, +} + +impl<'short, 'long> FuncInstBuilder<'short, 'long> { + fn new(builder: &'short mut FunctionBuilder<'long>, block: Block) -> Self { + Self { builder, block } + } +} + +impl<'short, 'long> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long> { + fn data_flow_graph(&self) -> &DataFlowGraph { + &self.builder.func.dfg + } + + fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph { + &mut self.builder.func.dfg + } + + // This implementation is richer than `InsertBuilder` because we use the data of the + // instruction being inserted to add related info to the DFG and the SSA building system, + // and perform debug sanity checks. + fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) { + // We only insert the Block in the layout when an instruction is added to it + self.builder.ensure_inserted_block(); + + let inst = self.builder.func.dfg.make_inst(data.clone()); + self.builder.func.dfg.make_inst_results(inst, ctrl_typevar); + self.builder.func.layout.append_inst(inst, self.block); + if !self.builder.srcloc.is_default() { + self.builder.func.srclocs[inst] = self.builder.srcloc; + } + + if data.opcode().is_branch() { + match data.branch_destination() { + Some(dest_block) => { + // If the user has supplied jump arguments we must adapt the arguments of + // the destination block + self.builder.declare_successor(dest_block, inst); + } + None => { + // branch_destination() doesn't detect jump_tables + // If jump table we declare all entries successor + if let InstructionData::BranchTable { + table, destination, .. + } = data + { + // Unlike all other jumps/branches, jump tables are + // capable of having the same successor appear + // multiple times, so we must deduplicate. + let mut unique = EntitySet::<Block>::new(); + for dest_block in self + .builder + .func + .jump_tables + .get(table) + .expect("you are referencing an undeclared jump table") + .iter() + .filter(|&dest_block| unique.insert(*dest_block)) + { + // Call `declare_block_predecessor` instead of `declare_successor` for + // avoiding the borrow checker. + self.builder.func_ctx.ssa.declare_block_predecessor( + *dest_block, + self.builder.position.unwrap(), + inst, + ); + } + self.builder.declare_successor(destination, inst); + } + } + } + } + + if data.opcode().is_terminator() { + self.builder.fill_current_block() + } + (inst, &mut self.builder.func.dfg) + } +} + +/// This module allows you to create a function in Cranelift IR in a straightforward way, hiding +/// all the complexity of its internal representation. +/// +/// The module is parametrized by one type which is the representation of variables in your +/// origin language. It offers a way to conveniently append instruction to your program flow. +/// You are responsible to split your instruction flow into extended blocks (declared with +/// `create_block`) whose properties are: +/// +/// - branch and jump instructions can only point at the top of extended blocks; +/// - the last instruction of each block is a terminator instruction which has no natural successor, +/// and those instructions can only appear at the end of extended blocks. +/// +/// The parameters of Cranelift IR instructions are Cranelift IR values, which can only be created +/// as results of other Cranelift IR instructions. To be able to create variables redefined multiple +/// times in your program, use the `def_var` and `use_var` command, that will maintain the +/// correspondence between your variables and Cranelift IR SSA values. +/// +/// The first block for which you call `switch_to_block` will be assumed to be the beginning of +/// the function. +/// +/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it +/// modifies with the information stored in the mutable borrowed +/// [`FunctionBuilderContext`](struct.FunctionBuilderContext.html). The function passed in +/// argument should be newly created with +/// [`Function::with_name_signature()`](Function::with_name_signature), whereas the +/// `FunctionBuilderContext` can be kept as is between two function translations. +/// +/// # Errors +/// +/// The functions below will panic in debug mode whenever you try to modify the Cranelift IR +/// function in a way that violate the coherence of the code. For instance: switching to a new +/// `Block` when you haven't filled the current one with a terminator instruction, inserting a +/// return instruction with arguments that don't match the function's signature. +impl<'a> FunctionBuilder<'a> { + /// Creates a new FunctionBuilder structure that will operate on a `Function` using a + /// `FunctionBuilderContext`. + pub fn new(func: &'a mut Function, func_ctx: &'a mut FunctionBuilderContext) -> Self { + debug_assert!(func_ctx.is_empty()); + Self { + func, + srcloc: Default::default(), + func_ctx, + position: Default::default(), + } + } + + /// Get the block that this builder is currently at. + pub fn current_block(&self) -> Option<Block> { + self.position.expand() + } + + /// Set the source location that should be assigned to all new instructions. + pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) { + self.srcloc = srcloc; + } + + /// Creates a new `Block` and returns its reference. + pub fn create_block(&mut self) -> Block { + let block = self.func.dfg.make_block(); + self.func_ctx.ssa.declare_block(block); + self.func_ctx.blocks[block] = BlockData { + filled: false, + pristine: true, + user_param_count: 0, + }; + block + } + + /// Insert `block` in the layout *after* the existing block `after`. + pub fn insert_block_after(&mut self, block: Block, after: Block) { + self.func.layout.insert_block_after(block, after); + } + + /// After the call to this function, new instructions will be inserted into the designated + /// block, in the order they are declared. You must declare the types of the Block arguments + /// you will use here. + /// + /// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate + /// successor), the block will be declared filled and it will not be possible to append + /// instructions to it. + pub fn switch_to_block(&mut self, block: Block) { + // First we check that the previous block has been filled. + debug_assert!( + self.position.is_none() + || self.is_unreachable() + || self.is_pristine() + || self.is_filled(), + "you have to fill your block before switching" + ); + // We cannot switch to a filled block + debug_assert!( + !self.func_ctx.blocks[block].filled, + "you cannot switch to a block which is already filled" + ); + + // Then we change the cursor position. + self.position = PackedOption::from(block); + } + + /// Declares that all the predecessors of this block are known. + /// + /// Function to call with `block` as soon as the last branch instruction to `block` has been + /// created. Forgetting to call this method on every block will cause inconsistencies in the + /// produced functions. + pub fn seal_block(&mut self, block: Block) { + let side_effects = self.func_ctx.ssa.seal_block(block, self.func); + self.handle_ssa_side_effects(side_effects); + } + + /// Effectively calls seal_block on all unsealed blocks in the function. + /// + /// It's more efficient to seal `Block`s as soon as possible, during + /// translation, but for frontends where this is impractical to do, this + /// function can be used at the end of translating all blocks to ensure + /// that everything is sealed. + pub fn seal_all_blocks(&mut self) { + let side_effects = self.func_ctx.ssa.seal_all_blocks(self.func); + self.handle_ssa_side_effects(side_effects); + } + + /// In order to use a variable in a `use_var`, you need to declare its type with this method. + pub fn declare_var(&mut self, var: Variable, ty: Type) { + debug_assert_eq!( + self.func_ctx.types[var], + types::INVALID, + "variable {:?} is declared twice", + var + ); + self.func_ctx.types[var] = ty; + } + + /// Returns the Cranelift IR value corresponding to the utilization at the current program + /// position of a previously defined user variable. + pub fn use_var(&mut self, var: Variable) -> Value { + let (val, side_effects) = { + let ty = *self.func_ctx.types.get(var).unwrap_or_else(|| { + panic!( + "variable {:?} is used but its type has not been declared", + var + ) + }); + debug_assert_ne!( + ty, + types::INVALID, + "variable {:?} is used but its type has not been declared", + var + ); + self.func_ctx + .ssa + .use_var(self.func, var, ty, self.position.unwrap()) + }; + self.handle_ssa_side_effects(side_effects); + val + } + + /// Register a new definition of a user variable. The type of the value must be + /// the same as the type registered for the variable. + pub fn def_var(&mut self, var: Variable, val: Value) { + debug_assert_eq!( + *self.func_ctx.types.get(var).unwrap_or_else(|| panic!( + "variable {:?} is used but its type has not been declared", + var + )), + self.func.dfg.value_type(val), + "declared type of variable {:?} doesn't match type of value {}", + var, + val + ); + + self.func_ctx.ssa.def_var(var, val, self.position.unwrap()); + } + + /// Set label for Value + /// + /// This will not do anything unless `func.dfg.collect_debug_info` is called first. + pub fn set_val_label(&mut self, val: Value, label: ValueLabel) { + if let Some(values_labels) = self.func.dfg.values_labels.as_mut() { + use crate::hash_map::Entry; + + let start = ValueLabelStart { + from: self.srcloc, + label, + }; + + match values_labels.entry(val) { + Entry::Occupied(mut e) => match e.get_mut() { + ValueLabelAssignments::Starts(starts) => starts.push(start), + _ => panic!("Unexpected ValueLabelAssignments at this stage"), + }, + Entry::Vacant(e) => { + e.insert(ValueLabelAssignments::Starts(vec![start])); + } + } + } + } + + /// Creates a jump table in the function, to be used by `br_table` instructions. + pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable { + self.func.create_jump_table(data) + } + + /// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and + /// `stack_addr` instructions. + pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot { + self.func.create_stack_slot(data) + } + + /// Adds a signature which can later be used to declare an external function import. + pub fn import_signature(&mut self, signature: Signature) -> SigRef { + self.func.import_signature(signature) + } + + /// Declare an external function import. + pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef { + self.func.import_function(data) + } + + /// Declares a global value accessible to the function. + pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue { + self.func.create_global_value(data) + } + + /// Declares a heap accessible to the function. + pub fn create_heap(&mut self, data: HeapData) -> Heap { + self.func.create_heap(data) + } + + /// Returns an object with the [`InstBuilder`](cranelift_codegen::ir::InstBuilder) + /// trait that allows to conveniently append an instruction to the current `Block` being built. + pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a> { + let block = self + .position + .expect("Please call switch_to_block before inserting instructions"); + FuncInstBuilder::new(self, block) + } + + /// Make sure that the current block is inserted in the layout. + pub fn ensure_inserted_block(&mut self) { + let block = self.position.unwrap(); + if self.func_ctx.blocks[block].pristine { + if !self.func.layout.is_block_inserted(block) { + self.func.layout.append_block(block); + } + self.func_ctx.blocks[block].pristine = false; + } else { + debug_assert!( + !self.func_ctx.blocks[block].filled, + "you cannot add an instruction to a block already filled" + ); + } + } + + /// Returns a `FuncCursor` pointed at the current position ready for inserting instructions. + /// + /// This can be used to insert SSA code that doesn't need to access locals and that doesn't + /// need to know about `FunctionBuilder` at all. + pub fn cursor(&mut self) -> FuncCursor { + self.ensure_inserted_block(); + FuncCursor::new(self.func) + .with_srcloc(self.srcloc) + .at_bottom(self.position.unwrap()) + } + + /// Append parameters to the given `Block` corresponding to the function + /// parameters. This can be used to set up the block parameters for the + /// entry block. + pub fn append_block_params_for_function_params(&mut self, block: Block) { + debug_assert!( + !self.func_ctx.ssa.has_any_predecessors(block), + "block parameters for function parameters should only be added to the entry block" + ); + + // These parameters count as "user" parameters here because they aren't + // inserted by the SSABuilder. + let user_param_count = &mut self.func_ctx.blocks[block].user_param_count; + for argtyp in &self.func.signature.params { + *user_param_count += 1; + self.func.dfg.append_block_param(block, argtyp.value_type); + } + } + + /// Append parameters to the given `Block` corresponding to the function + /// return values. This can be used to set up the block parameters for a + /// function exit block. + pub fn append_block_params_for_function_returns(&mut self, block: Block) { + // These parameters count as "user" parameters here because they aren't + // inserted by the SSABuilder. + let user_param_count = &mut self.func_ctx.blocks[block].user_param_count; + for argtyp in &self.func.signature.returns { + *user_param_count += 1; + self.func.dfg.append_block_param(block, argtyp.value_type); + } + } + + /// Declare that translation of the current function is complete. This + /// resets the state of the `FunctionBuilder` in preparation to be used + /// for another function. + pub fn finalize(&mut self) { + // Check that all the `Block`s are filled and sealed. + debug_assert!( + self.func_ctx.blocks.iter().all( + |(block, block_data)| block_data.pristine || self.func_ctx.ssa.is_sealed(block) + ), + "all blocks should be sealed before dropping a FunctionBuilder" + ); + debug_assert!( + self.func_ctx + .blocks + .values() + .all(|block_data| block_data.pristine || block_data.filled), + "all blocks should be filled before dropping a FunctionBuilder" + ); + + // In debug mode, check that all blocks are valid basic blocks. + #[cfg(debug_assertions)] + { + // Iterate manually to provide more helpful error messages. + for block in self.func_ctx.blocks.keys() { + if let Err((inst, _msg)) = self.func.is_block_basic(block) { + let inst_str = self.func.dfg.display_inst(inst, None); + panic!("{} failed basic block invariants on {}", block, inst_str); + } + } + } + + // Clear the state (but preserve the allocated buffers) in preparation + // for translation another function. + self.func_ctx.clear(); + + // Reset srcloc and position to initial states. + self.srcloc = Default::default(); + self.position = Default::default(); + } +} + +/// All the functions documented in the previous block are write-only and help you build a valid +/// Cranelift IR functions via multiple debug asserts. However, you might need to improve the +/// performance of your translation perform more complex transformations to your Cranelift IR +/// function. The functions below help you inspect the function you're creating and modify it +/// in ways that can be unsafe if used incorrectly. +impl<'a> FunctionBuilder<'a> { + /// Retrieves all the parameters for a `Block` currently inferred from the jump instructions + /// inserted that target it and the SSA construction. + pub fn block_params(&self, block: Block) -> &[Value] { + self.func.dfg.block_params(block) + } + + /// Retrieves the signature with reference `sigref` previously added with `import_signature`. + pub fn signature(&self, sigref: SigRef) -> Option<&Signature> { + self.func.dfg.signatures.get(sigref) + } + + /// Creates a parameter for a specific `Block` by appending it to the list of already existing + /// parameters. + /// + /// **Note:** this function has to be called at the creation of the `Block` before adding + /// instructions to it, otherwise this could interfere with SSA construction. + pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value { + debug_assert!( + self.func_ctx.blocks[block].pristine, + "You can't add block parameters after adding any instruction" + ); + debug_assert_eq!( + self.func_ctx.blocks[block].user_param_count, + self.func.dfg.num_block_params(block) + ); + self.func_ctx.blocks[block].user_param_count += 1; + self.func.dfg.append_block_param(block, ty) + } + + /// Returns the result values of an instruction. + pub fn inst_results(&self, inst: Inst) -> &[Value] { + self.func.dfg.inst_results(inst) + } + + /// Changes the destination of a jump instruction after creation. + /// + /// **Note:** You are responsible for maintaining the coherence with the arguments of + /// other jump instructions. + pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Block) { + let old_dest = self.func.dfg[inst] + .branch_destination_mut() + .expect("you want to change the jump destination of a non-jump instruction"); + let pred = self.func_ctx.ssa.remove_block_predecessor(*old_dest, inst); + *old_dest = new_dest; + self.func_ctx + .ssa + .declare_block_predecessor(new_dest, pred, inst); + } + + /// Returns `true` if and only if the current `Block` is sealed and has no predecessors declared. + /// + /// The entry block of a function is never unreachable. + pub fn is_unreachable(&self) -> bool { + let is_entry = match self.func.layout.entry_block() { + None => false, + Some(entry) => self.position.unwrap() == entry, + }; + !is_entry + && self.func_ctx.ssa.is_sealed(self.position.unwrap()) + && !self + .func_ctx + .ssa + .has_any_predecessors(self.position.unwrap()) + } + + /// Returns `true` if and only if no instructions have been added since the last call to + /// `switch_to_block`. + pub fn is_pristine(&self) -> bool { + self.func_ctx.blocks[self.position.unwrap()].pristine + } + + /// Returns `true` if and only if a terminator instruction has been inserted since the + /// last call to `switch_to_block`. + pub fn is_filled(&self) -> bool { + self.func_ctx.blocks[self.position.unwrap()].filled + } + + /// Returns a displayable object for the function as it is. + /// + /// Useful for debug purposes. Use it with `None` for standard printing. + // Clippy thinks the lifetime that follows is needless, but rustc needs it + #[cfg_attr(feature = "cargo-clippy", allow(clippy::needless_lifetimes))] + pub fn display<'b, I: Into<Option<&'b dyn TargetIsa>>>(&'b self, isa: I) -> DisplayFunction { + self.func.display(isa) + } +} + +/// Helper functions +impl<'a> FunctionBuilder<'a> { + /// Calls libc.memcpy + /// + /// Copies the `size` bytes from `src` to `dest`, assumes that `src + size` + /// won't overlap onto `dest`. If `dest` and `src` overlap, the behavior is + /// undefined. Applications in which `dest` and `src` might overlap should + /// use `call_memmove` instead. + pub fn call_memcpy( + &mut self, + config: TargetFrontendConfig, + dest: Value, + src: Value, + size: Value, + ) { + let pointer_type = config.pointer_type(); + let signature = { + let mut s = Signature::new(config.default_call_conv); + s.params.push(AbiParam::new(pointer_type)); + s.params.push(AbiParam::new(pointer_type)); + s.params.push(AbiParam::new(pointer_type)); + self.import_signature(s) + }; + + let libc_memcpy = self.import_function(ExtFuncData { + name: ExternalName::LibCall(LibCall::Memcpy), + signature, + colocated: false, + }); + + self.ins().call(libc_memcpy, &[dest, src, size]); + } + + /// Optimised memcpy or memmove for small copies. + /// + /// # Codegen safety + /// + /// The following properties must hold to prevent UB: + /// + /// * `src_align` and `dest_align` are an upper-bound on the alignment of `src` respectively `dest`. + /// * If `non_overlapping` is true, then this must be correct. + pub fn emit_small_memory_copy( + &mut self, + config: TargetFrontendConfig, + dest: Value, + src: Value, + size: u64, + dest_align: u8, + src_align: u8, + non_overlapping: bool, + ) { + // Currently the result of guess work, not actual profiling. + const THRESHOLD: u64 = 4; + + if size == 0 { + return; + } + + let access_size = greatest_divisible_power_of_two(size); + assert!( + access_size.is_power_of_two(), + "`size` is not a power of two" + ); + assert!( + access_size >= u64::from(::core::cmp::min(src_align, dest_align)), + "`size` is smaller than `dest` and `src`'s alignment value." + ); + + let (access_size, int_type) = if access_size <= 8 { + (access_size, Type::int((access_size * 8) as u16).unwrap()) + } else { + (8, types::I64) + }; + + let load_and_store_amount = size / access_size; + + if load_and_store_amount > THRESHOLD { + let size_value = self.ins().iconst(config.pointer_type(), size as i64); + if non_overlapping { + self.call_memcpy(config, dest, src, size_value); + } else { + self.call_memmove(config, dest, src, size_value); + } + return; + } + + let mut flags = MemFlags::new(); + flags.set_aligned(); + + // Load all of the memory first. This is necessary in case `dest` overlaps. + // It can also improve performance a bit. + let registers: smallvec::SmallVec<[_; THRESHOLD as usize]> = (0..load_and_store_amount) + .map(|i| { + let offset = (access_size * i) as i32; + (self.ins().load(int_type, flags, src, offset), offset) + }) + .collect(); + + for (value, offset) in registers { + self.ins().store(flags, value, dest, offset); + } + } + + /// Calls libc.memset + /// + /// Writes `size` bytes of i8 value `ch` to memory starting at `buffer`. + pub fn call_memset( + &mut self, + config: TargetFrontendConfig, + buffer: Value, + ch: Value, + size: Value, + ) { + let pointer_type = config.pointer_type(); + let signature = { + let mut s = Signature::new(config.default_call_conv); + s.params.push(AbiParam::new(pointer_type)); + s.params.push(AbiParam::new(types::I32)); + s.params.push(AbiParam::new(pointer_type)); + self.import_signature(s) + }; + + let libc_memset = self.import_function(ExtFuncData { + name: ExternalName::LibCall(LibCall::Memset), + signature, + colocated: false, + }); + + let ch = self.ins().uextend(types::I32, ch); + self.ins().call(libc_memset, &[buffer, ch, size]); + } + + /// Calls libc.memset + /// + /// Writes `size` bytes of value `ch` to memory starting at `buffer`. + pub fn emit_small_memset( + &mut self, + config: TargetFrontendConfig, + buffer: Value, + ch: u8, + size: u64, + buffer_align: u8, + ) { + // Currently the result of guess work, not actual profiling. + const THRESHOLD: u64 = 4; + + if size == 0 { + return; + } + + let access_size = greatest_divisible_power_of_two(size); + assert!( + access_size.is_power_of_two(), + "`size` is not a power of two" + ); + assert!( + access_size >= u64::from(buffer_align), + "`size` is smaller than `dest` and `src`'s alignment value." + ); + + let (access_size, int_type) = if access_size <= 8 { + (access_size, Type::int((access_size * 8) as u16).unwrap()) + } else { + (8, types::I64) + }; + + let load_and_store_amount = size / access_size; + + if load_and_store_amount > THRESHOLD { + let ch = self.ins().iconst(types::I8, i64::from(ch)); + let size = self.ins().iconst(config.pointer_type(), size as i64); + self.call_memset(config, buffer, ch, size); + } else { + let mut flags = MemFlags::new(); + flags.set_aligned(); + + let ch = u64::from(ch); + let raw_value = if int_type == types::I64 { + (ch << 32) | (ch << 16) | (ch << 8) | ch + } else if int_type == types::I32 { + (ch << 16) | (ch << 8) | ch + } else if int_type == types::I16 { + (ch << 8) | ch + } else { + assert_eq!(int_type, types::I8); + ch + }; + + let value = self.ins().iconst(int_type, raw_value as i64); + for i in 0..load_and_store_amount { + let offset = (access_size * i) as i32; + self.ins().store(flags, value, buffer, offset); + } + } + } + + /// Calls libc.memmove + /// + /// Copies `size` bytes from memory starting at `source` to memory starting + /// at `dest`. `source` is always read before writing to `dest`. + pub fn call_memmove( + &mut self, + config: TargetFrontendConfig, + dest: Value, + source: Value, + size: Value, + ) { + let pointer_type = config.pointer_type(); + let signature = { + let mut s = Signature::new(config.default_call_conv); + s.params.push(AbiParam::new(pointer_type)); + s.params.push(AbiParam::new(pointer_type)); + s.params.push(AbiParam::new(pointer_type)); + self.import_signature(s) + }; + + let libc_memmove = self.import_function(ExtFuncData { + name: ExternalName::LibCall(LibCall::Memmove), + signature, + colocated: false, + }); + + self.ins().call(libc_memmove, &[dest, source, size]); + } +} + +fn greatest_divisible_power_of_two(size: u64) -> u64 { + (size as i64 & -(size as i64)) as u64 +} + +// Helper functions +impl<'a> FunctionBuilder<'a> { + /// A Block is 'filled' when a terminator instruction is present. + fn fill_current_block(&mut self) { + self.func_ctx.blocks[self.position.unwrap()].filled = true; + } + + fn declare_successor(&mut self, dest_block: Block, jump_inst: Inst) { + self.func_ctx + .ssa + .declare_block_predecessor(dest_block, self.position.unwrap(), jump_inst); + } + + fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) { + for split_block in side_effects.split_blocks_created { + self.func_ctx.blocks[split_block].filled = true + } + for modified_block in side_effects.instructions_added_to_blocks { + self.func_ctx.blocks[modified_block].pristine = false + } + } +} + +#[cfg(test)] +mod tests { + use super::greatest_divisible_power_of_two; + use crate::frontend::{FunctionBuilder, FunctionBuilderContext}; + use crate::Variable; + use alloc::string::ToString; + use cranelift_codegen::entity::EntityRef; + use cranelift_codegen::ir::types::*; + use cranelift_codegen::ir::{AbiParam, ExternalName, Function, InstBuilder, Signature}; + use cranelift_codegen::isa::CallConv; + use cranelift_codegen::settings; + use cranelift_codegen::verifier::verify_function; + + fn sample_function(lazy_seal: bool) { + let mut sig = Signature::new(CallConv::SystemV); + sig.returns.push(AbiParam::new(I32)); + sig.params.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let block1 = builder.create_block(); + let block2 = builder.create_block(); + let block3 = builder.create_block(); + let x = Variable::new(0); + let y = Variable::new(1); + let z = Variable::new(2); + builder.declare_var(x, I32); + builder.declare_var(y, I32); + builder.declare_var(z, I32); + builder.append_block_params_for_function_params(block0); + + builder.switch_to_block(block0); + if !lazy_seal { + builder.seal_block(block0); + } + { + let tmp = builder.block_params(block0)[0]; // the first function parameter + builder.def_var(x, tmp); + } + { + let tmp = builder.ins().iconst(I32, 2); + builder.def_var(y, tmp); + } + { + let arg1 = builder.use_var(x); + let arg2 = builder.use_var(y); + let tmp = builder.ins().iadd(arg1, arg2); + builder.def_var(z, tmp); + } + builder.ins().jump(block1, &[]); + + builder.switch_to_block(block1); + { + let arg1 = builder.use_var(y); + let arg2 = builder.use_var(z); + let tmp = builder.ins().iadd(arg1, arg2); + builder.def_var(z, tmp); + } + { + let arg = builder.use_var(y); + builder.ins().brnz(arg, block3, &[]); + } + builder.ins().jump(block2, &[]); + + builder.switch_to_block(block2); + if !lazy_seal { + builder.seal_block(block2); + } + { + let arg1 = builder.use_var(z); + let arg2 = builder.use_var(x); + let tmp = builder.ins().isub(arg1, arg2); + builder.def_var(z, tmp); + } + { + let arg = builder.use_var(y); + builder.ins().return_(&[arg]); + } + + builder.switch_to_block(block3); + if !lazy_seal { + builder.seal_block(block3); + } + + { + let arg1 = builder.use_var(y); + let arg2 = builder.use_var(x); + let tmp = builder.ins().isub(arg1, arg2); + builder.def_var(y, tmp); + } + builder.ins().jump(block1, &[]); + if !lazy_seal { + builder.seal_block(block1); + } + + if lazy_seal { + builder.seal_all_blocks(); + } + + builder.finalize(); + } + + let flags = settings::Flags::new(settings::builder()); + // println!("{}", func.display(None)); + if let Err(errors) = verify_function(&func, &flags) { + panic!("{}\n{}", func.display(None), errors) + } + } + + #[test] + fn sample() { + sample_function(false) + } + + #[test] + fn sample_with_lazy_seal() { + sample_function(true) + } + + #[test] + fn memcpy() { + use core::str::FromStr; + use cranelift_codegen::{isa, settings}; + + let shared_builder = settings::builder(); + let shared_flags = settings::Flags::new(shared_builder); + + let triple = + ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple"); + + let target = isa::lookup(triple) + .ok() + .map(|b| b.finish(shared_flags)) + .expect("This test requires riscv32 support."); + + let mut sig = Signature::new(target.default_call_conv()); + sig.returns.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let x = Variable::new(0); + let y = Variable::new(1); + let z = Variable::new(2); + builder.declare_var(x, target.pointer_type()); + builder.declare_var(y, target.pointer_type()); + builder.declare_var(z, I32); + builder.append_block_params_for_function_params(block0); + builder.switch_to_block(block0); + + let src = builder.use_var(x); + let dest = builder.use_var(y); + let size = builder.use_var(y); + builder.call_memcpy(target.frontend_config(), dest, src, size); + builder.ins().return_(&[size]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i32 system_v { + sig0 = (i32, i32, i32) system_v + fn0 = %Memcpy sig0 + +block0: + v3 = iconst.i32 0 + v1 -> v3 + v2 = iconst.i32 0 + v0 -> v2 + call fn0(v1, v0, v1) + return v1 +} +" + ); + } + + #[test] + fn small_memcpy() { + use core::str::FromStr; + use cranelift_codegen::{isa, settings}; + + let shared_builder = settings::builder(); + let shared_flags = settings::Flags::new(shared_builder); + + let triple = + ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple"); + + let target = isa::lookup(triple) + .ok() + .map(|b| b.finish(shared_flags)) + .expect("This test requires riscv32 support."); + + let mut sig = Signature::new(target.default_call_conv()); + sig.returns.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let x = Variable::new(0); + let y = Variable::new(16); + builder.declare_var(x, target.pointer_type()); + builder.declare_var(y, target.pointer_type()); + builder.append_block_params_for_function_params(block0); + builder.switch_to_block(block0); + + let src = builder.use_var(x); + let dest = builder.use_var(y); + let size = 8; + builder.emit_small_memory_copy(target.frontend_config(), dest, src, size, 8, 8, true); + builder.ins().return_(&[dest]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i32 system_v { +block0: + v4 = iconst.i32 0 + v1 -> v4 + v3 = iconst.i32 0 + v0 -> v3 + v2 = load.i64 aligned v0 + store aligned v2, v1 + return v1 +} +" + ); + } + + #[test] + fn not_so_small_memcpy() { + use core::str::FromStr; + use cranelift_codegen::{isa, settings}; + + let shared_builder = settings::builder(); + let shared_flags = settings::Flags::new(shared_builder); + + let triple = + ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple"); + + let target = isa::lookup(triple) + .ok() + .map(|b| b.finish(shared_flags)) + .expect("This test requires riscv32 support."); + + let mut sig = Signature::new(target.default_call_conv()); + sig.returns.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let x = Variable::new(0); + let y = Variable::new(16); + builder.declare_var(x, target.pointer_type()); + builder.declare_var(y, target.pointer_type()); + builder.append_block_params_for_function_params(block0); + builder.switch_to_block(block0); + + let src = builder.use_var(x); + let dest = builder.use_var(y); + let size = 8192; + builder.emit_small_memory_copy(target.frontend_config(), dest, src, size, 8, 8, true); + builder.ins().return_(&[dest]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i32 system_v { + sig0 = (i32, i32, i32) system_v + fn0 = %Memcpy sig0 + +block0: + v4 = iconst.i32 0 + v1 -> v4 + v3 = iconst.i32 0 + v0 -> v3 + v2 = iconst.i32 8192 + call fn0(v1, v0, v2) + return v1 +} +" + ); + } + + #[test] + fn small_memset() { + use core::str::FromStr; + use cranelift_codegen::{isa, settings}; + + let shared_builder = settings::builder(); + let shared_flags = settings::Flags::new(shared_builder); + + let triple = + ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple"); + + let target = isa::lookup(triple) + .ok() + .map(|b| b.finish(shared_flags)) + .expect("This test requires riscv32 support."); + + let mut sig = Signature::new(target.default_call_conv()); + sig.returns.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let y = Variable::new(16); + builder.declare_var(y, target.pointer_type()); + builder.append_block_params_for_function_params(block0); + builder.switch_to_block(block0); + + let dest = builder.use_var(y); + let size = 8; + builder.emit_small_memset(target.frontend_config(), dest, 1, size, 8); + builder.ins().return_(&[dest]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i32 system_v { +block0: + v2 = iconst.i32 0 + v0 -> v2 + v1 = iconst.i64 0x0001_0001_0101 + store aligned v1, v0 + return v0 +} +" + ); + } + + #[test] + fn not_so_small_memset() { + use core::str::FromStr; + use cranelift_codegen::{isa, settings}; + + let shared_builder = settings::builder(); + let shared_flags = settings::Flags::new(shared_builder); + + let triple = + ::target_lexicon::Triple::from_str("riscv32").expect("Couldn't create riscv32 triple"); + + let target = isa::lookup(triple) + .ok() + .map(|b| b.finish(shared_flags)) + .expect("This test requires riscv32 support."); + + let mut sig = Signature::new(target.default_call_conv()); + sig.returns.push(AbiParam::new(I32)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let y = Variable::new(16); + builder.declare_var(y, target.pointer_type()); + builder.append_block_params_for_function_params(block0); + builder.switch_to_block(block0); + + let dest = builder.use_var(y); + let size = 8192; + builder.emit_small_memset(target.frontend_config(), dest, 1, size, 8); + builder.ins().return_(&[dest]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i32 system_v { + sig0 = (i32, i32, i32) system_v + fn0 = %Memset sig0 + +block0: + v4 = iconst.i32 0 + v0 -> v4 + v1 = iconst.i8 1 + v2 = iconst.i32 8192 + v3 = uextend.i32 v1 + call fn0(v0, v3, v2) + return v0 +} +" + ); + } + + #[test] + fn undef_vector_vars() { + let mut sig = Signature::new(CallConv::SystemV); + sig.returns.push(AbiParam::new(I8X16)); + sig.returns.push(AbiParam::new(B8X16)); + sig.returns.push(AbiParam::new(F32X4)); + + let mut fn_ctx = FunctionBuilderContext::new(); + let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig); + { + let mut builder = FunctionBuilder::new(&mut func, &mut fn_ctx); + + let block0 = builder.create_block(); + let a = Variable::new(0); + let b = Variable::new(1); + let c = Variable::new(2); + builder.declare_var(a, I8X16); + builder.declare_var(b, B8X16); + builder.declare_var(c, F32X4); + builder.switch_to_block(block0); + + let a = builder.use_var(a); + let b = builder.use_var(b); + let c = builder.use_var(c); + builder.ins().return_(&[a, b, c]); + + builder.seal_all_blocks(); + builder.finalize(); + } + + assert_eq!( + func.display(None).to_string(), + "function %sample() -> i8x16, b8x16, f32x4 system_v { + const0 = 0x00000000000000000000000000000000 + +block0: + v5 = f32const 0.0 + v6 = splat.f32x4 v5 + v2 -> v6 + v4 = vconst.b8x16 const0 + v1 -> v4 + v3 = vconst.i8x16 const0 + v0 -> v3 + return v0, v1, v2 +} +" + ); + } + + #[test] + fn test_greatest_divisible_power_of_two() { + assert_eq!(64, greatest_divisible_power_of_two(64)); + assert_eq!(16, greatest_divisible_power_of_two(48)); + assert_eq!(8, greatest_divisible_power_of_two(24)); + assert_eq!(1, greatest_divisible_power_of_two(25)); + } +} |